Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Electrochemical Method: A Green Approach for the Synthesis of Organic Compounds

Author(s): Sonali Garg, Harvinder Singh Sohal*, Dharambeer Singh Malhi, Manvinder Kaur, Kishanpal Singh, Ajay Sharma, Vishal Mutreja, Deepa Thakur and Loveleen Kaur

Volume 26, Issue 10, 2022

Published on: 21 July, 2022

Page: [899 - 919] Pages: 21

DOI: 10.2174/1385272826666220516113152

Price: $65

Abstract

Background: Heterocyclic compounds have gained attention due to their growing demand against various infectious diseases, but their synthesis with hazardous chemicals, costly catalysts, and costly purification methods encourage researchers to explore alternative sources. The electrochemical method offers a powerful and versatile approach for assembling different heterocyclic structures. Moreover, it gives a highly proficient and green methodology that avoids harmful oxidants and reductants.

Objective: In this review, we aim to compile the different types of reactions i.e., Curtin- Hammet, Michael addition, Wittig reaction, Henry, Diels-Alder, Friedel-crafts, Kolbe, Heck, Benzoin condensation reaction taking place in case of electrochemical synthesis in the last 3 years from 2017-2020. So, to the best of our knowledge, after 2017, there is no such report present that can explain the present scenario in the field of electrochemical synthesis. So this encouraged us to write a review on this interesting topic.

Result: From this study, we concluded that the electrochemical methods provide a green and proficient methodology for radical intermediate’s age utilizing electrons as traceless reagents, which could avoid the use of harmful oxidants and reductants.

Keywords: Intermolecular cyclization, intramolecular cyclization, coupling reaction, electrochemical method, radical cyclization, green methodology.

Next »
Graphical Abstract

[1]
D’Souza, D.M.D.; Müller, T.J.J. Multi-component syntheses of heterocycles by transition-metal catalysis. Chem. Soc. Rev., 2007, 36(7), 1095-1108.
[http://dx.doi.org/10.1039/B608235C] [PMID: 17576477]
[2]
Toghan, A.; Abo-Bakr, A.M.; Rageh, H.M.; Abd-Elsabour, M. Green electrochemical strategy for one-step synthesis of new catechol derivatives. RSC Advances, 2019, 9(23), 13145-13152.
[http://dx.doi.org/10.1039/C9RA01206K]
[3]
Kaur, N. Synthetic routes to seven and higher membered s-heterocycles by use of metal and nonmetal catalyzed reactions. Phosphorus Sulfur Silicon Relat. Elem., 2019, 194(3), 186-209.
[http://dx.doi.org/10.1080/10426507.2018.1539493]
[4]
Balaban, A.T.; Oniciu, D.C.; Katritzky, A.R. Aromaticity as a cornerstone of heterocyclic chemistry. Chem. Rev., 2004, 104(5), 2777-2812.
[http://dx.doi.org/10.1021/cr0306790] [PMID: 15137807]
[5]
Majumdar, P.; Pati, A.; Patra, M.; Behera, R.K.; Behera, A.K. Acid hydrazides, potent reagents for synthesis of oxygen-, nitrogen-, and/or sulfur-containing heterocyclic rings. Chem. Rev., 2014, 114(5), 2942-2977.
[http://dx.doi.org/10.1021/cr300122t] [PMID: 24506477]
[6]
Polshettiwar, V.; Varma, R.S. Greener and expeditious synthesis of bioactive heterocycles using microwave irradiation. Pure Appl. Chem., 2008, 80(4), 777-790.
[http://dx.doi.org/10.1351/pac200880040777]
[7]
Kaur, N. Green synthesis of three- to five-membered O-heterocycles using ionic liquids. Synth. Commun., 2018, 48(13), 1588-1613.
[http://dx.doi.org/10.1080/00397911.2018.1458243]
[8]
Orru, R.V.A.; De Greef, M. Recent advances in solution-phase multicomponent methodology for the synthesis of heterocyclic compounds. Synthesis (Stuttg), 2003, 2003(10), 1471-1499.
[http://dx.doi.org/10.1055/s-2003-40507]
[9]
Kaur, N. Applications of gold catalysts for the synthesis of five-membered O-heterocycles. Inorg. Nano-Metal Chem., 2017, 47(2), 163-187.
[10]
Kaur, N. Ultrasound-assisted green synthesis of five-membered O- and S-heterocycles. Synth. Commun., 2018, 48(14), 1715-1738.
[http://dx.doi.org/10.1080/00397911.2018.1460671]
[11]
Druzhinin, S.V.; Balenkova, E.S.; Nenajdenko, V.G. Recent advances in the chemistry of α,β-unsaturated trifluoromethylketones. Tetrahedron, 2007, 63(33), 7753-7808.
[http://dx.doi.org/10.1016/j.tet.2007.04.029]
[12]
Kaur, N. Synthesis of Six- and Seven-membered heterocycles under ultrasound irradiation. Synth. Commun., 2018, 48(11), 1235-1258.
[http://dx.doi.org/10.1080/00397911.2018.1434894]
[13]
Kaur, M.; Garg, S.; Malhi, D.S.; Sohal, H.S. A Review on synthesis, reactions and biological properties of seven membered heterocyclic compounds: Azepine, Azepane, Azepinone. Curr. Org. Chem., 2021, 25(4), 449-506.
[http://dx.doi.org/10.2174/1385272825999210104222338]
[14]
Garg, S.; Kaur, M.; Malhi, D. S.; Sohal, H. S.; Sharma, A. Recent advances in the synthesis and bioapplications of some oxygen and sulphur containing seven membered heterocyclic compounds., 2021.
[http://dx.doi.org/10.2174/9789811803741121140005]
[15]
Brandi, A.; Cicchi, S.; Cordero, F.M.; Goti, A. Heterocycles from alkylidenecyclopropanes. Chem. Rev., 2003, 103(4), 1213-1269.
[http://dx.doi.org/10.1021/cr010005u] [PMID: 12683782]
[16]
Shahab, S.; Hajikolaee, F.H.; Filippovich, L.; Darroudi, M.; Loiko, V.A.; Kumar, R.; Borzehandani, M.Y. Molecular structure and UV-VIS spectral analysis of new syn-thesized azo dyes for application in polarizing films. Dyes Pigments, 2016, 129, 9-17.
[http://dx.doi.org/10.1016/j.dyepig.2016.02.003]
[17]
Martins, M.A.P.; Frizzo, C.P.; Moreira, D.N.; Buriol, L.; Machado, P. Solvent-free heterocyclic synthesis. Chem. Rev., 2009, 109(9), 4140-4182.
[http://dx.doi.org/10.1021/cr9001098] [PMID: 19737022]
[18]
Dua, R.; Dua, R.; Shrivastava, S.; Sonwane, S.K.; Srivastava, S.K. Pharmacological significance of synthetic heterocycles scaffold: A Review. Adv. Biol. Res. (Rennes)., 2011, 5(3), 120-144.
[19]
Chen, T.H.; Chang, C.F.; Yu, S.C.; Wang, J.C.; Chen, C.H.; Chan, P.; Lee, H.M. Dipyridamole inhibits cobalt chloride-induced osteopontin expression in NRK52E cells. Eur. J. Pharmacol., 2009, 613(1-3), 10-18.
[http://dx.doi.org/10.1016/j.ejphar.2009.03.063] [PMID: 19356721]
[20]
Moan, J.; Berg, K. The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem. Photobiol., 1991, 53(4), 549-553.
[http://dx.doi.org/10.1111/j.1751-1097.1991.tb03669.x] [PMID: 1830395]
[21]
Sessler, J.L.; Seidel, D. Synthetic expanded porphyrin chemistry. Angew. Chem. Int. Ed., 2003, 42(42), 5134-5175.
[http://dx.doi.org/10.1002/anie.200200561] [PMID: 14601164]
[22]
Li, C.; Lee, D.; Graf, T.N.; Phifer, S.S.; Nakanishi, Y.; Burgess, J.P.; Riswan, S.; Setyowati, F.M.; Saribi, A.M.; Soejarto, D.D.; Farnsworth, N.R.; Falkinham, J.O., III; Kroll, D.J.; Kinghorn, A.D.; Wani, M.C.; Oberlies, N.H. A hexacyclic ent-trachylobane diterpenoid possessing an oxetane ring from Mitrephora glabra. Org. Lett., 2005, 7(25), 5709-5712.
[http://dx.doi.org/10.1021/ol052498l] [PMID: 16321028]
[23]
Mital, A. Synthetic nitroimidazoles: biological activities and mutagenicity relationships. Sci. Pharm., 2009, 77(3), 497-520.
[http://dx.doi.org/10.3797/scipharm.0907-14]
[24]
Nekrasov, D.D. biological activity of 5- and 6-membered azaheterocycles and their synthesis from 5-aryl-2,3-dihydrofuran-2,3-diones. Chem. Heterocycl. Compd., 2001, 37(3), 263-275.
[http://dx.doi.org/10.1023/A:1017505929583]
[25]
Sperry, J.B.; Wright, D.L. Furans, thiophenes and related heterocycles in drug discovery. Curr. Opin. Drug Discov. Devel., 2005, 8(6), 723-740.
[PMID: 16312148]
[26]
Chen, S.; Liu, X.; Ge, X.; Wang, Q.; Xie, Y.; Hao, Y.; Zhang, Y.; Zhang, L.; Shang, W.; Liu, Z. Lysosome-targeted iridium(iii) compounds with pyridine-triphenylamine schiff base ligands: syntheses, antitumor applications and mechanisms. Inorg. Chem. Front., 2019, 7(1), 91-100.
[http://dx.doi.org/10.1039/C9QI01161G]
[27]
Li, X. yang; Li, S.; Lu, G. qing; Wang, D. pu; Liu, K. li; Qian, X. hua; Xue, W. han; Meng, F. hao. Design, synthesis and biological evaluation of novel (e)-n-phenyl-4-(pyridine-acylhydrazone) benzamide derivatives as potential antitumor agents for the treatment of multiple myeloma (MM). Bioorg. Chem., 2020, 103, 104189.
[http://dx.doi.org/10.1016/j.bioorg.2020.104189] [PMID: 32890996]
[28]
Hassan, A.Y.; Sarg, M.T.; El-Sebaey, S.A. Synthesis and antitumor evaluation of some new derivatives and fused heterocyclic compounds derived from thieno[2,3-b]pyridine: Part 2. J. Heterocycl. Chem., 2020, 57(2), 694-715.
[http://dx.doi.org/10.1002/jhet.3810]
[29]
Horishny, V.Y.; Matiychuk, V.S. Synthesis and antitumor activity of new 5-ylidene derivatives of 3-(furan-2-ylmethyl)-2-sulfanylidene-1,3-thiazolidin-4-One. Russ. J. Org. Chem., 2020, 56(9), 1600-1605.
[http://dx.doi.org/10.1134/S107042802009016X]
[30]
Mir, N.A.; Ramaraju, P.; Vanaparthi, S.; Choudhary, S.; Singh, R.P.; Sharma, P.; Kant, R.; Singh, R.; Sankaranarayanan, M.; Kumar, I. Sequential multicomponent catalytic synthesis of pyrrole-3-carboxaldehydes: Evaluation of antibacterial and antifungal activities along with docking studies. New J. Chem., 2020, 44(38), 16329-16339.
[http://dx.doi.org/10.1039/D0NJ03575K]
[31]
Hassan, A.S.; Moustafa, G.O.; Morsy, N.M.; Abdou, A.M.; Hafez, T.S. Design, synthesis and antibacterial activity of n-aryl-3-(arylamino)-5-(((5-substituted furan-2-yl)methylene)amino)-1h-pyrazole-4-carboxamide as nitrofurantoin analogues. Egypt. J. Chem., 2020, 63(11), 4469-4481.
[http://dx.doi.org/10.21608/ejchem.2020.26158.2525]
[32]
Gilbert-Girard, S.; Savijoki, K.; Yli-Kauhaluoma, J.; Fallarero, A. Screening of fda-approved drugs using a 384-well plate-based biofilm platform: the case of fingolimod. Microorganisms, 2020, 8(11), 1-25.
[http://dx.doi.org/10.3390/microorganisms8111834] [PMID: 33233348]
[33]
Beheshti, A.; Panahi, F.; Soleymani-Babadi, S.; Mayer, P.; Lipkowski, J.; Motamedi, H.; Samiee, S. Rational synthesis, structural characterization, theoretical studies, antibacterial activity and selective dye absorption of new silver coordination polymers generated from a flexible bis (imidazole-2-thione) ligand. Inorg. Chim. Acta, 2020, 504, 119406.
[http://dx.doi.org/10.1016/j.ica.2019.119406]
[34]
Hajibabaei, M.; Amini, M.M.; Zendehdel, R.; Nasiri, M.J.; Peymani, A. synthesis, characterization and antibacterial activity of imidazole-functionalized Ag/MIL-101(Cr). J. Porous Mater., 2019, 26(6), 1721-1729.
[http://dx.doi.org/10.1007/s10934-019-00773-3]
[35]
Sang, Y.; Pannecouque, C.; De Clercq, E.; Zhuang, C.; Chen, F. Pharmacophore-fusing design of pyrimidine sulfonylacetanilides as potent non-nucleoside inhibitors of HIV-1 reverse transcriptase. Bioorg. Chem., 2020, 96(January), 103595.
[http://dx.doi.org/10.1016/j.bioorg.2020.103595] [PMID: 32006797]
[36]
Romeo, R.; Iannazzo, D.; Veltri, L.; Gabriele, B.; Macchi, B.; Frezza, C.; Marino-Merlo, F.; Giofrè, S.V. pyrimidine 2,4-diones in the design of new HIV RT inhibitors. Molecules, 2019, 24(9), 1-14.
[http://dx.doi.org/10.3390/molecules24091718] [PMID: 31052607]
[37]
Kasralikar, H.M.; Jadhavar, S.C.; Goswami, S.V.; Kaminwar, N.S.; Bhusare, S.R. Design, synthesis and molecular docking of pyrazolo [3,4d] thiazole hybrids as potential anti-HIV-1 NNRT inhibitors. Bioorg. Chem., 2019, 86(February), 437-444.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.006] [PMID: 30771690]
[38]
Khan, M.H.; Hameed, S.; Akhtar, T.; Al-Masoudi, N.A.; Al-Masoudi, W.A.; Jones, P.G.; Pannecouque, C. Synthesis, crystal structure, anti-hiv, and antiproliferative activity of new oxadiazole and thiazole analogs. Med. Chem. Res., 2016, 25(10), 2399-2409.
[http://dx.doi.org/10.1007/s00044-016-1669-9]
[39]
Alizadeh, M.; Jalal, M.; Hamed, K.; Saber, A.; Kheirouri, S.; Pourteymour Fard Tabrizi, F.; Kamari, N. Recent updates on anti-inflammatory and antimicrobial effects of furan natural derivatives. J. Inflamm. Res., 2020, 13, 451-463.
[http://dx.doi.org/10.2147/JIR.S262132] [PMID: 32884326]
[40]
Pardeshi, S.D.; Sonar, J.P.; Dokhe, S.A.; Zine, A.M. T. S. N, Synthesis and anti-microbial activity of novel pyrrolidine containing chalcones and pyrazolines. Int. J. Chem. Phys. Sci., 2016, 5, 34-40.
[41]
Tao, H.W.; Peng, W.Y.; Yuan, J.C.; Li, Q.; Zeng, L.Y.; Yu, X.Y.; Yi, P.G. Facile preparation and preliminary cytotoxicity evaluation of dehydroepiandrosterone c-16 spiro-pyrrolidine derivatives. Chem. Pap., 2020, 75(2), 823-829.
[http://dx.doi.org/10.1007/s11696-020-01346-4]
[42]
Shahrestani, N.; Tovfighmadar, K.; Eskandari, M.; Jadidi, K.; Notash, B.; Mirzaei, P. Synthesis of highly enantioenriched bis-spirooxindole pyrrolizidine/pyrrolidines through asymmetric [3+2] cycloaddition reaction. Asian J. Org. Chem., 2020, 9(5), 822-828.
[http://dx.doi.org/10.1002/ajoc.202000056]
[43]
Eryılmaz, S.; Türk Çelikoğlu, E.; İdil, Ö.; İnkaya, E.; Kozak, Z.; Mısır, E.; Gül, M. Derivatives of pyridine and thiazole hybrid: Synthesis, DFT, biological evaluation via antimicrobial and DNA cleavage activity. Bioorg. Chem., 2020, 95, 103476-103521.
[http://dx.doi.org/10.1016/j.bioorg.2019.103476] [PMID: 31838288]
[44]
Mukherjee, G.; Mukherjee, K.; Das, R.; Mandal, R.S.; Roy, I.; Mukhopadhyay, B.; Sil, A.K. Allyl piperidine-1-carbodiothioate and benzyl 1H-imidazole 1 carbodithio-ate: two potential agents to combat against mycobacteria. J. Appl. Microbiol., 2021, 130(3), 786-796.
[http://dx.doi.org/10.1111/jam.14762] [PMID: 32615006]
[45]
Belveren, S.; Poyraz, S.; Pask, C.M.; Ülger, M.; Sansano, J.M.; Ali Döndaş, H. Synthesis and biological evaluation of platinum complexes of highly functionalized aroylaminocarbo-n-thioyl prolinate containing tetrahydropyrrolo[3,4-c]pyrrole-1,3(2h,3ah)-dione moieties. Inorg. Chim. Acta, 2019, 498(July), 119154.
[http://dx.doi.org/10.1016/j.ica.2019.119154]
[46]
Masila, V.M.; Ndakala, A.J.; Byamukama, R.; Midiwo, J.O.; Kamau, R.W.; Wang, M.; Kumarihamy, M.; Zhao, J.; Heydreich, M.; Muhammad, I. Synthesis, structural assignments and antiinfective activities of 3-O-benzyl-carvotacetone and 3-hydroxy-2-isopropyl-5-methyl-p-benzoquinone. Nat. Prod. Res., 2020, 0(0), 1-9.
[http://dx.doi.org/10.1080/14786419.2020.1833201] [PMID: 31997645]
[47]
Wen, L.; Jian, W.; Shang, J.; He, D. Synthesis and antifungal activities of novel thiophene-based stilbene derivatives bearing an 1,3,4-oxadiazole unit. Pest Manag. Sci., 2019, 75(4), 1123-1130.
[http://dx.doi.org/10.1002/ps.5229] [PMID: 30284404]
[48]
Wonglom, P.; Ito, S.; Ho, S.; Sunpapao, A. Volatile organic compounds emitted from endophytic fungus trichoderma asperellum t1 mediate antifungal activity, defense response and promote plant growth in lettuce (lactuca sativa). Fungal Ecol., 2020, 43, 100867.
[http://dx.doi.org/10.1016/j.funeco.2019.100867]
[49]
Huang, Z.; Yin, L.; Guan, L.; Li, Z.; Tan, C. Novel piperazine-2,5-dione analogs bearing 1H-indole: Synthesis and biological effects. Bioorg. Med. Chem. Lett., 2020, 30(24), 127654.
[http://dx.doi.org/10.1016/j.bmcl.2020.127654] [PMID: 33144244]
[50]
Bennabi, D.; Charpeaud, T.; Yrondi, A.; Genty, J.B.; Destouches, S.; Lancrenon, S.; Alaïli, N.; Bellivier, F.; Bougerol, T.; Camus, V.; Dorey, J.M.; Doumy, O.; Haesebaert, F.; Holtzmann, J.; Lançon, C.; Lefebvre, M.; Moliere, F.; Nieto, I.; Rabu, C.; Richieri, R.; Schmitt, L.; Stephan, F.; Vaiva, G.; Walter, M.; Leboyer, M.; El-Hage, W.; Llorca, P.M.; Courtet, P.; Aouizerate, B.; Haffen, E. Clinical guidelines for the management of treatment-resistant depression: French recommendations from experts, the French Association for Biological Psychiatry and Neuropsychopharmacology and the fondation FondaMental. BMC Psychiatry, 2019, 19(1), 262.
[http://dx.doi.org/10.1186/s12888-019-2237-x] [PMID: 31455302]
[51]
Zhang, M.; Ding, Y.; Qin, H.X.; Xu, Z.G.; Lan, H.T.; Yang, D.L.; Yi, C. One-pot synthesis of substituted pyrrole-imidazole derivatives with anticancer activity. Mol. Divers., 2020, 24(4), 1177-1184.
[http://dx.doi.org/10.1007/s11030-019-09982-z] [PMID: 31494841]
[52]
Zhou, Q.; Jia, L.; Du, F.; Dong, X.; Sun, W.; Wang, L.; Chen, G. Design, synthesis and biological activities of pyrrole-3-carboxamide derivatives as EZH2 (enhancer of zeste homologue 2) inhibitors and anticancer agents. New J. Chem., 2020, 44(6), 2247-2255.
[http://dx.doi.org/10.1039/C9NJ04713A]
[53]
Momo, C.H.K.; Mboussaah, A.D.K.; François Zambou, N.; Shaiq, M.A. New pyran derivative with antioxidant and anticancer properties isolated from the probiotic lactobacillus plantarum H24 strain. Nat. Prod. Res., 2022, 36(4), 909-917.
[PMID: 33225751]
[54]
Tavakolinia, F.; Baghipour, T.; Hossaini, Z.; Zareyee, D.; Khalilzadeh, M.A.; Rajabi, M. Antiproliferative activity of novel thiopyran analogs on MCF-7 breast and HCT-15 colon cancer cells: synthesis, cytotoxicity, cell cycle analysis, and DNA-binding. Nucleic Acid Ther., 2012, 22(4), 265-270.
[http://dx.doi.org/10.1089/nat.2012.0346] [PMID: 22897207]
[55]
Janikova-Bandzuchova, L.; Šelešovská, R.; Schwarzová-Pecková, K.; Chýlková, J. Sensitive voltammetric method for rapid determination of pyridine herbicide triclopyr on bare boron-doped diamond electrode. Electrochim. Acta, 2015, 154, 421-429.
[http://dx.doi.org/10.1016/j.electacta.2014.12.064]
[56]
Guan, A.Y.; Liu, C.L.; Sun, X.F.; Xie, Y.; Wang, M.A. Discovery of pyridine-based agrochemicals by using Intermediate Derivatization Methods. Bioorg. Med. Chem., 2016, 24(3), 342-353.
[http://dx.doi.org/10.1016/j.bmc.2015.09.031] [PMID: 26481150]
[57]
Stetter, J.; Lieb, F. Innovation in crop protection: trends in research. Angew. Chem. Int. Ed. Engl., 2000, 39(10), 1724-1744.
[http://dx.doi.org/10.1002/(SICI)1521-3773(20000515)39:10<1724:AID-ANIE1724>3.0.CO;2-5] [PMID: 10934351]
[58]
Yu, X.; Zhu, X.; Zhou, Y.; Li, Q.; Hu, Z.; Li, T.; Tao, J.; Dou, M.; Zhang, M.; Shao, Y.; Sun, R. Discovery of n-aryl-pyridine-4-ones as novel potential agrochemical fungi-cides and bactericides. J. Agric. Food Chem., 2019, 67(50), 13904-13913.
[http://dx.doi.org/10.1021/acs.jafc.9b06296] [PMID: 31765135]
[59]
Meireles, L.M.; de Araujo, M.L.; Endringer, D.C.; Fronza, M.; Scherer, R. Change in the clinical antifungal sensitivity profile of Aspergillus flavus induced by azole and a benzimidazole fungicide exposure. Diagn. Microbiol. Infect. Dis., 2019, 95(2), 171-178.
[http://dx.doi.org/10.1016/j.diagmicrobio.2019.05.019] [PMID: 31239090]
[60]
Raghavendra, K.; Barik, T.K.; Bhatt, R.M.; Srivastava, H.C.; Sreehari, U.; Dash, A.P. Evaluation of the pyrrole insecticide chlorfenapyr for the control of Culex quinque-fasciatus Say. Acta Trop., 2011, 118(1), 50-55.
[http://dx.doi.org/10.1016/j.actatropica.2011.02.001] [PMID: 21315680]
[61]
Oxborough, R.M.; N’Guessan, R.; Jones, R.; Kitau, J.; Ngufor, C.; Malone, D.; Mosha, F.W.; Rowland, M.W. The activity of the pyrrole insecticide chlorfenapyr in mos-quito bioassay: towards a more rational testing and screening of non-neurotoxic insecticides for malaria vector control. Malar. J., 2015, 14(1), 124.
[http://dx.doi.org/10.1186/s12936-015-0639-x] [PMID: 25879231]
[62]
Dömling, A.; Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed. Engl., 2000, 39(18), 3168-3210.
[http://dx.doi.org/10.1002/1521-3773(20000915)39:18<3168:AID-ANIE3168>3.0.CO;2-U] [PMID: 11028061]
[63]
Tietze, L.F.; Beifuss, U. Sequential transformations in organic chemistry: a synthetic strategy with a future. Angew. Chem. Int. Ed. Engl., 1993, 32(2), 131-163.
[http://dx.doi.org/10.1002/anie.199301313]
[64]
Tietze, L.F. Domino reactions in organic synthesis. Chem. Rev., 1996, 96(1), 115-136.
[http://dx.doi.org/10.1021/cr950027e] [PMID: 11848746]
[65]
Cox, E.D.; Cook, J.M. The pictet-spengler condensation: a new direction for an old reaction. Chem. Rev., 1995, 95(6), 1797-1842.
[http://dx.doi.org/10.1021/cr00038a004]
[66]
Zhao, X.; Gong, L.; Wang, C.; Wang, C.; Yu, K.; Zhou, B. A facile grinding method for the synthesis of 3D Ag metal-organic frameworks (MOFs) containing ag6mo7o24 for high-performance supercapacitors. Chemistry, 2020, 26(20), 4613-4619.
[http://dx.doi.org/10.1002/chem.201905689] [PMID: 32039508]
[67]
Maury, S.K.; Kumari, S.; Kushwaha, A.K.; Kamal, A.; Singh, H.K.; Kumar, D.; Singh, S. Grinding induced catalyst free, multicomponent synthesis of indoloindole py-rimidine. Tetrahedron Lett., 2020, 61(41), 152383.
[http://dx.doi.org/10.1016/j.tetlet.2020.152383]
[68]
Khobare, R.; Pawar, R.P.; Warad, K.D.; Tayade, A.; Mane, C.B. An efficient synthesis of substituted isoxazole derivatives using ultra sound sonication method. Eur. J. Mol. Clin. Med., 2020, 7(7), 319-325.
[69]
Sze, E.M.L.; Rao, W.; Koh, M.J.; Chan, P.W.H. Gold-catalyzed tandem intramolecular heterocyclization/Petasis-Ferrier rearrangement of 2-(prop-2-ynyloxy)benzaldehydes as an expedient route to benzo[b]oxepin-3(2 H)-ones. Chemistry, 2011, 17(5), 1437-1441.
[http://dx.doi.org/10.1002/chem.201003096] [PMID: 21268145]
[70]
Mangina, N.S.V.M.R.; Suresh, S.; Sridhar, B.; Karunakar, G.V. Gold(iii)-catalyzed synthesis of aroylbenzo[b]oxepin-3-ones from ortho-O-propargyl-1-one substituted arylaldehydes. Org. Biomol. Chem., 2016, 14(14), 3526-3535.
[http://dx.doi.org/10.1039/C5OB02676H] [PMID: 26974816]
[71]
Majumdar, K.C.; Ghosh, T.; Ponra, S. A reductive mizoroki-heck approach to dibenzo[b,e]oxepine. Tetrahedron Lett., 2013, 54(35), 4661-4665.
[http://dx.doi.org/10.1016/j.tetlet.2013.06.070]
[72]
Chien, C.W.; Teng, Y.G.; Honda, T.; Ojima, I. Synthesis of colchicinoids and allocolchicinoids through rh(i)-catalyzed [2+2+2+1] and [2+2+2] cycloadditions of o-phenylenetriynes with and without CO. J. Org. Chem., 2018, 83(19), 11623-11644.
[http://dx.doi.org/10.1021/acs.joc.8b01608] [PMID: 30129760]
[73]
Selmani, A.; Serpier, F.; Darses, S. From tetrahydrofurans to tetrahydrobenzo[ d]oxepines via a regioselective control of alkyne insertion in rhodium-catalyzed arylative cyclization. J. Org. Chem., 2019, 84(7), 4566-4574.
[http://dx.doi.org/10.1021/acs.joc.9b00442] [PMID: 30892038]
[74]
Barbe, G.; Chai, D.; Chen, B.; Guay, D.; Levesque, E.; Mancuso, J.; DeChristopher, B. Condensed, scalable synthesis of racemic koningic acid. J. Org. Chem., 2020, 85(10), 6788-6793.
[http://dx.doi.org/10.1021/acs.joc.0c00344] [PMID: 32312046]
[75]
Zhao, H.W.; Du, J.; Guo, J.M.; Feng, N.N.; Wang, L.R.; Ding, W.Q.; Song, X.Q. Formal [5+2] cycloaddition of vinylethylene carbonates to oxazol-5-(4H)-ones for the synthesis of 3,4-dihydrooxepin-2(7H)-ones. Chem. Commun. (Camb.), 2018, 54(66), 9178-9181.
[http://dx.doi.org/10.1039/C8CC04584D] [PMID: 30062358]
[76]
Wu, C.; Yang, X.; Shang, Y.; Cheng, H.G.; Yan, W.; Zhou, Q. Synthesis of benzofused dioxabicycle scaffolds via a catellani strategy. Org. Lett., 2019, 21(22), 8938-8942.
[http://dx.doi.org/10.1021/acs.orglett.9b03228] [PMID: 31670522]
[77]
Li, J.Y.; Tian, Y.C.; Feng, L.N.; Zhou, Z.Q.; Wang, L.L.; Yang, J.H.; Liu, B. Enhancing magnetic hardness by sonication assisted synthesis of heterometallic carbonato spin-glass Na[Ni(H2O)4Ru2(CO3)4]•3H2O. Chem. Commun. (Camb.), 2020, 56(9), 1369-1372.
[http://dx.doi.org/10.1039/C9CC07876B] [PMID: 31909399]
[78]
Gonzales, K.N.; Troncoso, O.P.; Torres, F.G.; López, D. Molecular α-relaxation process of exopolysaccharides extracted from Nostoc commune cyanobacteria. Int. J. Biol. Macromol., 2020, 161, 1516-1525.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.268] [PMID: 32755710]
[79]
Balachandramohan, J.; Sivasankar, T. Sonication-assisted synthesis of a new heterostructured schiff base ligand Silver-Guar gum encapsulated nanocomposite as a visi-ble light photocatalyst. J. Microencapsul., 2020, 37(1), 29-40.
[http://dx.doi.org/10.1080/02652048.2019.1692944] [PMID: 31718349]
[80]
Li, X.Y.; Liu, Y.; Chen, X.L.; Lu, X.Y.; Liang, X.X.; Zhu, S.S.; Wei, C.W.; Qu, L.B.; Yu, B. 6π-Electrocyclization in water: microwave-assisted synthesis of polyhetero-cyclic-fused quinoline-2-thiones. Green Chem., 2020, 22(14), 4445-4449.
[http://dx.doi.org/10.1039/C9GC04445K]
[81]
Yuan, Y.; Lei, A. Electrochemical oxidative cross-coupling with hydrogen evolution reactions. Acc. Chem. Res., 2019, 52(12), 3309-3324.
[http://dx.doi.org/10.1021/acs.accounts.9b00512] [PMID: 31774271]
[82]
Xiong, P.; Xu, H.C. Chemistry with electrochemically generated n-centered radicals. Acc. Chem. Res., 2019, 52(12), 3339-3350.
[http://dx.doi.org/10.1021/acs.accounts.9b00472] [PMID: 31774646]
[83]
Kingston, C.; Palkowitz, M.D.; Takahira, Y.; Vantourout, J.C.; Peters, B.K.; Kawamata, Y.; Baran, P.S. A Survival guide for the “electro-curious.”. Acc. Chem. Res., 2020, 53(1), 72-83.
[http://dx.doi.org/10.1021/acs.accounts.9b00539] [PMID: 31823612]
[84]
Ma, C.; Fang, P.; Mei, T.S. Recent advances in c-h functionalization using electrochemical transition metal catalysis. ACS Catal., 2018, 8(8), 7179-7189.
[http://dx.doi.org/10.1021/acscatal.8b01697]
[85]
Jiang, Y.; Xu, K.; Zeng, C. Use of electrochemistry in the synthesis of heterocyclic structures. Chem. Rev., 2018, 118(9), 4485-4540.
[http://dx.doi.org/10.1021/acs.chemrev.7b00271] [PMID: 29039924]
[86]
Wang, P.; Gao, X.; Huang, P.; Lei, A. Recent advances in electrochemical oxidative cross-coupling of alkenes with H2 evolution. ChemCatChem, 2020, 12(1), 27-40.
[http://dx.doi.org/10.1002/cctc.201901773]
[87]
Wiebe, A.; Gieshoff, T.; Möhle, S.; Rodrigo, E.; Zirbes, M.; Waldvogel, S.R. Electrifying organic synthesis. Angew. Chem. Int. Ed. Engl., 2018, 57(20), 5594-5619.
[http://dx.doi.org/10.1002/anie.201711060] [PMID: 29292849]
[88]
Feng, M.L.; Xi, L.Y.; Chen, S.Y.; Yu, X.Q. Electrooxidative metal-free dehydrogenative α-sulfonylation of 1h-indole with sodium sulfinates. Eur. J. Org. Chem., 2017, 2017(19), 2746-2750.
[http://dx.doi.org/10.1002/ejoc.201700269]
[89]
Zhao, Y.; Lai, Y.L.; Du, K.S.; Lin, D.Z.; Huang, J.M. Electrochemical decarboxylative sulfonylation of cinnamic acids with aromatic sulfonylhydrazides to vinyl sul-fones. J. Org. Chem., 2017, 82(18), 9655-9661.
[http://dx.doi.org/10.1021/acs.joc.7b01741] [PMID: 28853571]
[90]
Qiu, Y.; Kong, W.J.; Struwe, J.; Sauermann, N.; Rogge, T.; Scheremetjew, A.; Ackermann, L. Electrooxidative rhodium-catalyzed C−H/C−H activation: electricity as oxidant for cross-dehydrogenative alkenylation. Angew. Chem. Int. Ed. Engl., 2018, 57(20), 5828-5832.
[http://dx.doi.org/10.1002/anie.201803342] [PMID: 29633454]
[91]
Yang, Q.L.; Li, Y.Q.; Ma, C.; Fang, P.; Zhang, X.J.; Mei, T.S. Palladium-catalyzed c(sp3)-h oxygenation via electrochemical oxidation. J. Am. Chem. Soc., 2017, 139(8), 3293-3298.
[http://dx.doi.org/10.1021/jacs.7b01232] [PMID: 28177235]
[92]
Xiong, P.; Xu, H.H.; Xu, H.C. Metal- and reagent-free intramolecular oxidative amination of tri- and tetrasubstituted alkenes. J. Am. Chem. Soc., 2017, 139(8), 2956-2959.
[http://dx.doi.org/10.1021/jacs.7b01016] [PMID: 28199102]
[93]
Francke, R.; Little, R.D. Redox catalysis in organic electrosynthesis: basic principles and recent developments. Chem. Soc. Rev., 2014, 43(8), 2492-2521.
[http://dx.doi.org/10.1039/c3cs60464k] [PMID: 24500279]
[94]
Pletcher, D.; Green, R.A.; Brown, R.C.D. flow electrolysis cells for the synthetic organic chemistry laboratory. Chem. Rev., 2018, 118(9), 4573-4591.
[http://dx.doi.org/10.1021/acs.chemrev.7b00360] [PMID: 28921969]
[95]
Yan, M.; Kawamata, Y.; Baran, P.S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev., 2017, 117(21), 13230-13319.
[http://dx.doi.org/10.1021/acs.chemrev.7b00397] [PMID: 28991454]
[96]
Yoshida, J.I.; Shimizu, A.; Hayashi, R. Electrogenerated cationic reactive intermediates: the pool method and further advances. Chem. Rev., 2018, 118(9), 4702-4730.
[http://dx.doi.org/10.1021/acs.chemrev.7b00475] [PMID: 29077393]
[97]
Jutand, A. Contribution of electrochemistry to organometallic catalysis. Chem. Rev., 2008, 108(7), 2300-2347.
[http://dx.doi.org/10.1021/cr068072h] [PMID: 18605756]
[98]
Zhao, X.; Hu, G.; Chen, G.F.; Zhang, H.; Zhang, S.; Wang, H. comprehensive understanding of the thriving ambient electrochemical nitrogen reduction reaction. Adv. Mater., 2021, 33(33), e2007650.
[http://dx.doi.org/10.1002/adma.202007650] [PMID: 34197001]
[99]
Zhang, Y.A.; Ding, Z.; Liu, P.; Guo, W.S.; Wen, L.R.; Li, M. Access to SCN-Containing thiazolines: Via electrochemical regioselective thiocyanothiocyclization of n-allylthioamides. Org. Chem. Front., 2020, 7(11), 1321-1326.
[http://dx.doi.org/10.1039/D0QO00300J]
[100]
Waldvogel, S.R.; Lips, S.; Selt, M.; Riehl, B.; Kampf, C.J. Electrochemical arylation reaction. Chem. Rev., 2018, 118(14), 6706-6765.
[http://dx.doi.org/10.1021/acs.chemrev.8b00233] [PMID: 29963856]
[101]
Zhang, S.; Li, L.; Xue, M.; Zhang, R.; Xu, K.; Zeng, C. Electrochemical formation of n-acyloxy amidyl radicals and their application: regioselective intramolecular amina-tion of sp2 and sp3 C-H bonds. Org. Lett., 2018, 20(12), 3443-3446.
[http://dx.doi.org/10.1021/acs.orglett.8b00981] [PMID: 29863351]
[102]
Qian, P.; Zhou, Z.; Hu, K.; Wang, J.; Li, Z.; Zha, Z.; Wang, Z. Electrocatalytic three-component reaction: synthesis of cyanide-functionalization imidazo-fused n-heterocycles. Org. Lett., 2019, 21(16), 6403-6407.
[http://dx.doi.org/10.1021/acs.orglett.9b02317] [PMID: 31361492]
[103]
Mo, S.K.; Teng, Q.H.; Pan, Y.M.; Tang, H.T. Metal- and oxidant-free electrosynthesis of 1,2,3-thiadiazoles from element sulfur and n-tosyl hydrazones. Adv. Synth. Catal., 2019, 361(8), 1756-1760.
[http://dx.doi.org/10.1002/adsc.201801700]
[104]
Moeller, K.D. Using physical organic chemistry to shape the course of electrochemical reactions. Chem. Rev., 2018, 118(9), 4817-4833.
[http://dx.doi.org/10.1021/acs.chemrev.7b00656] [PMID: 29498518]
[105]
Wang, H.; Zhang, J.; Tan, J.; Xin, L.; Li, Y.; Zhang, S.; Xu, K. Electrosynthesis of trisubstituted 2-oxazolines via dehydrogenative cyclization of β-amino arylketones. Org. Lett., 2018, 20(9), 2505-2508.
[http://dx.doi.org/10.1021/acs.orglett.8b00165] [PMID: 29664646]
[106]
Sperry, J.B.; Wright, D.L. The application of cathodic reductions and anodic oxidations in the synthesis of complex molecules. Chem. Soc. Rev., 2006, 35(7), 605-621.
[http://dx.doi.org/10.1039/b512308a] [PMID: 16791332]
[107]
Yoshida, J.; Kataoka, K.; Horcajada, R.; Nagaki, A. Modern strategies in electroorganic synthesis. Chem. Rev., 2008, 108(7), 2265-2299.
[http://dx.doi.org/10.1021/cr0680843] [PMID: 18564879]
[108]
Horn, E.J.; Rosen, B.R.; Baran, P.S. Synthetic organic electrochemistry: an enabling and innately sustainable method. ACS Cent. Sci., 2016, 2(5), 302-308.
[http://dx.doi.org/10.1021/acscentsci.6b00091] [PMID: 27280164]
[109]
Dong, X.H.; Obermeyer, A.C.; Olsen, B.D. Three‐dimensional ordered antibody arrays through self‐assembly of antibody-polymer conjugates. Angew. Chem. Int. Ed. Engl., 2017, 56(5), 1273-1277.
[http://dx.doi.org/10.1002/anie.201607085] [PMID: 28029202]
[110]
Wang, P.; Tang, S.; Huang, P.; Lei, A. electrocatalytic oxidant-free dehydrogenative C−H/S−H cross-coupling. Angew. Chem. Int. Ed. Engl., 2017, 56(11), 3009-3013.
[http://dx.doi.org/10.1002/anie.201700012] [PMID: 28177563]
[111]
Waldvogel, S.R.; Selt, M. Electrochemical allylic oxidation of olefins: sustainable and safe. Angew. Chem. Int. Ed. Engl., 2016, 55(41), 12578-12580.
[http://dx.doi.org/10.1002/anie.201606727] [PMID: 27528371]
[112]
Gieshoff, T.; Schollmeyer, D.; Waldvogel, S.R. Access to pyrazolidin-3,5-diones through anodic N-N bond formation. Angew. Chem. Int. Ed. Engl., 2016, 55(32), 9437-9440.
[http://dx.doi.org/10.1002/anie.201603899] [PMID: 27392318]
[113]
Qian, P.; Su, J.H.; Wang, Y.; Bi, M.; Zha, Z.; Wang, Z. Electrocatalytic c-h/n-h coupling of 2′-aminoacetophenones for the synthesis of isatins. J. Org. Chem., 2017, 82(12), 6434-6440.
[http://dx.doi.org/10.1021/acs.joc.7b00635] [PMID: 28535683]
[114]
Xu, H.C.; Moeller, K.D. Intramolecular anodic olefin coupling reactions: the use of a nitrogen trapping group. J. Am. Chem. Soc., 2008, 130(41), 13542-13543.
[http://dx.doi.org/10.1021/ja806259z] [PMID: 18808122]
[115]
Wang, P.; Tang, S.; Lei, A. Electrochemical intramolecular dehydrogenative c-s bond formation for the synthesis of benzothiazoles. Green Chem., 2017, 19(9), 2092-2095.
[http://dx.doi.org/10.1039/C7GC00468K]
[116]
Feroci, M.; Orsini, M.; Palombi, L.; Sotgiu, G.; Colapietro, M.; Inesi, A. Diastereoselective electrochemical carboxylation of chiral α-bromocarboxylic acid derivatives: an easy access to unsymmetrical alkylmalonic ester derivatives. J. Org. Chem., 2004, 69(2), 487-494.
[http://dx.doi.org/10.1021/jo0343836] [PMID: 14725464]
[117]
Frontana-Uribe, B.A.; Little, R.D.; Ibanez, J.G.; Palma, A. Vasquez-medrano, r. organic electrosynthesis: a promising green methodology in organic chemistry. Green Chem., 2010, 12(12), 2099-2119.
[http://dx.doi.org/10.1039/c0gc00382d]
[118]
Hou, Z.W.; Mao, Z.Y.; Xu, H.C. Recent progress on the synthesis of (Aza)Indoles through oxidative alkyne annulation reactions. Synlett, 2017, 28(15), 1867-1872.
[http://dx.doi.org/10.1055/s-0036-1590842]
[119]
Francke, R. Recent advances in the electrochemical construction of heterocycles. Beilstein J. Org. Chem., 2014, 10(1), 2858-2873.
[http://dx.doi.org/10.3762/bjoc.10.303] [PMID: 25550752]
[120]
Shao, A.; Li, N.; Gao, Y.; Zhan, J.; Chiang, C.W.; Lei, A. electrochemical intramolecular C—H/O—H cross-coupling of 2-arylbenzoic acids. Chin. J. Chem., 2018, 36(7), 619-624.
[http://dx.doi.org/10.1002/cjoc.201800031]
[121]
Kolbe, H. Beobachtungen über die oxydirende wirkung des sauerstoffs, wenn derselbe mit hülfe einer elektrischen säule entwickelt wird. J. Prakt. Chem., 1847, 41(1), 137-139.
[http://dx.doi.org/10.1002/prac.18470410118]
[122]
Sternberg, A.; Bardow, A. Power-to-what?-environmental assessment of energy storage systems. Energy Environ. Sci., 2015, 8(2), 389-400.
[http://dx.doi.org/10.1039/C4EE03051F]
[123]
Nguyen, B.H.; Redden, A.; Moeller, K.D. Sunlight, electrochemistry, and sustainable oxidation reactions. Green Chem., 2014, 16(1), 69-72.
[http://dx.doi.org/10.1039/C3GC41650J]
[124]
Pollok, D.; Waldvogel, S.R. Electro-organic synthesis - a 21st century technique. Chem. Sci. (Camb.), 2020, 11(46), 12386-12400.
[http://dx.doi.org/10.1039/D0SC01848A] [PMID: 34123227]
[125]
Wendt, H.; Bitterlich, S. Anodic synthesis of benzaldehydes-i. voltammetry of the anodic oxidation of toluenes in non-aqueous solutions. Electrochim. Acta, 1992, 37(11), 1951-1958.
[http://dx.doi.org/10.1016/0013-4686(92)87108-C]
[126]
Little, R.D.; Moeller, K.D. Organic electrochemistry as a tool for synthesis. Electrochem. Soc. Interface, 2002, 11(4), 36-42.
[http://dx.doi.org/10.1149/2.F06024IF]
[127]
Tang, F.; Chen, C.; Moeller, K.D. Electrochemistry and umpolung reactions: new tools for solving synthetic challenges of structure and location. Synthesis (Stuttg), 2007, (21), 3411-3420.
[128]
Beck, F.; Guthke, H. Entwicklung neuer zellen fur elektro-organische synthesen. Inn. Med., 1972, (6), 943-990.
[129]
Batanero, B.; Barba, F.; Sánchez-Sánchez, C.M.; Aldaz, A. Paired electrosynthesis of cyanoacetic acid. J. Org. Chem., 2004, 69(7), 2423-2426.
[http://dx.doi.org/10.1021/jo0358473] [PMID: 15049640]
[130]
Park, K.; Pintauro, P.N.; Baizer, M.M.; Nobe, K. Flow reactor studies of the paired electro‐oxidation and electroreduction of glucose. J. Electrochem. Soc., 1985, 132(8), 1850-1855.
[http://dx.doi.org/10.1149/1.2114229]
[131]
Gütz, C.; Stenglein, A.; Waldvogel, S.R. Highly modular flow cell for electroorganic synthesis. Org. Process Res. Dev., 2017, 21(5), 771-778.
[http://dx.doi.org/10.1021/acs.oprd.7b00123]
[132]
Hartmer, M.F.; Waldvogel, S.R. Electroorganic synthesis of nitriles via a halogen-free domino oxidation-reduction sequence. Chem. Commun. (Camb.), 2015, 51(91), 16346-16348.
[http://dx.doi.org/10.1039/C5CC06437F] [PMID: 26403499]
[133]
Tabaković, I. Anodic synthesis of heterocyclic compounds. Electrochem. VI Electroorg. Synth. Bond Form. Anode Cathode, 1997, 185, 87-139.
[134]
Henning, L. Electrolysis of N-Heterocyclic Compounds., 1970.
[135]
Sánchez García, J.J.; Flores-Alamo, M.; Ortiz-Frade, L.; Klimova, E.I. Reactions of 2,3-diferrocenylcyclopropenilium salts with bis-1,4-N,O-nucleophiles: novel synthe-sis, characterization, chemical and electrochemical properties of the 2-(z-1,2-diferrocenylvinyl)- 4,5-dihydrooxazole derivatives. J. Organomet. Chem., 2017, 842, 21-31.
[http://dx.doi.org/10.1016/j.jorganchem.2017.05.002]
[136]
Huhtasaari, M.; Schäfer, H.J.; Becking, L. Cyclization of 3‐allyloxycarboxylic acids to tetrahydrofurans by kolbe electrolysis. Angew. Chem. Int. Ed. Engl., 1984, 23(12), 980-981.
[http://dx.doi.org/10.1002/anie.198409801]
[137]
Mihelcic, J.; Moeller, K.D. Oxidative cyclizations: the asymmetric synthesis of (-)-alliacol A. J. Am. Chem. Soc., 2004, 126(29), 9106-9111.
[http://dx.doi.org/10.1021/ja048085h] [PMID: 15264845]
[138]
Feng, R.; Smith, J.A.; Moeller, K.D. Anodic cyclization reactions and the mechanistic strategies that enable optimization. Acc. Chem. Res., 2017, 50(9), 2346-2352.
[http://dx.doi.org/10.1021/acs.accounts.7b00287] [PMID: 28858480]
[139]
Frey, D.A.; Marx, J.A.; Moeller, K.D. Intramolecular anodic olefin coupling reactions: the use of an allylic alkoxy group for controlling relative stereochemistry. Electrochim. Acta, 1997, 42(13-14), 1967-1970.
[http://dx.doi.org/10.1016/S0013-4686(97)85468-0]
[140]
Yoshida, J.I.; Suga, S.; Suzuki, S.; Kinomura, N.; Yamamoto, A.; Fujiwara, K. Direct oxidative carbon-carbon bond formation using the “cation pool” method. 1. genera-tion of iminium cation pools and their reaction with carbon nucleophiles. J. Am. Chem. Soc., 1999, 121(41), 9546-9549.
[http://dx.doi.org/10.1021/ja9920112]
[141]
Yoshida, J.; Suga, S. Basic concepts of “cation pool” and “cation flow” methods and their applications in conventional and combinatorial organic synthesis. Chemistry, 2002, 8(12), 2651-2658.
[http://dx.doi.org/10.1002/1521-3765(20020617)8:12<2650:AID-CHEM2650>3.0.CO;2-S] [PMID: 12391641]
[142]
Röckl, J.L.; Pollok, D.; Franke, R.; Waldvogel, S.R. A Decade of electrochemical dehydrogenative c,c-coupling of aryls. Acc. Chem. Res., 2020, 53(1), 45-61.
[http://dx.doi.org/10.1021/acs.accounts.9b00511] [PMID: 31850730]
[143]
Shatskiy, A.; Lundberg, H.; Kärkäs, M.D. Organic electrosynthesis: applications in complex molecule synthesis. ChemElectroChem, 2019, 6(16), 4067-4092.
[http://dx.doi.org/10.1002/celc.201900435]
[144]
Roy, S.; Andreou, E. Electroforming in the industry 4.0 era. Curr. Opin. Electrochem., 2020, 20, 108-115.
[http://dx.doi.org/10.1016/j.coelec.2020.02.025]
[145]
Long Ngo, H.; Kumar Mishra, D.; Mishra, V.; Chien Truong, C. Recent advances in the synthesis of heterocycles and pharmaceuticals from the photo/electrochemical fixation of carbon dioxide. Chem. Eng. Sci., 2021, 229, 116142.
[http://dx.doi.org/10.1016/j.ces.2020.116142]
[146]
Tang, H-T.; Jia, J-S.; Pan, Y-M. Halogen-mediated electrochemical organic synthesis. Org. Biomol. Chem., 2020, 18(28), 5315-5333.
[http://dx.doi.org/10.1039/D0OB01008A] [PMID: 32638806]
[147]
Yamamoto, K.; Kuriyama, M.; Onomura, O. Anodic oxidation for the stereoselective synthesis of heterocycles. Acc. Chem. Res., 2020, 53(1), 105-120.
[http://dx.doi.org/10.1021/acs.accounts.9b00513] [PMID: 31872753]
[148]
Jia, Y-X.; Kündig, E.P. Oxindole Synthesis by Direct Coupling of Csp2-H and Csp3-H Centers. Angew. Chem., 2009, 121(9), 1664-1667.
[http://dx.doi.org/10.1002/ange.200805652]
[149]
Cao, J.J.; Wang, X.; Wang, S.Y.; Ji, S.J. Mn(III)-mediated reactions of 2-isocyanobiaryl with 1,3-dicarbonyl compounds: efficient synthesis of 6-alkylated and 6-monofluoro-alkylated phenanthridines. Chem. Commun. (Camb.), 2014, 50(85), 12892-12895.
[http://dx.doi.org/10.1039/C4CC05324A] [PMID: 25212535]
[150]
Dey, C. Synthesis of 1,3-dimethyl-3-(p-tolyl)-1H-pyrrolo[3,2-c]pyridin- 2(3H)-one by Cu(II)-mediated direct oxidative coupling. Org. Synth., 2014, 91(Ii), 221-232.
[151]
Girard, S.A.; Knauber, T.; Li, C-J. Dehydrierende kreuzkupplungen von c-h-bindungen: vielseitige verfahren zur bildung von C-C-bindungen. Angew. Chem., 2014, 126(1), 76-103.
[http://dx.doi.org/10.1002/ange.201304268]
[152]
Bhunia, S.; Ghosh, S.; Dey, D.; Bisai, A. DDQ-mediated direct intramolecular-dehydrogenative-coupling (IDC): expeditious approach to the tetracyclic core of ergot alkaloids. Org. Lett., 2013, 15(10), 2426-2429.
[http://dx.doi.org/10.1021/ol400899e] [PMID: 23627779]
[153]
Yu, Z.; Ma, L.; Yu, W. Ag2O-Mediated intramolecular oxidative coupling of acetoacetanilides for the synthesis of 3-acetyloxindoles. Synlett, 2010, 2010(17), 2607-2610.
[http://dx.doi.org/10.1055/s-0030-1258584]
[154]
Ghosh, S.; De, S.; Kakde, B.N.; Bhunia, S.; Adhikary, A.; Bisai, A. Intramolecular dehydrogenative coupling of sp2 C-H and sp3 C-H bonds: an expeditious route to 2-oxindoles. Org. Lett., 2012, 14(23), 5864-5867.
[http://dx.doi.org/10.1021/ol302767w] [PMID: 23134301]
[155]
Hurst, T.E.; Gorman, R.M.; Drouhin, P.; Perry, A.; Taylor, R.J.K. A direct C-H/Ar-H coupling approach to oxindoles, thio-oxindoles, 3,4-dihydro-1 H-quinolin-2-ones, and 1,2,3,4-tetrahydroquinolines. Chemistry, 2014, 20(43), 14063-14073.
[http://dx.doi.org/10.1002/chem.201403917] [PMID: 25212595]
[156]
Klein, J.E.M.N.; Perry, A.; Pugh, D.S.; Taylor, R.J.K. First C-H activation route to oxindoles using copper catalysis. Org. Lett., 2010, 12(15), 3446-3449.
[http://dx.doi.org/10.1021/ol1012668] [PMID: 20670011]
[157]
Wu, Z-J.; Xu, H-C. Synthesis of C3-fluorinated oxindoles through reagent-free cross-dehydrogenative coupling. Angew. Chem. Int. Ed. Engl., 2017, 56(17), 4734-4738.
[http://dx.doi.org/10.1002/anie.201701329] [PMID: 28295965]
[158]
Tang, S.; Gao, X.; Lei, A. Electrocatalytic intramolecular oxidative annulation of N-aryl enamines into substituted indoles mediated by iodides. Chem. Commun. (Camb.), 2017, 53(23), 3354-3356.
[http://dx.doi.org/10.1039/C7CC00410A] [PMID: 28261710]
[159]
Xiong, P.; Xu, H.H.; Song, J.; Xu, H.C. Electrochemical difluoromethylarylation of alkynes. J. Am. Chem. Soc., 2018, 140(7), 2460-2464.
[http://dx.doi.org/10.1021/jacs.8b00391] [PMID: 29406700]
[160]
Zhang, Z.; Zhang, L.; Cao, Y.; Li, F.; Bai, G.; Liu, G.; Yang, Y.; Mo, F. Mn-Mediated electrochemical trifluoromethylation/C(sp 2)-H functionalization cascade for the synthesis of azaheterocycles. Org. Lett., 2019, 21(3), 762-766.
[http://dx.doi.org/10.1021/acs.orglett.8b04010] [PMID: 30672710]
[161]
Gieshoff, T.; Kehl, A.; Schollmeyer, D.; Moeller, K.D.; Waldvogel, S.R. Electrochemical synthesis of benzoxazoles from anilides - a new approach to employ amidyl radical intermediates. Chem. Commun. (Camb.), 2017, 53(20), 2974-2977.
[http://dx.doi.org/10.1039/C7CC00927E] [PMID: 28232997]
[162]
Schmidt, J.M.; Tremblay, G.B.; Pagé, M.; Mercure, J.; Feher, M.; Dunn-Dufault, R.; Peter, M.G.; Redden, P.R. Synthesis and evaluation of a novel nonsteroidal-specific endothelial cell proliferation inhibitor. J. Med. Chem., 2003, 46(8), 1289-1292.
[http://dx.doi.org/10.1021/jm034007d] [PMID: 12672229]
[163]
Altemöller, M.; Podlech, J. Total synthesis of neoaltenuene. Eur. J. Org. Chem., 2009, 2009(14), 2275-2282.
[http://dx.doi.org/10.1002/ejoc.200900125]
[164]
Demuner, A.J.; Barbosa, L.C.A.; Miranda, A.C.M.; Geraldo, G.C.; da Silva, C.M.; Giberti, S.; Bertazzini, M.; Forlani, G. The fungal phytotoxin alternariol 9-methyl ether and some of its synthetic analogues inhibit the photosynthetic electron transport chain. J. Nat. Prod., 2013, 76(12), 2234-2245.
[http://dx.doi.org/10.1021/np4005882] [PMID: 24245962]
[165]
Tibrewal, N.; Pahari, P.; Wang, G.; Kharel, M.K.; Morris, C.; Downey, T.; Hou, Y.; Bugni, T.S.; Rohr, J. Baeyer-Villiger C-C bond cleavage reaction in gilvocarcin and jadomycin biosynthesis. J. Am. Chem. Soc., 2012, 134(44), 18181-18184.
[http://dx.doi.org/10.1021/ja3081154] [PMID: 23102024]
[166]
Bringmann, G.; Gulder, T.; Gulder, T.A.M.; Breuning, M. Atroposelective total synthesis of axially chiral biaryl natural products. Chem. Rev., 2011, 111(2), 563-639.
[http://dx.doi.org/10.1021/cr100155e] [PMID: 20939606]
[167]
Altemöller, M.; Podlech, J. Total synthesis of dehydroaltenuene A. Revision of the structure and total synthesis of dihydroaltenuene B. J. Nat. Prod., 2009, 72(7), 1288-1290.
[http://dx.doi.org/10.1021/np900265q] [PMID: 19572614]
[168]
Altemöller, M.; Podlech, J.; Fenske, D. Total synthesis of altenuene and isoaltenuene. Eur. J. Org. Chem., 2006, 2006(7), 1678-1684.
[http://dx.doi.org/10.1002/ejoc.200500904]
[169]
Koch, K.; Podlech, J.; Pfeiffer, E.; Metzler, M. Total synthesis of alternariol. J. Org. Chem., 2005, 70(8), 3275-3276.
[http://dx.doi.org/10.1021/jo050075r] [PMID: 15822993]
[170]
Gallardo-Donaire, J.; Martin, R. Cu-catalyzed mild C(sp2)-H functionalization assisted by carboxylic acids en route to hydroxylated arenes. J. Am. Chem. Soc., 2013, 135(25), 9350-9353.
[http://dx.doi.org/10.1021/ja4047894] [PMID: 23758209]
[171]
Wang, Y.; Gulevich, A.V.; Gevorgyan, V. General and practical carboxyl-group-directed remote C-H oxygenation reactions of arenes. Chemistry, 2013, 19(47), 15836-15840.
[http://dx.doi.org/10.1002/chem.201303511] [PMID: 24150970]
[172]
Kirilyuk, I.A.; Bobko, A.A.; Semenov, S.V.; Komarov, D.A.; Irtegova, I.G.; Grigor’ev, I.A.; Bagryanskaya, E. Effect of sterical shielding on the redox properties of imid-azoline and imidazolidine nitroxides. J. Org. Chem., 2015, 80(18), 9118-9125.
[http://dx.doi.org/10.1021/acs.joc.5b01494] [PMID: 26302173]
[173]
Li, Y.; Ding, Y.J.; Wang, J.Y.; Su, Y.M.; Wang, X.S. Pd-catalyzed C-H lactonization for expedient synthesis of biaryl lactones and total synthesis of cannabinol. Org. Lett., 2013, 15(11), 2574-2577.
[http://dx.doi.org/10.1021/ol400877q] [PMID: 23662848]
[174]
Metternich, J.B.; Gilmour, R. One photocatalyst, n activation modes strategy for cascade catalysis: emulating coumarin biosynthesis with (-)-riboflavin. J. Am. Chem. Soc., 2016, 138(3), 1040-1045.
[http://dx.doi.org/10.1021/jacs.5b12081] [PMID: 26714650]
[175]
Yang, Q.; Jia, Z.; Li, L.; Zhang, L.; Luo, S. Visible-light promoted arene C-H/C-X lactonization via carboxylic radical aromatic substitution. Org. Chem. Front., 2018, 5(2), 237-241.
[http://dx.doi.org/10.1039/C7QO00826K]
[176]
Ramirez, N.P.; Bosque, I.; Gonzalez-Gomez, J.C. Photocatalytic dehydrogenative lactonization of 2-arylbenzoic acids. Org. Lett., 2015, 17(18), 4550-4553.
[http://dx.doi.org/10.1021/acs.orglett.5b02269] [PMID: 26323040]
[177]
Gao, P.; Wei, Y. NIS-Mediated oxidative lactonization of 2-arylbenzoic acids for the synthesis of dibenzopyranones under metal-free conditions. Synthesis (Stuttg), 2013, 46(03), 343-347.
[http://dx.doi.org/10.1055/s-0033-1338568]
[178]
Wang, X.; Gallardo-Donaire, J.; Martin, R. Mild ArI-catalyzed C(sp2)-H or C(sp3)-H functionalization/C-O formation: an intriguing catalyst-controlled selectivity switch. Angew. Chem. Int. Ed. Engl., 2014, 53(41), 11084-11087.
[http://dx.doi.org/10.1002/anie.201407011] [PMID: 25156610]
[179]
Wu, J.; Abou-Hamdan, H.; Guillot, R.; Kouklovsky, C.; Vincent, G. Electrochemical synthesis of 3a-bromofuranoindolines and 3a-bromopyrroloindolines mediated by MgBr2. Chem. Commun. (Camb.), 2020, 56(11), 1713-1716.
[http://dx.doi.org/10.1039/C9CC09276E] [PMID: 31939474]
[180]
Claraz, A.; Courant, T.; Masson, G. Electrochemical intramolecular oxytrifluoromethylation of N-tethered alkenyl alcohols: synthesis of functionalized morpholines. Org. Lett., 2020, 22(4), 1580-1584.
[http://dx.doi.org/10.1021/acs.orglett.0c00176] [PMID: 32017576]
[181]
Hu, X.; Zhang, G.; Bu, F.; Nie, L.; Lei, A. Electrochemical-oxidation-induced site-selective intramolecular C(Sp3)-H amination. ACS Catal., 2018, 8(10), 9370-9375.
[http://dx.doi.org/10.1021/acscatal.8b02847]
[182]
Journet, M.; Malacria, M. Radical cyclization of (bromomethyl)dimethylsilyl propargyl ethers. regio-, chemo- and stereoselectivity. J. Org. Chem., 1992, 57(11), 3085-3093.
[http://dx.doi.org/10.1021/jo00037a026]
[183]
Xu, F.; Long, H.; Song, J.; Xu, H.C. De novo synthesis of highly functionalized benzimidazolones and benzoxazolones through an electrochemical dehydrogenative cyclization cascade. Angew. Chem. Int. Ed. Engl., 2019, 58(27), 9017-9021.
[http://dx.doi.org/10.1002/anie.201904931] [PMID: 31063257]
[184]
Rodrigo, E.; Baunis, H.; Suna, E.; Waldvogel, S.R. Simple and scalable electrochemical synthesis of 2,1-benzisoxazoles and quinoline N-oxides. Chem. Commun. (Camb.), 2019, 55(81), 12255-12258.
[http://dx.doi.org/10.1039/C9CC06054E] [PMID: 31555778]
[185]
Yu, Y.; Yuan, Y.; Liu, H.; He, M.; Yang, M.; Liu, P.; Yu, B.; Dong, X.; Lei, A. Electrochemical oxidative C-H/N-H cross-coupling for C-N bond formation with hydrogen evolution. Chem. Commun. (Camb.), 2019, 55(12), 1809-1812.
[http://dx.doi.org/10.1039/C8CC09899A] [PMID: 30671576]
[186]
Mitsudo, K.; Matsuo, R.; Yonezawa, T.; Inoue, H.; Mandai, H.; Suga, S. Electrochemical synthesis of thienoacene derivatives: transition-metal-free dehydrogenative C−S coupling promoted by a halogen mediator. Angew. Chem. Int. Ed. Engl., 2020, 59(20), 7803-7807.
[http://dx.doi.org/10.1002/anie.202001149] [PMID: 32077555]
[187]
Xu, P.; Xu, H.C. Electrochemical synthesis of [1,2,3]Triazolo[1,5-a]pyridines through dehydrogenative cyclization. ChemElectroChem, 2019, 6(16), 4177-4179.
[http://dx.doi.org/10.1002/celc.201900080]
[188]
Mishra, A.; Verma, C.; Srivastava, V.; Lgaz, H.; Quraishi, M.A.; Ebenso, E.E.; Chung, I.M. Chemical, electrochemical and computational studies of newly synthesized novel and environmental friendly heterocyclic compounds as corrosion inhibitors for mild steel in acidic medium. J. Bio Tribocorros., 2018, 4(3), 1-20.
[http://dx.doi.org/10.1007/s40735-018-0147-y]
[189]
Rbaa, M.; Benhiba, F.; Obot, I.B.; Oudda, H.; Warad, I.; Lakhrissi, B.; Zarrouk, A. Two new 8-hydroxyquinoline derivatives as an efficient corrosion inhibitors for mild steel in hydrochloric acid: synthesis, electrochemical, surface morphological, uv-visible and theoretical studies. J. Mol. Liq., 2019, 276, 120-133.
[http://dx.doi.org/10.1016/j.molliq.2018.11.104]
[190]
Lin, D.Z.; Lai, Y.L.; Huang, J.M. Mn-catalyzed electrochemical synthesis of quinazolinones from primary alcohols/benzyl ethers and o-aminobenzamides. ChemElectroChem, 2019, 6(16), 4188-4193.
[http://dx.doi.org/10.1002/celc.201801502]
[191]
Sbei, N.; Ben Said, R.; Rahali, S.; Beya, H.; Al-Ayed, A.S.; Al Mogren, M.M.; Benkhoud, M.L.; Seydou, M. Electrochemical synthesis of hydroxy-thioxo-imidazole carboxylates: an experimental and theoretical study. J. Sulfur Chem., 2020, 41(2), 117-129.
[http://dx.doi.org/10.1080/17415993.2019.1694679]
[192]
Beaud, R.; Guillot, R.; Kouklovsky, C.; Vincent, G. FeCl3-mediated Friedel-Crafts hydroarylation with electrophilic N-acetyl indoles for the synthesis of benzofuroin-dolines. Angew. Chem. Int. Ed. Engl., 2012, 51(50), 12546-12550.
[http://dx.doi.org/10.1002/anie.201206611] [PMID: 23125000]
[193]
Denizot, N.; Pouilhès, A.; Cucca, M.; Beaud, R.; Guillot, R.; Kouklovsky, C.; Vincent, G. Bioinspired direct access to benzofuroindolines by oxidative [3 + 2] annula-tion of phenols and indoles. Org. Lett., 2014, 16(21), 5752-5755.
[http://dx.doi.org/10.1021/ol502820p] [PMID: 25347388]
[194]
Tomakinian, T.; Guillot, R.; Kouklovsky, C.; Vincent, G. Direct oxidative coupling of N-acetyl indoles and phenols for the synthesis of benzofuroindolines related to phalarine. Angew. Chem. Int. Ed. Engl., 2014, 53(44), 11881-11885.
[http://dx.doi.org/10.1002/anie.201404055] [PMID: 25208884]
[195]
Liu, K.; Tang, S.; Huang, P.; Lei, A. External oxidant-free electrooxidative [3 + 2] annulation between phenol and indole derivatives. Nat. Commun., 2017, 8(1), 775.
[http://dx.doi.org/10.1038/s41467-017-00873-1] [PMID: 28974679]
[196]
Huang, P.; Wang, P.; Wang, S.; Tang, S.; Lei, A. Electrochemical oxidative [4 + 2] annulation of tertiary anilines and alkenes for the synthesis of tetrahydroquinolines. Green Chem., 2018, 20(21), 4870-4874.
[http://dx.doi.org/10.1039/C8GC02463D]
[197]
He, M.X.; Mo, Z.Y.; Wang, Z.Q.; Cheng, S.Y.; Xie, R.R.; Tang, H.T.; Pan, Y.M. Electrochemical synthesis of 1-naphthols by intermolecular annulation of alkynes with 1,3-dicarbonyl compounds. Org. Lett., 2020, 22(2), 724-728.
[http://dx.doi.org/10.1021/acs.orglett.9b04549] [PMID: 31886680]
[198]
Xiong, M.; Liang, X.; Gao, Z.; Lei, A.; Pan, Y. Synthesis of isoxazolines and oxazines by electrochemical intermolecular [2 + 1 + n] annulation: diazo compounds act as radical acceptors. Org. Lett., 2019, 21(23), 9300-9305.
[http://dx.doi.org/10.1021/acs.orglett.9b03306] [PMID: 31713430]
[199]
Zeng, L.; Li, J.; Gao, J.; Huang, X.; Wang, W.; Zheng, X.; Gu, L.; Li, G.; Zhang, S.; He, Y. An electrochemical oxidative multicomponent cascade annulation of ketones and amines used to produce imidazoles. Green Chem., 2020, 22(11), 3416-3420.
[http://dx.doi.org/10.1039/D0GC00375A]
[200]
Fernández-Rodríguez, M.A.; Shen, Q.; Hartwig, J.F. Highly efficient and functional-group-tolerant catalysts for the palladium-catalyzed coupling of aryl chlorides with thiols. Chemistry, 2006, 12(30), 7782-7796.
[http://dx.doi.org/10.1002/chem.200600949] [PMID: 17009367]
[201]
Fernández-Rodríguez, M.A.; Shen, Q.; Hartwig, J.F. A general and long-lived catalyst for the palladium-catalyzed coupling of aryl halides with thiols. J. Am. Chem. Soc., 2006, 128(7), 2180-2181.
[http://dx.doi.org/10.1021/ja0580340] [PMID: 16478149]
[202]
Zhang, Y.; Ngeow, K.C.; Ying, J.Y. The first N-heterocyclic carbene-based nickel catalyst for C-S coupling. Org. Lett., 2007, 9(18), 3495-3498.
[http://dx.doi.org/10.1021/ol071248x] [PMID: 17676857]
[203]
Jiang, Y.; Qin, Y.; Xie, S.; Zhang, X.; Dong, J.; Ma, D. A general and efficient approach to aryl thiols: CuI-catalyzed coupling of aryl iodides with sulfur and subsequent reduction. Org. Lett., 2009, 11(22), 5250-5253.
[http://dx.doi.org/10.1021/ol902186d] [PMID: 19835369]
[204]
Larsson, P-F.; Correa, A.; Carril, M.; Norrby, P-O.; Bolm, C. Copper-catalyzed cross-couplings with part-per-million catalyst loadings. Angew. Chem. Int. Ed. Engl., 2009, 48(31), 5691-5693.
[http://dx.doi.org/10.1002/anie.200902236] [PMID: 19554589]
[205]
Rout, L.; Sen, T.K.; Punniyamurthy, T. Efficient CuO-nanoparticle-catalyzed C-S cross-coupling of thiols with iodobenzene. Angew. Chem. Int. Ed., 2007, 46(29), 5583-5586.
[http://dx.doi.org/10.1002/anie.200701282] [PMID: 17554747]
[206]
Chen, Y.J.; Chen, H.H. 1,1,1-tris(hydroxymethyl)ethane as a new, efficient, and versatile tripod ligand for copper-catalyzed cross-coupling reactions of aryl iodides with amides, thiols, and phenols. Org. Lett., 2006, 8(24), 5609-5612.
[http://dx.doi.org/10.1021/ol062339h] [PMID: 17107084]
[207]
Wong, Y.C.; Jayanth, T.T.; Cheng, C.H. Cobalt-catalyzed aryl-sulfur bond formation. Org. Lett., 2006, 8(24), 5613-5616.
[http://dx.doi.org/10.1021/ol062344l] [PMID: 17107085]
[208]
Correa, A.; Carril, M.; Bolm, C. Iron-catalyzed S-arylation of thiols with aryl iodides. Angew. Chem. Int. Ed. Engl., 2008, 47(15), 2880-2883.
[http://dx.doi.org/10.1002/anie.200705668] [PMID: 18318033]
[209]
Lee, C.F.; Liu, Y.C.; Badsara, S.S. Transition-metal-catalyzed C-S bond coupling reaction. Chem. Asian J., 2014, 9(3), 706-722.
[http://dx.doi.org/10.1002/asia.201301500] [PMID: 24443103]
[210]
Beletskaya, I.P.; Ananikov, V.P. Transition-metal-catalyzed C-S, C-Se, and C-Te bond formation via cross-coupling and atom-economic addition reactions. Chem. Rev., 2011, 111(3), 1596-1636.
[http://dx.doi.org/10.1021/cr100347k] [PMID: 21391564]
[211]
Ranjit, S.; Lee, R.; Heryadi, D.; Shen, C.; Wu, J.; Zhang, P.; Huang, K.W.; Liu, X. Copper-mediated C-H activation/C-S cross-coupling of heterocycles with thiols. J. Org. Chem., 2011, 76(21), 8999-9007.
[http://dx.doi.org/10.1021/jo2017444] [PMID: 21958157]
[212]
Schlosser, K.M.; Krasutsky, A.P.; Hamilton, H.W.; Reed, J.E.; Sexton, K. A highly efficient procedure for 3-sulfenylation of indole-2-carboxylates. Org. Lett., 2004, 6(5), 819-821.
[http://dx.doi.org/10.1021/ol049956v] [PMID: 14986983]
[213]
Dai, C.; Xu, Z.; Huang, F.; Yu, Z.; Gao, Y.F. Lewis acid-catalyzed, copper(II)-mediated synthesis of heteroaryl thioethers under base-free conditions. J. Org. Chem., 2012, 77(9), 4414-4419.
[http://dx.doi.org/10.1021/jo202624s] [PMID: 22509788]
[214]
Liao, Y.; Jiang, P.; Chen, S.; Qi, H.; Deng, G.J. Iodine-catalyzed efficient 2-arylsulfanylphenol formation from thiols and cyclohexanones. Green Chem., 2013, 15(12), 3302-3306.
[http://dx.doi.org/10.1039/c3gc41671b]
[215]
Liu, Y.; Zhang, Y.; Hu, C.; Wan, J.P.; Wen, C. Synthesis of 3-sulfenylated indoles by a simple NaOH promoted sulfenylation reaction. RSC Advances, 2014, 4(67), 35528-35530.
[http://dx.doi.org/10.1039/C4RA05206D]
[216]
Yuan, J.; Ma, X.; Yi, H.; Liu, C.; Lei, A.I. 2-catalyzed oxidative C(sp3)-H/S-H coupling: utilizing alkanes and mercaptans as the nucleophiles. Chem. Commun. (Camb.), 2014, 50(92), 14386-14389.
[http://dx.doi.org/10.1039/C4CC05661B] [PMID: 25297879]
[217]
Parumala, S.K.R.; Peddinti, R.K. Iodine catalyzed cross-dehydrogenative C-S coupling by C(Sp2)-H bond activation: direct access to aryl sulfides from aryl thiols. Green Chem., 2015, 17(7), 4068-4072.
[http://dx.doi.org/10.1039/C5GC00403A]
[218]
Huang, Z.; Zhang, D.; Qi, X.; Yan, Z.; Wang, M.; Yan, H.; Lei, A. Radical-radical cross-coupling for C-S bond formation. Org. Lett., 2016, 18(10), 2351-2354.
[http://dx.doi.org/10.1021/acs.orglett.6b00764] [PMID: 27152550]
[219]
Gensch, T.; Klauck, F.J.R.; Glorius, F. Cobalt-catalyzed C−H thiolation through dehydrogenative cross-coupling. Angew. Chem. Int. Ed. Engl., 2016, 55(37), 11287-11291.
[http://dx.doi.org/10.1002/anie.201605193] [PMID: 27435021]
[220]
Gensch, T.; Klauck, F.J.R.; Glorius, F. Cobaltkatalysierte c-h-thiolierung durch dehydrierende kreuzkupplung. Angew. Chem., 2016, 128(37), 11457-11461.
[http://dx.doi.org/10.1002/ange.201605193]
[221]
Chang, J.R.; Chang, S.L.; Lin, T.B. γ-Alumina-supported Pt catalysts for aromatics reduction: a structural investigation of sulfur poisoning catalyst deactivation. J. Catal., 1997, 169(1), 338-346.
[http://dx.doi.org/10.1006/jcat.1997.1709]
[222]
Yuan, Y.; Yu, Y.; Qiao, J.; Liu, P.; Yu, B.; Zhang, W.; Liu, H.; He, M.; Huang, Z.; Lei, A. Exogenous-oxidant-free electrochemical oxidative C-H sulfonylation of arenes/heteroarenes with hydrogen evolution. Chem. Commun. (Camb.), 2018, 54(81), 11471-11474.
[http://dx.doi.org/10.1039/C8CC06451B] [PMID: 30255875]
[223]
Yuan, Y.; Cao, Y.; Qiao, J.; Lin, Y.; Jiang, X.; Weng, Y.; Tang, S.; Lei, A. Electrochemical oxidative C-H sulfenylation of imidazopyridines with hydrogen evolution. Chin. J. Chem., 2019, 37(1), 49-52.
[http://dx.doi.org/10.1002/cjoc.201800405]
[224]
Li, D.; Li, S.; Peng, C.; Lu, L.; Wang, S.; Wang, P.; Chen, Y.H.; Cong, H.; Lei, A. Electrochemical oxidative C-H/S-H cross-coupling between enamines and thiophenols with H2 evolution. Chem. Sci. (Camb.), 2019, 10(9), 2791-2795.
[http://dx.doi.org/10.1039/C8SC05143G] [PMID: 30996999]
[225]
Dong, X.; Wang, R.; Jin, W.; Liu, C. Electrochemical oxidative dehydrogenative phosphorylation of N-heterocycles with P(O)-H compounds in imidazolium-based ionic liquid. Org. Lett., 2020, 22(8), 3062-3066.
[http://dx.doi.org/10.1021/acs.orglett.0c00814] [PMID: 32255646]
[226]
Mo, Z.Y.; Zhang, Y.Z.; Huang, G.B.; Wang, X.Y.; Pan, Y.M.; Tang, H.T. Electrochemical sulfonylation of alkynes with sulfonyl hydrazides: a metal- and oxidant-free protocol for the synthesis of alkynyl sulfones. Adv. Synth. Catal., 2020, 362(11), 2160-2167.
[http://dx.doi.org/10.1002/adsc.201901607]
[227]
Gao, Y.; Wang, Y.; Zhou, J.; Mei, H.; Han, J. An electrochemical oxidative homo-coupling reaction of imidazopyridine heterocycles to biheteroaryls. Green Chem., 2018, 20(3), 583-587.
[http://dx.doi.org/10.1039/C7GC03563B]
[228]
Kong, X.; Liu, Y.; Lin, L.; Chen, Q.; Xu, B. Electrochemical synthesis of enaminones: Via a decarboxylative coupling reaction. Green Chem., 2019, 21(14), 3796-3801.
[http://dx.doi.org/10.1039/C9GC01098J]
[229]
Laudadio, G.; Barmpoutsis, E.; Schotten, C.; Struik, L.; Govaerts, S.; Browne, D.L.; Noël, T. Sulfonamide synthesis through electrochemical oxidative coupling of amines and thiols. J. Am. Chem. Soc., 2019, 141(14), 5664-5668.
[http://dx.doi.org/10.1021/jacs.9b02266] [PMID: 30905146]
[230]
Laudadio, G.; Bartolomeu, A.A.; Verwijlen, L.M.H.M.; Cao, Y.; de Oliveira, K.T.; Noël, T. Sulfonyl fluoride synthesis through electrochemical oxidative coupling of thiols and potassium fluoride. J. Am. Chem. Soc., 2019, 141(30), 11832-11836.
[http://dx.doi.org/10.1021/jacs.9b06126] [PMID: 31303004]
[231]
Wu, Y.; Yi, H.; Lei, A. Electrochemical acceptorless dehydrogenation of n-heterocycles utilizing TEMPO as organo-electrocatalyst. ACS Catal., 2018, 8(2), 1192-1196.
[http://dx.doi.org/10.1021/acscatal.7b04137]
[232]
Wu, J.; Dou, Y.; Guillot, R.; Kouklovsky, C.; Vincent, G. Electrochemical dearomative 2,3-difunctionalization of indoles. J. Am. Chem. Soc., 2019, 141(7), 2832-2837.
[http://dx.doi.org/10.1021/jacs.8b13371] [PMID: 30672705]
[233]
Gao, X.; Wang, P.; Zeng, L.; Tang, S.; Lei, A. Cobalt(ii)-catalyzed electrooxidative c-h amination of arenes with alkylamines. J. Am. Chem. Soc., 2018, 140(12), 4195-4199.
[http://dx.doi.org/10.1021/jacs.7b13049] [PMID: 29522680]
[234]
Tang, S.; Wang, S.; Liu, Y.; Cong, H.; Lei, A. Electrochemical oxidative c−h amination of phenols: access to triarylamine derivatives. Angew. Chem. Int. Ed. Engl., 2018, 57(17), 4737-4741.
[http://dx.doi.org/10.1002/anie.201800240] [PMID: 29498166]
[235]
Röckl, J.L.; Hauck, A.V.; Schollmeyer, D.; Waldvogel, S.R. Electrochemical synthesis of fluorinated orthoesters from 1,3-benzodioxoles. ChemistryOpen, 2019, 8(9), 1153.
[236]
Ke, F.; Xu, Y.; Zhu, S.; Lin, X.; Lin, C.; Zhou, S.; Su, H. Electrochemical: n-acylation synthesis of amides under aqueous conditions. Green Chem., 2019, 21(16), 4329-4333.
[http://dx.doi.org/10.1039/C9GC01391A]
[237]
Liu, K.; Tang, S.; Wu, T.; Wang, S.; Zou, M.; Cong, H.; Lei, A. Electrooxidative para-selective C-H/N-H cross-coupling with hydrogen evolution to synthesize triaryla-mine derivatives. Nat. Commun., 2019, 10(1), 639.
[http://dx.doi.org/10.1038/s41467-019-08414-8] [PMID: 30733447]
[238]
Konev, M.O.; Cardinale, L.; Jacobi von Wangelin, A. Catalyst-free n-deoxygenation by photoexcitation of hantzsch ester. Org. Lett., 2020, 22(4), 1316-1320.
[http://dx.doi.org/10.1021/acs.orglett.9b04632] [PMID: 31967477]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy