Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

含有儿茶酚部分的膳食类黄酮抑制硼替佐米的抗癌作用:其他基于硼酸的药物呢?

卷 22, 期 9, 2022

发表于: 05 July, 2022

页: [741 - 748] 页: 8

弟呕挨: 10.2174/1568009622666220516102235

价格: $65

摘要

2003 年批准了第一种含硼酸基团的药物硼替佐米,用于治疗多发性骨髓瘤,这引发了药物化学家对基于硼酸的治疗的兴趣增加。因此,另一种含硼酸部分的药物 ixazomib 于 2015 年被批准为多发性骨髓瘤的第二代蛋白酶体抑制剂;度格列汀正处于心肌梗死联合治疗的临床研究中。此外,大量结构中含有硼酸元素的新型药物目前正处于紧张的临床前研究中,这让我们可以假设其中至少有一些将在不久的将来进入临床试验。另一方面,仅在硼替佐米获批几年后,就发现其硼酸基团与绿茶儿茶素的儿茶酚部分以及其他一些常见的膳食类黄酮如槲皮素和杨梅素之间的直接相互作用,导致形成稳定的环状硼酸酯并取消抗癌活性。尽管高度相关,但迄今为止,还没有发现含有儿茶酚基团的黄酮类化合物与新一代硼酸类药物可能产生的共同作用的报道。然而,这个问题不容忽视,特别是考虑到植物源性食品以及非处方膳食补充剂和草药产品中含有丰富的含有儿茶酚部分的黄酮类化合物。因此,在加强硼酸类药物开发的同时,还必须阐明它们与植物源黄酮类化合物儿茶酚基团的可能相互作用,以便为患者提供饮食建议,以最大限度地提高治疗效果。如果同时食用的类黄酮确实可以拮抗药物疗效,那么它可能对临床结果构成真正的风险。

关键词: 黄酮类、儿茶酚、硼酸类药物、抗癌活性、蛋白酶体抑制、营养肿瘤学、饮食咨询。

图形摘要

[1]
Petrovska, B.B. Historical review of medicinal plants’ usage. Pharmacogn. Rev., 2012, 6(11), 1-5.
[http://dx.doi.org/10.4103/0973-7847.95849] [PMID: 22654398]
[2]
Forni, C.; Facchiano, F.; Bartoli, M.; Pieretti, S.; Facchiano, A.; D’Arcangelo, D.; Norelli, S.; Valle, G.; Nisini, R.; Beninati, S.; Tabolacci, C.; Jadeja, R.N. Beneficial role of phytochemicals on oxidative stress and age-related diseases. BioMed Res. Int., 2019, 2019, 8748253.
[http://dx.doi.org/10.1155/2019/8748253] [PMID: 31080832]
[3]
Sak, K. Cytotoxicity of dietary flavonoids on different human cancer types. Pharmacogn. Rev., 2014, 8(16), 122-146.
[http://dx.doi.org/10.4103/0973-7847.134247] [PMID: 25125885]
[4]
Kent, K.; Charlton, K.E.; Lee, S.; Mond, J.; Russell, J.; Mitchell, P.; Flood, V.M. Dietary flavonoid intake in older adults: how many days of dietary assessment are required and what is the impact of seasonality? Nutr. J., 2018, 17(1), 7.
[http://dx.doi.org/10.1186/s12937-017-0309-7] [PMID: 29329536]
[5]
Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Molecules, 2020, 25(22), 5243.
[http://dx.doi.org/10.3390/molecules25225243] [PMID: 33187049]
[6]
Wang, T.Y.; Li, Q.; Bi, K.S. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharm. Sci, 2018, 13(1), 12-23.
[http://dx.doi.org/10.1016/j.ajps.2017.08.004] [PMID: 32104374]
[7]
Golden, E.B.; Lam, P.Y.; Kardosh, A.; Gaffney, K.J.; Cadenas, E.; Louie, S.G.; Petasis, N.A.; Chen, T.C.; Schönthal, A.H. Green tea poly-phenols block the anticancer effects of bortezomib and other boronic acid-based proteasome inhibitors. Blood, 2009, 113(23), 5927-5937.
[http://dx.doi.org/10.1182/blood-2008-07-171389] [PMID: 19190249]
[8]
Pamu, S.; Chen, D.; Morin, F.; Huo, C.; Cui, Q.; Dou, Q.P.; Chan, T.H. Inhibitory effect of bortezomib on human multiple myeloma cells when combined with epigallocatechin-gallate (EGCG) analogs. MedChemComm, 2012, 3(2), 229-232.
[http://dx.doi.org/10.1039/C1MD00260K]
[9]
Glynn, S.J.; Gaffney, K.J.; Sainz, M.A.; Louie, S.G.; Petasis, N.A. Molecular characterization of the boron adducts of the proteasome in-hibitor bortezomib with epigallocatechin-3-gallate and related polyphenols. Org. Biomol. Chem., 2015, 13(13), 3887-3899.
[http://dx.doi.org/10.1039/C4OB02512A] [PMID: 25669488]
[10]
Modernelli, A.; Naponelli, V.; Giovanna Troglio, M.; Bonacini, M.; Ramazzina, I.; Bettuzzi, S.; Rizzi, F. EGCG antagonizes Bortezomib cytotoxicity in prostate cancer cells by an autophagic mechanism. Sci. Rep., 2015, 5(1), 15270.
[http://dx.doi.org/10.1038/srep15270] [PMID: 26471237]
[11]
Shah, J.J.; Kuhn, D.J.; Orlowski, R.Z. Bortezomib and EGCG: no green tea for you? Blood, 2009, 113(23), 5695-5696.
[http://dx.doi.org/10.1182/blood-2009-03-204776] [PMID: 19498025]
[12]
Liu, F.T.; Agrawal, S.G.; Movasaghi, Z.; Wyatt, P.B.; Rehman, I.U.; Gribben, J.G.; Newland, A.C.; Jia, L. Dietary flavonoids inhibit the anticancer effects of the proteasome inhibitor bortezomib. Blood, 2008, 112(9), 3835-3846.
[http://dx.doi.org/10.1182/blood-2008-04-150227] [PMID: 18633129]
[13]
Salehi, B.; Machin, L.; Monzote, L.; Sharifi-Rad, J.; Ezzat, S.M.; Salem, M.A.; Merghany, R.M.; El Mahdy, N.M. Kılıç, C.S.; Sytar, O.; Sharifi-Rad, M.; Sharopov, F.; Martins, N.; Martorell, M.; Cho, W.C. Therapeutic potential of quercetin: New insights and perspectives for human health. ACS Omega, 2020, 5(20), 11849-11872.
[http://dx.doi.org/10.1021/acsomega.0c01818] [PMID: 32478277]
[14]
Kim, T.Y.; Park, J.; Oh, B.; Min, H.J.; Jeong, T.S.; Lee, J.H.; Suh, C.; Cheong, J.W.; Kim, H.J.; Yoon, S.S.; Park, S.B.; Lee, D.S. Natural polyphenols antagonize the antimyeloma activity of proteasome inhibitor bortezomib by direct chemical interaction. Br. J. Haematol., 2009, 146(3), 270-281.
[http://dx.doi.org/10.1111/j.1365-2141.2009.07752.x] [PMID: 19500098]
[15]
Jia, L.; Liu, F.T. Why bortezomib cannot go with ‘green’? Cancer Biol. Med., 2013, 10(4), 206-213.
[PMID: 24349830]
[16]
Prasain, J.K.; Carlson, S.H.; Wyss, J.M. Flavonoids and age-related disease: risk, benefits and critical windows. Maturitas, 2010, 66(2), 163-171.
[http://dx.doi.org/10.1016/j.maturitas.2010.01.010] [PMID: 20181448]
[17]
Bernstein, B.J.; Grasso, T. Prevalence of complementary and alternative medicine use in cancer patients. Oncology (Williston Park), 2001, 15(10), 1267-1272.
[PMID: 11702957]
[18]
Sak, K. Plant Flavonoids Affects Cancer Chemotherapeutic Efficacy: A Handbook for Doctors and Patients; Nova Science Publishers: New York, 2019.
[19]
Sak, K. Dietary Flavonoids Interfere with Cancer Radiotherapy; Nova Science Publishers: New York, 2019.
[20]
Sak, K. Radiosensitizing potential of curcumin in different cancer models. Nutr. Cancer, 2020, 72(8), 1276-1289.
[http://dx.doi.org/10.1080/01635581.2019.1681480] [PMID: 31648572]
[21]
Bannerman, B.; Xu, L.; Jones, M.; Tsu, C.; Yu, J.; Hales, P.; Monbaliu, J.; Fleming, P.; Dick, L.; Manfredi, M.; Claiborne, C.; Bolen, J.; Kupperman, E.; Berger, A. Preclinical evaluation of the antitumor activity of bortezomib in combination with vitamin C or with epigallo-catechin gallate, a component of green tea. Cancer Chemother. Pharmacol., 2011, 68(5), 1145-1154.
[http://dx.doi.org/10.1007/s00280-011-1591-2] [PMID: 21400028]
[22]
Lorand, J.P.; Edwards, J.O. Polyol complexes and structure of the benzeneboronate ion. J. Org. Chem., 1959, 24(6), 769-774.
[http://dx.doi.org/10.1021/jo01088a011]
[23]
Springsteen, G.; Wang, B. A detailed examination of boronic acid-diol complexation. Tetrahedron, 2002, 58(26), 5291-5300.
[http://dx.doi.org/10.1016/S0040-4020(02)00489-1]
[24]
Tobinai, K. Proteasome inhibitor, bortezomib, for myeloma and lymphoma. Int. J. Clin. Oncol., 2007, 12(5), 318-326.
[http://dx.doi.org/10.1007/s10147-007-0695-5] [PMID: 17929113]
[25]
Terpos, E.; Roussou, M.; Dimopoulos, M.A. Bortezomib in multiple myeloma. Expert Opin. Drug Metab. Toxicol., 2008, 4(5), 639-654.
[http://dx.doi.org/10.1517/17425255.4.5.639] [PMID: 18484921]
[26]
Dick, L.R.; Fleming, P.E. Building on bortezomib: second-generation proteasome inhibitors as anti-cancer therapy. Drug Discov. Today, 2010, 15(5-6), 243-249.
[http://dx.doi.org/10.1016/j.drudis.2010.01.008] [PMID: 20116451]
[27]
Mujtaba, T.; Dou, Q.P. Advances in the understanding of mechanisms and therapeutic use of bortezomib. Discov. Med., 2011, 12(67), 471-480.
[PMID: 22204764]
[28]
Trippier, P.C.; McGuigan, C. Boronic acids in medicinal chemistry: anticancer, antibacterial and antiviral applications. MedChemComm, 2010, 1(3), 183-198.
[http://dx.doi.org/10.1039/c0md00119h]
[29]
Laubach, J.P.; Mitsiades, C.S.; Hideshima, T.; Schlossman, R.; Chauhan, D.; Munshi, N.; Ghobrial, I.; Carreau, N.; Anderson, K.C.; Rich-ardson, P.G. Bortezomib in the management of multiple myeloma. Cancer Manag. Res., 2009, 1, 107-117.
[http://dx.doi.org/10.2147/CMAR.S4555] [PMID: 21188129]
[30]
Xie, J.; Wan, N.; Liang, Z.; Zhang, T.; Jiang, J. Ixazomib - the first oral proteasome inhibitor. Leuk. Lymphoma, 2019, 60(3), 610-618.
[http://dx.doi.org/10.1080/10428194.2018.1523398] [PMID: 30614337]
[31]
Richardson, P.G.; Zweegman, S.; O’Donnell, E.K.; Laubach, J.P.; Raje, N.; Voorhees, P.; Ferrari, R.H.; Skacel, T.; Kumar, S.K.; Lonial, S. Ixazomib for the treatment of multiple myeloma. Expert Opin. Pharmacother., 2018, 19(17), 1949-1968.
[http://dx.doi.org/10.1080/14656566.2018.1528229] [PMID: 30422008]
[32]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN esti-mates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[33]
Touzeau, C.; Moreau, P. Ixazomib in the management of relapsed multiple myeloma. Future Oncol., 2018, 14(20), 2013-2020.
[http://dx.doi.org/10.2217/fon-2017-0710] [PMID: 29469592]
[34]
Zanwar, S.; Abeykoon, J.P.; Kapoor, P. Ixazomib: a novel drug for multiple myeloma. Expert Rev. Hematol., 2018, 11(10), 761-771.
[http://dx.doi.org/10.1080/17474086.2018.1518129] [PMID: 30173621]
[35]
Vlachostergios, P.J.; Voutsadakis, I.A.; Papandreou, C.N. Mechanisms of proteasome inhibitor-induced cytotoxicity in malignant glioma. Cell Biol. Toxicol., 2013, 29(4), 199-211.
[http://dx.doi.org/10.1007/s10565-013-9248-z] [PMID: 23733249]
[36]
Befani, C.D.; Vlachostergios, P.J.; Hatzidaki, E.; Patrikidou, A.; Bonanou, S.; Simos, G.; Papandreou, C.N.; Liakos, P. Bortezomib repress-es HIF-1α protein expression and nuclear accumulation by inhibiting both PI3K/Akt/TOR and MAPK pathways in prostate cancer cells. J. Mol. Med. (Berl.), 2012, 90(1), 45-54.
[http://dx.doi.org/10.1007/s00109-011-0805-8] [PMID: 21909688]
[37]
Berkers, C.R.; Leestemaker, Y.; Schuurman, K.G.; Ruggeri, B.; Jones-Bolin, S.; Williams, M.; Ovaa, H. Probing the specificity and activity profiles of the proteasome inhibitors bortezomib and delanzomib. Mol. Pharm., 2012, 9(5), 1126-1135.
[http://dx.doi.org/10.1021/mp2004143] [PMID: 22432738]
[38]
Brayer, J.; Baz, R. The potential of ixazomib, a second-generation proteasome inhibitor, in the treatment of multiple myeloma. Ther. Adv. Hematol., 2017, 8(7), 209-220.
[http://dx.doi.org/10.1177/2040620717710171] [PMID: 28694935]
[39]
Plescia, J.; Moitessier, N. Design and discovery of boronic acid drugs. Eur. J. Med. Chem., 2020, 195, 112270.
[http://dx.doi.org/10.1016/j.ejmech.2020.112270] [PMID: 32302879]
[40]
Silva, M.P.; Saraiva, L.; Pinto, M.; Sousa, M.E. Boronic acids and their derivatives in medicinal chemistry: Synthesis and biological appli-cations. Molecules, 2020, 25(18), 4323.
[http://dx.doi.org/10.3390/molecules25184323] [PMID: 32967170]
[41]
Fernandes, G.F.S.; Denny, W.A.; Dos Santos, J.L. Boron in drug design: Recent advances in the development of new therapeutic agents. Eur. J. Med. Chem., 2019, 179, 791-804.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.092] [PMID: 31288128]
[42]
Baker, S.J.; Ding, C.Z.; Akama, T.; Zhang, Y.K.; Hernandez, V.; Xia, Y. Therapeutic potential of boron-containing compounds. Future Med. Chem., 2009, 1(7), 1275-1288.
[http://dx.doi.org/10.4155/fmc.09.71] [PMID: 21426103]
[43]
Smolewski, P.; Rydygier, D. Ixazomib: an investigational drug for the treatment of lymphoproliferative disorders. Expert Opin. Investig. Drugs, 2019, 28(5), 421-433.
[http://dx.doi.org/10.1080/13543784.2019.1596258] [PMID: 30907163]
[44]
Shirley, M. Ixazomib: First global approval. Drugs, 2016, 76(3), 405-411.
[http://dx.doi.org/10.1007/s40265-016-0548-5] [PMID: 26846321]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy