Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Pharmaceutical Considerations of Translabial Formulations for Treatment of Parkinson’s Disease: A Concept of Drug Delivery for Unconscious Patients

Author(s): Gaurav Tiwari, Ruchi Tiwari* and Arshpreet Kaur

Volume 20, Issue 8, 2023

Published on: 02 August, 2022

Page: [1163 - 1175] Pages: 13

DOI: 10.2174/1567201819666220516161413

Price: $65

conference banner
Abstract

Purpose: The goal of the present research was to isolate a biopolymer from Phaseolus vulgaris (P. vulgaris) and Zea mays (Z. mays) plants and used it to construct Resveratrol (RES)-loaded translabial films.

Methods: Biopolymers were extracted from P. vulgaris and Z. mays seeds using a simple process. Separated biopolymers, sodium carboxymethylcellulose (SCMC) and tragacanth were subjected to formulation development by incorporating RES-loaded translabial films. The Fourier-transform infrared spectroscopy (FTIR), physical appearance, weight, thickness, folding endurance, swelling index, surface pH, percent moisture absorption, percent moisture loss, vapor transfer rate, and content uniformity of the translabial films were examined. The mucoadhesive, ex-vivo permeation, in vivo and stability studies, were performed.

Results: The results showed that RES-loaded translabial films produced from P. vulgaris and Z. mays biopolymers exhibited exceptional mucoadhesive, stability, and permeation properties. Results revealed that the best formulations were prepared from a combination of biopolymer (P. vulgaris C or Z. mays C) with tragacanth. Formulations with tragacanth revealed good swelling and thus permeation profiles. In vivo release of TL 11 was found to be 24.05 ng/ml in 10 hours and it was stable enough at 45°C.

Conclusion: This research suggested that RES-loaded translabial formulations can be potentially used for the treatment of Parkinson’s disease with good patient compliance to geriatric and unconscious patients.

Keywords: Parkinson’s diseases, translabial, RES, biopolymers, ex-vivo permeation, in vivo studies.

Graphical Abstract

[1]
Yu, M.; Suo, H.; Liu, M.; Cai, L.; Liu, J.; Huang, Y.; Xu, J.; Wang, Y.; Zhu, C.; Fei, J.; Huang, F. NRSF/REST neuronal deficient mice are more vulnerable to the neurotoxin MPTP. Neurobiol. Aging, 2013, 34(3), 916-927.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.06.002] [PMID: 22766071]
[2]
Jamebozorgi, K.; Taghizadeh, E.; Rostami, D.; Pormasoumi, H.; Barreto, G.E.; Hayat, S.M.G.; Sahebkar, A. Cellular and molecular aspects of Parkinson treatment: Future therapeutic perspectives. Mol. Neurobiol., 2019, 56(7), 4799-4811.
[http://dx.doi.org/10.1007/s12035-018-1419-8] [PMID: 30397850]
[3]
Murakami, K.; Kondo, T.; Kawase, M.; Chan, P.H. The development of a new mouse model of global ischemia: Focus on the relationships between ischemia duration, anesthesia, cerebral vasculature, and neuronal injury following global ischemia in mice. Brain Res., 1998, 780(2), 304-310.
[http://dx.doi.org/10.1016/S0006-8993(97)01217-1] [PMID: 9507171]
[4]
Chen, Y.; Liu, L. Modern methods for delivery of drugs across the blood-brain barrier. Adv. Drug Deliv. Rev., 2012, 64(7), 640-665.
[http://dx.doi.org/10.1016/j.addr.2011.11.010] [PMID: 22154620]
[5]
Srivastav, S.; Fatima, M.; Mondal, A.C. Important medicinal herbs in Parkinson’s disease pharmacotherapy. Biomed. Pharmacother., 2017, 92, 856-863.
[http://dx.doi.org/10.1016/j.biopha.2017.05.137] [PMID: 28599249]
[6]
Song, J.X.; Sze, S.C.; Ng, T.B.; Lee, C.K.; Leung, G.P.; Shaw, P.C.; Tong, Y.; Zhang, Y.B. Anti-Parkinsonian drug discovery from herbal medicines: What have we got from neurotoxic models? J. Ethnopharmacol., 2012, 139(3), 698-711.
[http://dx.doi.org/10.1016/j.jep.2011.12.030] [PMID: 22212501]
[7]
Xie, F.; Gao, X.; Yang, W.; Chang, Z.; Yang, X.; Wei, X.; Huang, Z.; Xie, H.; Yue, Z.; Zhou, F.; Wang, Q. Advances in the research of risk factors and prodromal biomarkers of Parkinson’s disease. ACS Chem. Neurosci., 2019, 10(2), 973-990.
[http://dx.doi.org/10.1021/acschemneuro.8b00520] [PMID: 30590011]
[8]
Zou, J.; Chen, Z.; Wei, X.; Chen, Z.; Fu, Y.; Yang, X.; Chen, D.; Wang, R.; Jenner, P.; Lu, J.H.; Li, M.; Zhang, Z.; Tang, B.; Jin, K.; Wang, Q. Cystatin C as a potential therapeutic mediator against Parkinson’s disease via VEGF-induced angiogenesis and enhanced neuronal autophagy in neurovascular units. Cell Death Dis., 2017, 8(6), e2854-e2854.
[http://dx.doi.org/10.1038/cddis.2017.240] [PMID: 28569795]
[9]
Dujardin, K.; Leentjens, A.F.; Langlois, C.; Moonen, A.J.; Duits, A.A.; Carette, A.S.; Duhamel, A. The spectrum of cognitive disorders in Parkinson’s disease: A data-driven approach. Mov. Disord., 2013, 28(2), 183-189.
[http://dx.doi.org/10.1002/mds.25311] [PMID: 23436633]
[10]
Weintraub, D.; Tröster, A.I.; Marras, C.; Stebbins, G. Initial cognitive changes in Parkinson’s disease. Mov. Disord., 2018, 33(4), 511-519.
[http://dx.doi.org/10.1002/mds.27330] [PMID: 29543342]
[11]
Postuma, R.B.; Gagnon, J.F.; Montplaisir, J. Rapid eye movement sleep behavior disorder as a biomarker for neurodegeneration: The past 10 years. Sleep Med., 2013, 14(8), 763-767.
[http://dx.doi.org/10.1016/j.sleep.2012.09.001] [PMID: 23058689]
[12]
Loeffler, D.A.; Camp, D.M.; Conant, S.B. Complement activation in the Parkinson’s disease Substantia nigra: An immunocytochemical study. J. Neuroinflammation, 2006, 3(1), 29.
[http://dx.doi.org/10.1186/1742-2094-3-29] [PMID: 17052351]
[13]
Morales-Garcia, J.A.; Gine, E.; Hernandez-Encinas, E.; Aguilar-Morante, D.; Sierra-Magro, A.; Sanz-SanCristobal, M.; Alonso-Gil, S.; Sanchez-Lanzas, R.; Castaño, J.G.; Santos, A.; Perez-Castillo, A. CCAAT/Enhancer binding protein β silencing mitigates glial activation and neurodegeneration in a rat model of Parkinson’s disease. Sci. Rep., 2017, 7(1), 13526.
[http://dx.doi.org/10.1038/s41598-017-13269-4] [PMID: 29051532]
[14]
Vijitruth, R.; Liu, M.; Choi, D.Y.; Nguyen, X.V.; Hunter, R.L.; Bing, G. Cyclooxygenase-2 mediates microglial activation and secondary dopaminergic cell death in the mouse MPTP model of Parkinson’s disease. J. Neuroinflammation, 2006, 3(1), 6.
[http://dx.doi.org/10.1186/1742-2094-3-6] [PMID: 16566823]
[15]
Bastianetto, S.; Ménard, C.; Quirion, R. Neuroprotective action of resveratrol. Biochim. Biophys. Acta, 2015, 1852(6), 1195-1201.
[http://dx.doi.org/10.1016/j.bbadis.2014.09.011] [PMID: 25281824]
[16]
Abolaji, A.O.; Adedara, A.O.; Adie, M.A.; Vicente-Crespo, M.; Farombi, E.O. Resveratrol prolongs lifespan and improves 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced oxidative damage and behavioural deficits in Drosophila melanogaster. Biochem. Biophys. Res. Commun., 2018, 503(2), 1042-1048.
[http://dx.doi.org/10.1016/j.bbrc.2018.06.114] [PMID: 29935183]
[17]
Khan, M.M.; Ahmad, A.; Ishrat, T.; Khan, M.B.; Hoda, M.N.; Khuwaja, G.; Raza, S.S.; Khan, A.; Javed, H.; Vaibhav, K.; Islam, F. Resveratrol attenuates 6-hydroxydopamine-induced oxidative damage and dopamine depletion in rat model of Parkinson’s disease. Brain Res., 2010, 1328, 139-151.
[http://dx.doi.org/10.1016/j.brainres.2010.02.031] [PMID: 20167206]
[18]
Zeng, W.; Zhang, W.; Lu, F.; Gao, L.; Gao, G. Resveratrol attenuates MPP+-induced mitochondrial dysfunction and cell apoptosis via AKT/GSK-3β pathway in SN4741 cells. Neurosci. Lett., 2017, 637, 50-56.
[http://dx.doi.org/10.1016/j.neulet.2016.11.054] [PMID: 27894919]
[19]
Suktham, K.; Koobkokkruad, T.; Wutikhun, T.; Surassmo, S. Efficiency of resveratrol-loaded sericin nanoparticles: Promising bionanocarriers for drug delivery. Int. J. Pharm., 2018, 537(1-2), 48-56.
[http://dx.doi.org/10.1016/j.ijpharm.2017.12.015] [PMID: 29229512]
[20]
Ramalingam, P.; Ko, Y.T. Improved oral delivery of resveratrol from N-trimethyl chitosan-g-palmitic acid surface-modified solid lipid nanoparticles. Colloids Surf. B Biointerfaces, 2016, 139, 52-61.
[http://dx.doi.org/10.1016/j.colsurfb.2015.11.050] [PMID: 26700233]
[21]
Summerlin, N.; Qu, Z.; Pujara, N.; Sheng, Y.; Jambhrunkar, S.; McGuckin, M.; Popat, A. Colloidal mesoporous silica nanoparticles enhance the biological activity of resveratrol. Colloids Surf. B Biointerfaces, 2016, 144, 1-7.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.076] [PMID: 27060664]
[22]
Siu, F.Y.; Ye, S.; Lin, H.; Li, S. Galactosylated PLGA nanoparticles for the oral delivery of resveratrol: Enhanced bioavailability and in vitro anti-inflammatory activity. Int. J. Nanomed, 2018, 13, 4133-4144.
[http://dx.doi.org/10.2147/IJN.S164235] [PMID: 30038494]
[23]
Athukuri, B.L.; Neerati, P. Enhanced oral bioavailability of metoprolol with gallic acid and ellagic acid in male Wistar rats: Involvement of CYP2D6 inhibition. Drug Metab. Pers. Ther., 2016, 31(4), 229-234.
[http://dx.doi.org/10.1515/dmpt-2016-0029] [PMID: 27875319]
[24]
Kim, Y.; Keogh, J.B.; Clifton, P.M. Polyphenols and glycemic control. Nutrients, 2016, 8(1), E17.
[http://dx.doi.org/10.3390/nu8010017] [PMID: 26742071]
[25]
Ayaz, M.; Junaid, M.; Ullah, F.; Sadiq, A.; Khan, M.A.; Ahmad, W.; Shah, M.R.; Imran, M.; Ahmad, S. Comparative chemical profiling, cholinesterase inhibitions and anti-radicals properties of essential oils from Polygonum hydropiper L: A preliminary anti-Alzheimer’s study. Lipids Health Dis., 2015, 14(1), 141.
[http://dx.doi.org/10.1186/s12944-015-0145-8] [PMID: 26530857]
[26]
Rauf, A.; Hadda, T.B.; Uddin, G.; Cerón-Carrasco, J.P.; Peña-García, J.; Pérez-Sánchez, H.; Khan, H.; Bawazeer, S.; Patel, S.; Mubarak, M.S.; Abu-Izneid, T.; Mabkhot, Y.N. Sedative-hypnotic-like effect and molecular docking of di-naphthodiospyrol from Diospyros lotus in an animal model. Biomed. Pharmacother., 2017, 88, 109-113.
[http://dx.doi.org/10.1016/j.biopha.2017.01.043] [PMID: 28103503]
[27]
Farooq, U.; Khan, A.; Naz, S.; Rauf, A.; Khan, H.; Khan, A.; Ullah, I.; Bukhari, S.M. Sedative and antinociceptive activities of two new ses-quiterpenes isolated from Ricinus communis. Chin. J. Nat. Med., 2018, 16(3), 225-230.
[http://dx.doi.org/10.1016/S1875-5364(18)30051-7] [PMID: 29576059]
[28]
Jagla, F.; Pechanova, O. Age-related cognitive impairment as a sign of geriatric neurocardiovascular interactions: May polyphenols play a protective role? Oxid. Med. Cell. Longev., 2015, 2015, 721514.
[http://dx.doi.org/10.1155/2015/721514]
[29]
Moosavi, F.; Hosseini, R.; Saso, L.; Firuzi, O. Modulation of neurotrophic signaling pathways by polyphenols. Drug Des. Devel. Ther., 2015, 10, 23-42.
[PMID: 26730179]
[30]
Kanu, S.S.; Ojha, A.; Ramajayam, R.; Bhargava, S. Bhavna. An updated review on trans labial mucosa: A significant area to design and deliver a drug. J. Pharm. Sci. Res., 2020, 12(11), 1425-1430.
[31]
Intagliata, S.; Modica, M.N.; Santagati, L.M.; Montenegro, L. Strategies to improve resveratrol systemic and topical bioavailability: An update. Antioxidants, 2019, 8(8), 244.
[http://dx.doi.org/10.3390/antiox8080244] [PMID: 31349656]
[32]
Kumar, S.; Bhargava, D.; Thakkar, A.; Arora, S. Drug carrier systems for solubility enhancement of BCS class II drugs: A critical review. Crit. Rev. Ther. Drug Carrier Syst., 2013, 30(3), 217-256.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2013005964] [PMID: 23614647]
[33]
Benech-Kieffer, F.; Wegrich, P.; Schwarzenbach, R.; Klecak, G.; Weber, T.; Leclaire, J.; Schaefer, H. Percutaneous absorption of sunscreens in vitro: Interspecies comparison, skin models and reproducibility aspects. Skin Pharmacol. Appl. Skin Physiol., 2000, 13(6), 324-335.
[http://dx.doi.org/10.1159/000029940] [PMID: 11096374]
[34]
Ojha, A.; Madhav, N.V.S. Formulation and in vitro characterization of phenytoin loaded mucoadhesive biofilms of colocasia esculenta for translabial drug delivery system. Dhaka Univ. J. Pharm. Sci., 2016, 15(2), 177-186.
[http://dx.doi.org/10.3329/dujps.v15i2.30935]
[35]
Kumar, S.; Satheesh Madhav, N.V.; Verma, A.; Pathak, K. Development and evaluation of novel bionanoparticles loaded with nanosized lamotrigine by using the novel isolated biopolymer from Phaseolus vulgaris seeds. Int. J. Pharm. Sci. Drug Res., 2020, 1(12), 89-90.
[http://dx.doi.org/10.25004/IJPSDR.2020.120306]
[36]
Wu, C.; Zhu, Y.; Wu, T.; Wang, L.; Yuan, Y.; Chen, J.; Hu, Y.; Pang, J. Enhanced functional properties of biopolymer film incorporated with curcurmin-loaded mesoporous silica nanoparticles for food packaging. Food Chem., 2019, 288, 139-145.
[http://dx.doi.org/10.1016/j.foodchem.2019.03.010] [PMID: 30902273]
[37]
Madhav, N.S.; Yadav, A.P. A novel translabial platform utilizing bioexcipients from Litchi chinesis for the delivery of rosiglitazone maleate. Acta Pharm. Sin. B, 2013, 3(6), 408-415.
[http://dx.doi.org/10.1016/j.apsb.2013.10.004]
[38]
Goudoulas Thomas, B. Polymers and biopolymers as drug delivery systems in nanomedicine. Recent Pat. Nanomed., 2012, 2(1), 52-61.
[39]
Bhoir, A.S.; Chawla, P.S. Development and characterization of active film containing green tea extract in blends of gluten and zein. Curr. Appl. Polym. Sci., 2017, 1(2), 184-192.
[http://dx.doi.org/10.2174/2452271601666170321155233]
[40]
Müller, R.H.; Jacobs, C.; Kayser, O. Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. Adv. Drug Deliv. Rev., 2001, 47(1), 3-19.
[http://dx.doi.org/10.1016/S0169-409X(00)00118-6] [PMID: 11251242]
[41]
Singh, I.; Dastidar, G.D.; Ghosh, D.; Sengupta, A.; Ajala, O.T.; Odeku, A.O.; Singh, P.B.; Sharma, M. Bioadhesive films as drug delivery systems. Drug Deliv. Lett., 2021, 11(1), 2-15.
[42]
Lason, E.; Ogonowski, J. Solid lipid nanoparticles-characteristics, application and obtaining. Chemik, 2011, 65(10), 960-967.
[43]
Satheesh Madhav, N.V.; Yadav, A.P. Development and evaluation of novel repaglinide biostrips for translabial delivery. Int. Res. J. Pharm., 2013, 4, 198-202.
[http://dx.doi.org/10.7897/2230-8407.04540]
[44]
Kusum Devi, V.; Saisivam, S.; Maria, G.R.; Deepti, P.U. Design and evaluation of matrix diffusion controlled transdermal patches of verapamil hydrochloride. Drug Dev. Ind. Pharm., 2003, 29(5), 495-503.
[http://dx.doi.org/10.1081/DDC-120018638] [PMID: 12779279]
[45]
Contardi, M.; Montano, S.; Liguori, G.; Heredia-Guerrero, J.A.; Galli, P.; Athanassiou, A.; Bayer, I.S. Treatment of coral wounds by combining an antiseptic bilayer film and an injectable antioxidant biopolymer. Sci. Rep., 2020, 10(1), 988.
[http://dx.doi.org/10.1038/s41598-020-57980-1] [PMID: 31969660]
[46]
Nafee, N.A.; Boraie, M.A.; Ismail, F.A.; Mortada, L.M. Design and characterization of mucoadhesive buccal patches containing cetylpyridinium chloride. Acta Pharm., 2003, 53(3), 199-212.
[PMID: 14769243]
[47]
Akhter, R.; Masoodi, F.A.; Wani, T.A.; Rather, S.A. Functional characterization of biopolymer based composite film: Incorporation of natural essential oils and antimicrobial agents. Int. J. Biol. Macromol., 2019, 137, 1245-1255.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.06.214] [PMID: 31260767]
[48]
Bottenberg, P.; Cleymaet, R.; de Muynck, C.; Remon, J.P.; Coomans, D.; Michotte, Y.; Slop, D. Development and testing of bioadhesive, fluoride-containing slow-release tablets for oral use. J. Pharm. Pharmacol., 1991, 43(7), 457-464.
[http://dx.doi.org/10.1111/j.2042-7158.1991.tb03514.x] [PMID: 1682457]
[49]
Tiwari, R.; Tiwari, G.; Singh, R. Allopurinol loaded transferosomes for the alleviation of symptomatic after-effects of gout: An account of pharmaceutical implications. Curr. Drug Ther., 2020, 15(4), 404-419.
[http://dx.doi.org/10.2174/1574885515666200120124214]
[50]
Ghoshal, S.; Mattea, C.; Denner, P.; Stapf, S. Effect of initial conformation on the starch biopolymer film formation studied by NMR. Molecules, 2020, 25(5), 1227.
[http://dx.doi.org/10.3390/molecules25051227] [PMID: 32182808]
[51]
Gannu, R.; Vishnu, Y.V.; Kishan, V.; Rao, Y.M. Development of nitrendipine transdermal patches: In vitro and ex vivo characterization. Curr. Drug Deliv., 2007, 4(1), 69-76.
[http://dx.doi.org/10.2174/156720107779314767] [PMID: 17269919]
[52]
Boddupalli, B.M.; Mohammed, Z.N.; Nath, R.A.; Banji, D. Mucoadhesive drug delivery system: An overview. J. Adv. Pharm. Technol. Res., 2010, 1(4), 381-387.
[http://dx.doi.org/10.4103/0110-5558.76436] [PMID: 22247877]
[53]
Arif, U.; Haider, S.; Haider, A.; Khan, N.; Alghyamah, A.A.; Jamila, N.; Khan, M.I.; Almasry, W.A.; Kang, I.K. Biocompatible polymers and their potential biomedical applications: A review. Curr. Pharm. Des., 2019, 25(34), 3608-3619.
[http://dx.doi.org/10.2174/1381612825999191011105148] [PMID: 31604409]
[54]
Mehrotra, S.; Pathak, K. Translabial drug delivery: Potential and possibilities. Ther. Deliv., 2020, 11(11), 673-676.
[http://dx.doi.org/10.4155/tde-2020-0084] [PMID: 32811339]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy