Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Automated in silico EGFR Peptide Inhibitor Elongation using Self-evolving Peptide Algorithm

Author(s): Ke Han Tan, Sek Peng Chin and Choon Han Heh*

Volume 18, Issue 2, 2022

Published on: 09 June, 2022

Page: [150 - 158] Pages: 9

DOI: 10.2174/1573409918666220516144300

Price: $65

Abstract

Background: The vast diversity of peptide sequences may hinder the effectiveness of screening for potential peptide therapeutics as if searching for a needle in a haystack. This study aims to develop a new self-evolving peptide algorithm (SEPA), for easy virtual screening of small linear peptides (three to six amino acids) as potential therapeutic agents with the collaborative use of freely available software that can be run on any operating system equipped with a Bash scripting terminal. Mitogen-inducible Gene 6 (Mig6) protein, a cytoplasmic protein responsible for inhibition and regulation of epidermal growth factor receptor tyrosine kinase, was used to demonstrate the algorithm.

Objective: The objective is to propose a new method to discover potential novel peptide inhibitors via an automated peptide generation, docking and post-docking analysis algorithm that ranks short peptides by using essential hydrogen bond interaction between peptides and the target receptor.

Methods: A library of dockable dipeptides were first created using PyMOL, Open Babel and AutoDockTools, and docked into the target receptor using AutoDock Vina, automatically via a Bash script. The docked peptides were then ranked by hydrogen bond interaction-based thorough interaction analysis, where the top-ranked peptides were then elongated, docked, and ranked again. The process repeats until the user-defined peptide length is achieved.

Results: In the tested example, SEPA bash script was able to identify the tripeptide YYH ranked within top 20 based on the essential hydrogen bond interaction towards the essential amino acid residue ASP837 in the EGFR-TK receptor.

Conclusion: SEPA could be an alternative approach for the virtual screening of peptide sequences against drug targets.

Keywords: Self-evolving peptide algorithm, SEPA, docking, AutoDock Vina, thorough interaction analysis, automated peptide elongation, peptide inhibitor.

Graphical Abstract

[1]
Phillips, M. A.; Stewart, M. A.; Woodling, D. L.; Xie, Z.-R. Has molecular docking ever brought us a medicine.Molecular docking,, 2018, 141
[2]
Schames, J.R.; Henchman, R.H.; Siegel, J.S.; Sotriffer, C.A.; Ni, H.; McCammon, J.A. Discovery of a novel binding trench in HIV integrase. J. Med. Chem., 2004, 47(8), 1879-1881.
[http://dx.doi.org/10.1021/jm0341913] [PMID: 15055986]
[3]
Singh, J.; Chuaqui, C.E.; Boriack-Sjodin, P.A.; Lee, W.C.; Pontz, T.; Corbley, M.J.; Cheung, H.K.; Arduini, R.M.; Mead, J.N.; Newman, M.N.; Papadatos, J.L.; Bowes, S.; Josiah, S.; Ling, L.E. Successful shape-based virtual screening: The discovery of a potent inhibitor of the type I TGFbeta receptor kinase (TbetaRI). Bioorg. Med. Chem. Lett., 2003, 13(24), 4355-4359.
[http://dx.doi.org/10.1016/j.bmcl.2003.09.028] [PMID: 14643325]
[4]
Jiménez-Alberto, A.; Ribas-Aparicio, R.M.; Aparicio-Ozores, G.; Castelán-Vega, J.A. Virtual screening of approved drugs as potential SARS-CoV-2 main protease inhibitors. Comput. Biol. Chem., 2020, 88107325
[http://dx.doi.org/10.1016/j.compbiolchem.2020.107325] [PMID: 32623357]
[5]
Rajpoot, S.; Alagumuthu, M.; Baig, M.S. Dual targeting of 3CLpro and PLpro of SARS-CoV-2: A novel structure-based design approach to treat COVID-19. Curr Res Struct Biol, 2021, 3, 9-18.
[http://dx.doi.org/10.1016/j.crstbi.2020.12.001] [PMID: 33319212]
[6]
Yu, R.; Chen, L.; Lan, R.; Shen, R.; Li, P. Computational screening of antagonists against the SARS-CoV-2 (COVID-19) coronavirus by molecular docking. Int. J. Antimicrob. Agents, 2020, 56(2)106012
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106012] [PMID: 32389723]
[7]
Chandrudu, S.; Simerska, P.; Toth, I. Chemical methods for peptide and protein production. Molecules, 2013, 18(4), 4373-4388.
[http://dx.doi.org/10.3390/molecules18044373] [PMID: 23584057]
[8]
Heidary, M.; Khosravi, A.D.; Khoshnood, S.; Nasiri, M.J.; Soleimani, S.; Goudarzi, M. Daptomycin. J. Antimicrob. Chemother., 2018, 73(1), 1-11.
[http://dx.doi.org/10.1093/jac/dkx349] [PMID: 29059358]
[9]
Kumar, M.S. Peptides and peptidomimetics as potential antiobesity agents: Overview of current status. Front. Nutr., 2019, 6, 11.
[http://dx.doi.org/10.3389/fnut.2019.00011] [PMID: 30834248]
[10]
Lyu, Y.; Kopcho, S.; Alvarez, F.A.; Okeoma, B.C.; Okeoma, C.M. Development of a cationic amphiphilic helical peptidomimetic (B18L) as a novel anti-cancer drug lead. Cancers (Basel), 2020, 12(9)E2448
[http://dx.doi.org/10.3390/cancers12092448] [PMID: 32872253]
[11]
McNeil, M.M.; Nahhas, A.F.; Braunberger, T.L.; Hamzavi, I.H. Afamelanotide in the treatment of dermatologic disease. Skin Therapy Lett., 2018, 23(6), 6-10.
[PMID: 30517779]
[12]
Qvit, N.; Rubin, S.J.S.; Urban, T.J.; Mochly-Rosen, D.; Gross, E.R. Peptidomimetic therapeutics: Scientific approaches and opportunities. Drug Discov. Today, 2017, 22(2), 454-462.
[http://dx.doi.org/10.1016/j.drudis.2016.11.003] [PMID: 27856346]
[13]
Spencer, H. The Principles of Biology; Outlook Verlag, 2020, p. 1.
[14]
Park, E.; Kim, N.; Ficarro, S.B.; Zhang, Y.; Lee, B.I.; Cho, A.; Kim, K.; Park, A.K.J.; Park, W.Y.; Murray, B.; Meyerson, M.; Beroukhim, R.; Marto, J.A.; Cho, J.; Eck, M.J. Structure and mechanism of activity-based inhibition of the EGF receptor by Mig6. Nat. Struct. Mol. Biol., 2015, 22(9), 703-711.
[http://dx.doi.org/10.1038/nsmb.3074] [PMID: 26280531]
[15]
Schrodinger, LLC The PyMOL molecular graphics system., 2015.
[16]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[17]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[18]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Auto-mated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[19]
McDonald, I.K.; Thornton, J.M. Satisfying hydrogen bonding potential in proteins. J. Mol. Biol., 1994, 238(5), 777-793.
[http://dx.doi.org/10.1006/jmbi.1994.1334] [PMID: 8182748]
[20]
Lim, S.K.; Othman, R.; Yusof, R.; Heh, C.H. Rational drug discovery of HCV helicase inhibitor: Improved docking accuracy with multiple seeding in autodock vina and in situ minimization. Curr. Computeraided Drug Des., 2017, 13(2), 160-169.
[http://dx.doi.org/10.2174/1573409912666161130122622] [PMID: 27903217]
[21]
Huey, R.; Morris, G.M.; Forli, S. Using AutoDock 4 and AutoDock vina with AutoDockTools: A tutorial. Scripps Research Institute Molecu-lar Graphics Laboratory, 2012, 10550, 92037-1000.
[22]
Wang, J.; Alekseenko, A.; Kozakov, D.; Miao, Y. Improved modeling of peptide-protein binding through global docking and accelerated molecular dynamics simulations. Front. Mol. Biosci., 2019, 6, 112.
[http://dx.doi.org/10.3389/fmolb.2019.00112] [PMID: 31737642]
[23]
Tao, H.; Zhang, Y.; Huang, S.Y. Improving protein-peptide docking results via pose-clustering and rescoring with a combined knowledge-based and MM-GBSA scoring function. J. Chem. Inf. Model., 2020, 60(4), 2377-2387.
[http://dx.doi.org/10.1021/acs.jcim.0c00058] [PMID: 32267149]
[24]
Sanner, M.F.; Dieguez, L.; Forli, S.; Lis, E. Improving docking power for short peptides using random forest. J. Chem. Inf. Model., 2021, 61(6), 3074-3090.
[http://dx.doi.org/10.1021/acs.jcim.1c00573] [PMID: 34124893]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy