Generic placeholder image

Current Nanomaterials

Editor-in-Chief

ISSN (Print): 2405-4615
ISSN (Online): 2405-4623

Review Article

Green Synthesis of Copper Nanoparticles by Using Plant Extracts and their Biomedical Applications – An Extensive Review

Author(s): Soumen Rakshit, Paresh Chandra Jana and Tapanendu Kamilya*

Volume 8, Issue 2, 2023

Published on: 18 July, 2022

Page: [110 - 125] Pages: 16

DOI: 10.2174/2405461507666220516092814

Price: $65

conference banner
Abstract

In recent years, the green synthesis of different metal nanoparticles has become a substantial technique for the synthesis of different essential nanoparticles and their potential applications in technological, industrial along with biomedical fields. Among the several essential nanoparticles, copper nanoparticles (CuNPs) have attracted enormous attention for their wide range of applications like the production of gas sensors, solar cells, high-temperature superconductors as well as drug delivery materials and catalysis owing to its distinctive optical, electrical, dielectric, imaging and catalytic, etc. properties. Herein, in this review, our aim is to find out the recent progress of synthesis, as well as different optical and structural characterizations of green, synthesized CuNPs along with their broadspectrum biomedical applications, mainly antibacterial, antifungal, antiviral and anticancer as well as the future perspective of research trends in the green synthesis of CuNPs. CuNPs have been synthesized by different researchers using three methods, namely, physical, chemical, and biological. In this review, the eco-friendly, efficient and low cost different established biological/green synthesis methods of CuNPs using different plant extracts like leaves, flowers, fruits, seeds, latex, etc., as capping and reducing agents have been briefly discussed, along with reaction conditions together with their optical as well as structural analysis. Effects of different parameters on the green synthesis of CuNPs like the presence of phytochemicals and confirmation of phytochemicals, temperature, pH, etc., are elucidated. Studies of the antibacterial activity of biomolecules capped CuNPs by different researchers against both Gram-positive and Gram-negative bacterial strains along with minimum inhibitory concentration (MIC) values have been summarized. Furthermore, antifungal and antiviral effects of green synthesized CuNPs studied by different researchers are mentioned with minimum inhibitory concentration (MIC) values. The anticancer activity of green synthesized CuNPs against different cancer cells studied by different researchers is summarized with correlation sizes of CuNPs on anticancer activity. The review also focuses on in vivo applications of green synthesized CuNPs along with clinical trails. Furthermore, an emphasis is given to the effectiveness of CuNPs in combating COVID-19.

Keywords: Green synthesis, copper nanoparticles, plant extracts, characterizations, phytochemicals, biomedical applications.

Graphical Abstract

[1]
Rafique, M.; Shaikh, A.J.; Rasheed, R.; Tahir, M.B.; Bakhat, H.F.; Rafique, M.S.; Rabbani, F. A review on synthesis, characterization and applications of copper nanoparticles using green method. Nano, 2017, 12(04), 1750043.
[http://dx.doi.org/10.1142/S1793292017500436]
[2]
Harishchandra, B.D.; Pappuswamy, M.; Pu, A.; Shama, G. A, P.; Arumugam, V.A.; Periyaswamy, T.; Sundaram, R. Copper nanoparticles: A review on synthesis, characterization and applications. Asian Pacific J. Cancer Biol., 2020, 5(4), 201-210.
[http://dx.doi.org/10.31557/apjcb.2020.5.4.201-210]
[3]
Din, M.I.; Arshad, F.; Hussain, Z.; Mukhtar, M. Green adeptness in the synthesis and stabilization of copper nanoparticles: Catalytic, antibacterial, cytotoxicity, and antioxidant activities. Nanoscale Res. Lett., 2017, 12(1), 638.
[http://dx.doi.org/10.1186/s11671-017-2399-8] [PMID: 29282555]
[4]
Al-Hakkani, M.F. Biogenic copper nanoparticles and their applications: A review. SN Appl. Sci., 2020, 2(3), 1-20.
[http://dx.doi.org/10.1007/s42452-020-2279-1]
[5]
Varughese, A.; Kaur, R.; Singh, P. Green synthesis and characterization of copper oxide nanoparticles using psidium guajava leaf extract. Mater. Sci. Eng., 2020, 961(1), 012011.
[http://dx.doi.org/10.1088/1757-899X/961/1/012011]
[6]
Keabadile, O.P.; Aremu, A.O.; Elugoke, S.E.; Fayemi, O.E. Green and traditional synthesis of copper oxide nanoparticles-comparative study. Nanomaterials , 2020, 10(12), E2502.
[http://dx.doi.org/10.3390/nano10122502] [PMID: 33327366]
[7]
Hasheminya, S-M.; Dehghannya, J. Green synthesis and characterization of copper nanoparticles using Eryngium caucasicum trautv aqueous extracts and its antioxidant and antimicrobial properties. Particul. Sci. Technol., 2020, 38(8), 1019-1026.
[http://dx.doi.org/10.1080/02726351.2019.1658664]
[8]
Vishveshvar, K.; Krishnan, M.V.A.; Haribabu, K.; Vishnuprasad, S. Green synthesis of copper oxide nanoparticles using Ixiro coccinea plant leaves and its characterization. Bionanoscience, 2018, 8(2), 554-558.
[http://dx.doi.org/10.1007/s12668-018-0508-5]
[9]
Saif, S.; Tahir, A.; Asim, T.; Chen, Y. Plant mediated green synthesis of cuo nanoparticles: Comparison of toxicity of engineered and plant mediated CuO nanoparticles towards daphnia magna. Nanomaterials (Basel),, 2016, 6(11), E205.
[http://dx.doi.org/10.3390/nano6110205] [PMID: 28335333]
[10]
Sundar, S.; Venkatachalam, G.; Kwon, S.J. Biosynthesis of copper oxide (CuO) nanowires and their use for the electrochemical sensing of dopamine. Nanomaterials , 2018, 8(10), E823.
[http://dx.doi.org/10.3390/nano8100823] [PMID: 30322069]
[11]
Nasrollahzadeh, M.; Sajadi, S.M. Green synthesis of copper nanoparticles using Ginkgo biloba L. leaf extract and their catalytic activity for the Huisgen [3+2] cycloaddition of azides and alkynes at room temperature. J. Colloid Interface Sci., 2015, 457, 141-147.
[http://dx.doi.org/10.1016/j.jcis.2015.07.004] [PMID: 26164245]
[12]
Azam, A.; Ahmed, A.S.; Oves, M.; Khan, M.S.; Habib, S.S.; Memic, A. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: A comparative study. Int. J. Nanomedicine, 2012, 7, 6003-6009.
[http://dx.doi.org/10.2147/IJN.S35347] [PMID: 23233805]
[13]
Imran Din, M.; Rani, A. Recent advances in the synthesis and stabilization of nickel and nickel oxide nanoparticles: A green adeptness. Int. J. Anal. Chem., 2016, 2016, 3512145.
[http://dx.doi.org/10.1155/2016/3512145] [PMID: 27413375]
[14]
Kala, A.; Soosairaj, S.; Mathiyazhagan, S.; Raja, P. Green synthesis of copper bionanoparticles to control the bacterial leaf blight disease of rice. Curr. Sci., 2016, 110(10), 2011-2014.
[http://dx.doi.org/10.18520/cs/v110/i10/2011-2014]
[15]
Nagarajan, K.; Chakraborthy, P.; Palanichamy, V.; Rajeswari, D. Synthesis and characterization of copper nanoparticles using tridax procumbens and its application in degradation of bismarck brown. Int. J. Chemtech Res., 2016, 9, 498-507.
[16]
Daniel, K.; Vinothini, G.; Natesan, S.; Kasi, N.; Muthusamy, S. Biosynthesis of Cu, ZVI, and Ag nanoparticles using Dodonaea viscosa extract for antibacterial activity against human pathogens. J. Nanopart. Res., 2012, 15(1), 1319.
[http://dx.doi.org/10.1007/s11051-012-1319-1]
[17]
Jang, N.; Kim, B.; Lee, G.; Lee, H.J.; Song, J.; Yun, J.H. Biological synthesis of copper nanoparticles using plant extract. Nanotechnology, 2011, 1(1), 371-374.
[18]
Yallappa, S.; Manjanna, J.; Dhananjaya, B.L.; Vishwanatha, U.; Ravishankar, B.; Gururaj, H.; Niranjana, P.; Hungund, B.S. Phytochemically functionalized Cu and Ag nanoparticles embedded in MWCNTS for enhanced antimicrobial and anticancer properties. Nano-Micro Lett., 2016, 8(2), 120-130.
[http://dx.doi.org/10.1007/s40820-015-0066-0] [PMID: 30460271]
[19]
Chatterjee, A.K.; Chakraborty, R.; Basu, T. Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology, 2014, 25(13), 135101.
[http://dx.doi.org/10.1088/0957-4484/25/13/135101] [PMID: 24584282]
[20]
Das, P.E.; Abu-Yousef, I.A.; Majdalawieh, A.F.; Narasimhan, S.; Poltronieri, P. Green synthesis of encapsulated copper nanoparticles using a hydroalcoholic extract of Moringa oleifera leaves and assessment of their antioxidant and antimicrobial activities. Molecules, 2020, 25(3), E555.
[http://dx.doi.org/10.3390/molecules25030555] [PMID: 32012912]
[21]
Mali, S.C.; Dhaka, A.; Githala, C.K.; Trivedi, R. Green synthesis of copper nanoparticles using Celastrus paniculatus Willd. leaf extract and their photocatalytic and antifungal properties. Biotechnol. Rep. (Amst.), 2020, 27, e00518.
[http://dx.doi.org/10.1016/j.btre.2020.e00518] [PMID: 32923378]
[22]
Keihan, A.H.; Veisi, H.; Veasi, H. Green synthesis and characterization of spherical copper nanoparticles as organometallic antibacterial agent. Appl. Organomet. Chem., 2017, 31(7), e3642.
[http://dx.doi.org/10.1002/aoc.3642]
[23]
Batool, M.; Qureshi, M.Z.; Hashmi, F.; Mehboob, N.; Shah, A.S. Congo red Azo Dye removal and study of its kinetics by aloe vera mediated copper oxide nanoparticles. Indones. J. Chem., 2019, 19(3), 626.
[http://dx.doi.org/10.22146/ijc.35626]
[24]
Rathore, K.; Hada, D.; Sharma, K. Green synthesis and characterization of copper nanoparticles synthesized from Lawsonia inermis leaf extract. Int. J. Pharm. Sci. Res., 2021, 12(1), 477-481.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.12(1).477-81]
[25]
Shende, S.; Gaikwad, N.; Bansod, S. Synthesis and evaluation of antimicrobial potential of copper nanoparticle against agriculturally important phytopathogens. Int. J. Biol. Res., 2016, 1(4), 2455-6548.
[26]
Fatma, S.P.K.; Ravindran, E.S.R. Green synthesis of copper nanoparticle from Passiflora foetida leaf extract and its antibacterial activity. Asian J. Pharm. Clin. Res., 2017, 10(4), 79-83.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i4.15744]
[27]
Gopinath, M.; Subbaiya, R.; Selvam, M.; Suresh, D.; Rangasamy, K. Synthesis of copper nanoparticles from Nerium oleander leaf aqueous extract and its antibacterial activity. Int. J. Curr. Microbiol. Appl. Sci., 2014, 3(9), 814-818.
[28]
Nasrollahzadeh, M.; Sajjadi, M.; Sajadi, S.M. Biosynthesis of copper nanoparticles supported on manganese dioxide nanoparticles using Centella asiatica L. Leaf extract for the efficient catalytic reduction of organic dyes and nitroarenes. Chin. J. Catal., 2018, 39(1), 109-117.
[http://dx.doi.org/10.1016/S1872-2067(17)62915-2]
[29]
Kulkarni, P.; Kulkarni, P. Synthesis of copper nanoparticles with Aegle marmelos leaf Extract. Nanosci. Nanotechnol. An Inidan J., 2014, 8, 447-451.
[30]
Demirci Gültekin, D. Alaylı Güngör, A.; Önem, H.; Babagil, A.; Nadaroğlu, H. Synthesis of copper nanoparticles using a different method: Determination of its antioxidant and antimicrobial activity. J. Turkish Chem. Soc. Sect. Chem., 2016, 3(3), 623-623.
[http://dx.doi.org/10.18596/jotcsa.287299]
[31]
Subbaiya, R.; Selvam, M. Green synthesis of copper nanoparticles from Hibicus rosasinensis and their antimicrobial, antioxidant activities. Res. J. Pharm. Biol. Chem. Sci., 2015, 6(2), 1183-1190.
[32]
Parikh, P.; Zala, D.; Makwana, B.A. Biosynthesis of copper nanoparticles and their antimicrobial activity. OAlib, 2014, 01(01), 1-15.
[http://dx.doi.org/10.4236/oalib.preprints.1200067]
[33]
THAKUR R.; Sharma, S. Study the antibacterial activity of copper nanoparticles synthesized using herbal plants leaf extracts. Int.J. Biomed. Technol. Res., 2014, 4, 21-34.
[34]
Damle, S. A comparative study of green synthesis of silver and copper nanoparticles using Smithia sensitiva (Dabzell), Cassia tora (l.) and Colocasia esculenta (L.). Int. J. Pure Appl. Biosci., 2016, 4, 275-281.
[35]
Mane, V.; Patil, N.; Gaikwad, S. Extracellular synthesis of copper nanoparticles using different plant extract. Int. J. Appl. Nat. Sci., 2016, 5(4), 33-38.
[36]
Kulkarni, V.; Suryawanshi, S.; Kulkarni, P. Biosynthesis of copper nanoparticles using aqueous extract of Eucalyptus Sp. plant leaves. Curr. Sci., 2015, 109, 255-257.
[37]
Shaikh, R.R.; Mirza, S.S.; Sawant, M.R.; Dare, S.B. Biosynthesis of copper nanoparticles using Vitis vinifera leaf extract and its antimicrobial activity. Pharm. Lett., 2016, 8(4), 265-272.
[38]
Suresh, Y.; Annapurna, S.; Bhikshamaiah, G.; Singh, A.K. Copper nanoparticles: Green synthesis and characterization. Int. J. Sci. Eng. Res., 2014, 5(3), 156-160.
[39]
Subhankari, I.; Nayak, P. Synthesis of copper nanoparticles using Syzygium aromaticum (Cloves) aqueous extract by using green chemistry. World J. Nano. Sci. Technol., 2013, 2(1), 14-17.
[40]
Liu, H.; Wang, G.; Liu, J.; Nan, K.; Zhang, J.; Guo, L.; Liu, Y. Green synthesis of copper nanoparticles using Cinnamomum zelanicum extract and its applications as a highly efficient antioxidant and anti-human lung carcinoma. J. Exp. Nanosci., 2021, 16(1), 410-423.
[http://dx.doi.org/10.1080/17458080.2021.1991577]
[41]
Karimi, J.; Mohsenzadeh, S. Rapid, green, and eco-friendly biosynthesis of copper nanoparticles using flower extract of Aloe Vera. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2015, 45(6), 895-898.
[http://dx.doi.org/10.1080/15533174.2013.862644]
[42]
Valli, G.S.M. Green synthesis of copper nanoparticles using Cassia fistula flower extract. J. Bio. Innov., 2015, 4(5), 162-170.
[43]
Valli, G.; Suganya, M. Research article biogenic synthesis of copper nanoparticles using Delonix elata flower extract. J. Chem. Pharm. Res., 2015, 7(5), 776-779.
[44]
Caroling, G.; Vinodhini, E.; Ranjitham, A.; Shanthi, P. Biosynthesis of copper nanoparticles using aqueous Phyllanthus embilica (gooseberry) extract-characterisation and study of antimicrobial effects. Int. J. Nano. Chem., 2015, 1(2), 53-63.
[45]
Shende, S.; Ingle, A.P.; Gade, A.; Rai, M. Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J. Microbiol. Biotechnol., 2015, 31(6), 865-873.
[http://dx.doi.org/10.1007/s11274-015-1840-3] [PMID: 25761857]
[46]
Caroling, G.; Priyadharshini, M.; Vinodhini, E.; Ranjitham, A.; Shanthi, P. Biosynthesis of copper nanoparticles using aqueous guava extract characterisation and study of antibacterial effects. Int. J. Pharm. Biol. Sci., 2015, 5(2), 25-43.
[47]
Jay, M.; Haneefa, M.; Balasubramanian, V. Green synthesis of copper nanoparticles using natural reducer and stabilizerand an evaluation of antimicrobial activity. J. Chem. Pharm. Res., 2015, 7(2), 251-259.
[48]
Amaliyah, S.; Pangesti, D.P.; Masruri, M.; Sabarudin, A.; Sumitro, S.B. Green synthesis and characterization of copper nanoparticles using Piper retrofractum Vahl extract as bioreductor and capping agent. Heliyon, 2020, 6(8), e04636.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04636] [PMID: 32793839]
[49]
Jayarambabu, N.; Akshaykranth, A.; Venkatappa Rao, T.; Venkateswara Rao, K.; Rakesh Kumar, R. Green synthesis of Cu nanoparticles using Curcuma longa extract and their application in antimicrobial activity. Mater. Lett., 2020, 259, 126813.
[http://dx.doi.org/10.1016/j.matlet.2019.126813]
[50]
Batoool, M.; Masood, B. Green synthesis of copper nanoparticles using Solanum lycopersicum (tomato aqueous extract) and study characterization. J. Nanosci. Nanotechnol., 2017, 1, 1-5.
[51]
Gandhi, N.; Sirisha, D.; Asthana, S. Microwave mediated green synthesis of copper nanoparticles using aqueous extract of Piper nigrum seeds and particles characterisation. IAETSD J. Advamced Res. Appl. Sci., 2018, 5(2), 859-870.
[52]
Guajardo-Pacheco, M.J.; Morales-Sánchez, J.E.; González-Hernández, J.; Ruiz, F. Synthesis of copper nanoparticles using soybeans as a chelant agent. Mater. Lett., 2010, 64(12), 1361-1364.
[http://dx.doi.org/10.1016/j.matlet.2010.03.029]
[53]
Kaur, P.; Thakur, R.; Chaudhury, A. Biogenesis of copper nanoparticles using peel extract of Punica granatum and their antimicrobial activity against opportunistic pathogens. Green Chem. Lett. Rev., 2016, 9(1), 33-38.
[http://dx.doi.org/10.1080/17518253.2016.1141238]
[54]
Harne, S.; Sharma, A.; Dhaygude, M.; Joglekar, S.; Kodam, K.; Hudlikar, M. Novel route for rapid biosynthesis of copper nanoparticles using aqueous extract of Calotropis procera L. latex and their cytotoxicity on tumor cells. Colloids Surf. B Biointerfaces, 2012, 95, 284-288.
[http://dx.doi.org/10.1016/j.colsurfb.2012.03.005] [PMID: 22483347]
[55]
Saravana, P.P.; Gopalakrishnan, V.K. Phytochemical screening, functional groups and elemental analysis of leaf extract of Ipomoea obscura (L) ker-gawl. Int. J. Pharm. Pharm. Sci., 2014, 6(9), 83-89.
[56]
Kebede, T.; Gadisa, E.; Tufa, A. Antimicrobial activities evaluation and phytochemical screening of some selected medicinal plants: A possible alternative in the treatment of multidrug-resistant microbes. PLoS One, 2021, 16(3), e0249253.
[http://dx.doi.org/10.1371/journal.pone.0249253] [PMID: 33770121]
[57]
Mahmood, N.; Nazir, R.; Khan, M.; Khaliq, A.; Adnan, M.; Ullah, M.; Yang, H. Antibacterial activities, phytochemical screening and metal analysis of medicinal plants: Traditional recipes used against diarrhea. Antibiotics , 2019, 8(4), E194.
[http://dx.doi.org/10.3390/antibiotics8040194] [PMID: 31653014]
[58]
Ferguson, P.J.; Kurowska, E.; Freeman, D.J.; Chambers, A.F.; Koropatnick, D.J. A flavonoid fraction from cranberry extract inhibits proliferation of human tumor cell lines. J. Nutr., 2004, 134(6), 1529-1535.
[http://dx.doi.org/10.1093/jn/134.6.1529] [PMID: 15173424]
[59]
Kandaswami, C.; Lee, L.T.; Lee, P.P.H.; Hwang, J.J.; Ke, F.C.; Huang, Y.T.; Lee, M.T. The antitumor activities of flavonoids. In Vivo, 2005, 19(5), 895-909.
[PMID: 16097445]
[60]
Olajubu, F.; Akpan, I.; Ojo, D.; Oluwalana, S. Antimicrobial potential of Dialium guineense (Wild.) stem bark on some clinical isolates in Nigeria. Int. J. Appl. Basic Med. Res., 2012, 2(1), 58-62.
[http://dx.doi.org/10.4103/2229-516X.96811] [PMID: 23776811]
[61]
Obasi, D.; Ogugua, V.; Okagu, I. Phytochemical, nutritional and anti-nutritional analyses of ruzu herbal bitters. IOSR J. Pharm. Biol. Sci., 2021, 15, 2319-7676.
[http://dx.doi.org/10.9790/3008-1501040417]
[62]
Pinmai, K.; Hiriote, W.; Soonthornchareonnon, N.; Jongsakul, K.; Sireeratawong, S.; Tor-Udom, S. In vitro and in vivo antiplasmodial activity and cytotoxicity of water extracts of Phyllanthus emblica, Terminalia chebula, and Terminalia bellerica. J. Med. Assoc. Thai., 2010, 93(Suppl. 7), S120-S126.
[PMID: 21294406]
[63]
Sobeh, M.; Mahmoud, M.F.; Hasan, R.A.; Abdelfattah, M.A.O.; Osman, S.; Rashid, H.O.; El-Shazly, A.M.; Wink, M. Chemical composition, antioxidant and hepatoprotective activities of methanol extracts from leaves of Terminalia bellirica and Terminalia sericea (Combretaceae). PeerJ, 2019, 7, e6322.
[http://dx.doi.org/10.7717/peerj.6322] [PMID: 30834179]
[64]
Toyigbénan, B.F.; Durand, D.N.; Haziz, S.; Chimène, N.; Wassiyath, M.; Aklesso, N.; Sylvestre, A.; Majoie, T.; Martial, N.; Lehmane, H.; Adolphe, A.; Aly, S.; Lamine, B.M. Phytochemical screening and antimicrobial activity of Desmodium ramosissimum. Am. J. Plant Sci., 2020, 11(01), 51-63.
[http://dx.doi.org/10.4236/ajps.2020.111005]
[65]
Gul, R.; Jan, S.U.; Faridullah, S.; Sherani, S.; Jahan, N. Preliminary phytochemical screening, quantitative analysis of alkaloids, and antioxidant activity of crude plant extracts from Ephedra intermedia Indigenous to balochistan. ScientificWorldJournal, 2017, 2017, 5873648.
[http://dx.doi.org/10.1155/2017/5873648] [PMID: 28386582]
[66]
Wu, S.; Rajeshkumar, S.; Madasamy, M.; Mahendran, V. Green synthesis of copper nanoparticles using Cissus vitiginea and its antioxidant and antibacterial activity against urinary tract infection pathogens. Artif. Cells Nanomed. Biotechnol., 2020, 48(1), 1153-1158.
[http://dx.doi.org/10.1080/21691401.2020.1817053] [PMID: 32924614]
[67]
Mehta, B.K.; Chhajlani, M.; Shrivastava, B.D. Green synthesis of silver nanoparticles and their characterization by {XRD}. J. Phys. Conf. Ser., 2017, 836, 12050.
[http://dx.doi.org/10.1088/1742-6596/836/1/012050]
[68]
Begum, R.; Farooqi, Z.H.; Naseem, K.; Ali, F.; Batool, M.; Xiao, J.; Irfan, A. Applications of UV/Vis spectroscopy in characterization and catalytic activity of noble metal nanoparticles fabricated in responsive polymer microgels: A review. Crit. Rev. Anal. Chem., 2018, 48(6), 503-516.
[http://dx.doi.org/10.1080/10408347.2018.1451299] [PMID: 29601210]
[69]
Lim, J.; Yeap, S.P.; Che, H.X.; Low, S.C. Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res. Lett., 2013, 8(1), 381.
[http://dx.doi.org/10.1186/1556-276X-8-381] [PMID: 24011350]
[70]
Scimeca, M.; Bischetti, S.; Lamsira, H.K.; Bonfiglio, R.; Bonanno, E. Energy dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis. Eur. J. Histochem., 2018, 62(1), 2841.
[http://dx.doi.org/10.4081/ejh.2018.2841] [PMID: 29569878]
[71]
Liu, J. Scanning Transmission Electron Microscopy of Nanoparticles. Characterization of Nanophase Materials; John Wiley & Sons, Ltd, 1999, pp. 81-132.
[http://dx.doi.org/10.1002/3527600094.ch4]
[72]
Candoğan, K.; Altuntas, E.G.; İğci, N. Authentication and quality assessment of meat products by fourier-transform infrared (FTIR) spectroscopy. Food Eng. Rev., 2021, 13(1), 66-91.
[http://dx.doi.org/10.1007/s12393-020-09251-y]
[73]
Wang, Z.L. Transmission Electron Microscopy and Spectroscopy of Nanoparticles. Characterization of Nanophase Materials; John Wiley & Sons, Ltd, 1999, pp. 37-80.
[http://dx.doi.org/10.1002/3527600094.ch3]
[74]
Bellitto, V. Atomic force microscopy - imaging, measuring and manipulating surfaces at the atomic scale. 2012.
[75]
Korin, E.; Froumin, N.; Cohen, S. Surface analysis of nanocomplexes by X-ray Photoelectron Spectroscopy (XPS). ACS Biomater. Sci. Eng., 2017, 3(6), 882-889.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00040] [PMID: 33429560]
[76]
Kaszuba, M.; Corbett, J.; Watson, F.M.; Jones, A. High-concentration zeta potential measurements using light-scattering techniques. Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci., 2010, 368(1927), 4439-4451.
[http://dx.doi.org/10.1098/rsta.2010.0175] [PMID: 20732896]
[77]
Mansfield, E.; Tyner, K.M.; Poling, C.M.; Blacklock, J.L. Determination of nanoparticle surface coatings and nanoparticle purity using microscale thermogravimetric analysis. Anal. Chem., 2014, 86(3), 1478-1484.
[http://dx.doi.org/10.1021/ac402888v] [PMID: 24400715]
[78]
Quintero-Jaime, A.F.; Berenguer-Murcia, Á.; Cazorla-Amorós, D.; Morallón, E. Carbon nanotubes modified with au for electrochemical detection of prostate specific antigen: Effect of Au nanoparticle size distribution. Front Chem., 2019, 7, 147.
[http://dx.doi.org/10.3389/fchem.2019.00147] [PMID: 30972319]
[79]
Mehdizadeh, T.; Zamani, A.; Abtahi Froushani, S.M. Preparation of Cu nanoparticles fixed on cellulosic walnut shell material and investigation of its antibacterial, antioxidant and anticancer effects. Heliyon, 2020, 6(3), e03528.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03528] [PMID: 32154429]
[80]
Huh, Y.M.; Lee, E.S.; Lee, J.H.; Jun, Y.; Kim, P.H.; Yun, C.O.; Kim, J.H.; Suh, J.S.; Cheon, J. Hybrid nanoparticles for magnetic resonance imaging of target-specific viral gene delivery. Adv. Mater., 2007, 19(20), 3109-3112.
[http://dx.doi.org/10.1002/adma.200701952]
[81]
Ren, G.; Hu, D.; Cheng, E.W.C.; Vargas-Reus, M.A.; Reip, P.; Allaker, R.P. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int. J. Antimicrob. Agents, 2009, 33(6), 587-590.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.12.004] [PMID: 19195845]
[82]
Thiruvengadam, M.; Chung, I-M.; Gomathi, T.; Ansari, M.A.; Gopiesh Khanna, V.; Babu, V.; Rajakumar, G. Synthesis, characterization and pharmacological potential of green synthesized copper nanoparticles. Bioprocess Biosyst. Eng., 2019, 42(11), 1769-1777.
[http://dx.doi.org/10.1007/s00449-019-02173-y] [PMID: 31372759]
[83]
Hangen, L.; Bennink, M.R. Consumption of black beans and navy beans (Phaseolus vulgaris) reduced azoxymethane-induced colon cancer in rats. Nutr. Cancer, 2002, 44(1), 60-65.
[http://dx.doi.org/10.1207/S15327914NC441_8] [PMID: 12672642]
[84]
Akhter, S.M.H.; Mohammad, F.; Ahmad, S. Terminalia belerica mediated green synthesis of nanoparticles of copper, iron and zinc metal oxides as the alternate antibacterial agents against some common pathogens. Bionanoscience, 2019, 9(2), 365-372.
[http://dx.doi.org/10.1007/s12668-019-0601-4]
[85]
Huang, H.; Shen, L.; Ford, J.; Wang, Y.H.; Xu, Y.R. Computational issues in biomedical nanometrics and nano-materials. J. Nano Res., 2007, 1, 50-58.
[http://dx.doi.org/10.4028/www.scientific.net/JNanoR.1.50]
[86]
Huang, D.M.; Chung, T.H.; Hung, Y.; Lu, F.; Wu, S.H.; Mou, C.Y.; Yao, M.; Chen, Y.C. Internalization of mesoporous silica nanoparticles induces transient but not sufficient osteogenic signals in human mesenchymal stem cells. Toxicol. Appl. Pharmacol., 2008, 231(2), 208-215.
[http://dx.doi.org/10.1016/j.taap.2008.04.009] [PMID: 18519141]
[87]
Huang, X.; Jain, P.K.; El-Sayed, I.H.; El-Sayed, M.A. Gold nanoparticles: Interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine , 2007, 2(5), 681-693.
[http://dx.doi.org/10.2217/17435889.2.5.681] [PMID: 17976030]
[88]
Jäger, M.; Zilkens, C.; Zanger, K.; Krauspe, R. Significance of nano- and microtopography for cell-surface interactions in orthopaedic implants. J. Biomed. Biotechnol., 2007, 2007(8), 69036.
[http://dx.doi.org/10.1155/2007/69036] [PMID: 18274618]
[89]
Jones, C.F.; Grainger, D.W. In vitro assessments of nanomaterial toxicity. Adv. Drug Deliv. Rev., 2009, 61(6), 438-456.
[http://dx.doi.org/10.1016/j.addr.2009.03.005] [PMID: 19383522]
[90]
Juillerat-Jeanneret, L. The targeted delivery of cancer drugs across the blood-brain barrier: Chemical modifications of drugs or drug-nanoparticles? Drug Discov. Today, 2008, 13(23-24), 1099-1106.
[http://dx.doi.org/10.1016/j.drudis.2008.09.005] [PMID: 18848640]
[91]
Rubilar, O.; Rai, M.; Tortella, G.; Diez, M.C.; Seabra, A.B.; Durán, N. Biogenic nanoparticles: Copper, copper oxides, copper sulphides, complex copper nanostructures and their applications. Biotechnol. Lett., 2013, 35(9), 1365-1375.
[http://dx.doi.org/10.1007/s10529-013-1239-x] [PMID: 23690046]
[92]
Wang, F.; Li, H.; Yuan, Z.; Sun, Y.; Chang, F.; Deng, H.; Xie, L.; Li, H. A highly sensitive gas sensor based on CuO nanoparticles synthetized via a sol–gel method. RSC Advances, 2016, 6(83), 79343-79349.
[http://dx.doi.org/10.1039/C6RA13876D]
[93]
Zein, R.; Sharrouf, W.; Selting, K. Physical properties of nanoparticles that result in improved cancer targeting. J. Oncol., 2020, 2020, 5194780.
[http://dx.doi.org/10.1155/2020/5194780] [PMID: 32765604]
[94]
Tang, L.; Yang, X.; Yin, Q.; Cai, K.; Wang, H.; Chaudhury, I.; Yao, C.; Zhou, Q.; Kwon, M.; Hartman, J.A.; Dobrucki, I.T.; Dobrucki, L.W.; Borst, L.B.; Lezmi, S.; Helferich, W.G.; Ferguson, A.L.; Fan, T.M.; Cheng, J. Investigating the optimal size of anticancer nanomedicine. Proc. Natl. Acad. Sci. , 2014, 111(43), 15344-15349.
[http://dx.doi.org/10.1073/pnas.1411499111] [PMID: 25316794]
[95]
Hassanien, R.; Husein, D.Z.; Al-Hakkani, M.F. Biosynthesis of copper nanoparticles using aqueous Tilia extract: Antimicrobial and anticancer activities. Heliyon, 2018, 4(12), e01077.
[http://dx.doi.org/10.1016/j.heliyon.2018.e01077] [PMID: 30603710]
[96]
Chung, I-M.; Abdul Rahuman, A.; Marimuthu, S.; Kirthi, A.V.; Anbarasan, K.; Padmini, P.; Rajakumar, G. Green synthesis of copper nanoparticles using Eclipta prostrata leaves extract and their antioxidant and cytotoxic activities. Exp. Ther. Med., 2017, 14(1), 18-24.
[http://dx.doi.org/10.3892/etm.2017.4466] [PMID: 28672888]
[97]
Yaqub, A.; Malkani, N.; Shabbir, A.; Ditta, S.A.; Tanvir, F.; Ali, S.; Naz, M.; Kazmi, S.A.R.; Ullah, R. Novel biosynthesis of copper nanoparticles using Zingiber and Allium sp. with synergic effect of doxycycline for anticancer and bactericidal activity. Curr. Microbiol., 2020, 77(9), 2287-2299.
[http://dx.doi.org/10.1007/s00284-020-02058-4] [PMID: 32535649]
[98]
Mukhopadhyay, R.; Kazi, J.; Debnath, M.C. Synthesis and characterization of copper nanoparticles stabilized with Quisqualis indica extract: Evaluation of its cytotoxicity and apoptosis in B16F10 melanoma cells. Biomed. Pharmacother., 2018, 97, 1373-1385.
[http://dx.doi.org/10.1016/j.biopha.2017.10.167] [PMID: 29156527]
[99]
Jinu, U.; Gomathi, M.; Saiqa, I.; Geetha, N.; Benelli, G.; Venkatachalam, P. Green engineered biomolecule-capped silver and copper nanohybrids using Prosopis cineraria leaf extract: Enhanced antibacterial activity against microbial pathogens of public health relevance and cytotoxicity on human breast cancer cells (MCF-7). Microb. Pathog., 2017, 105, 86-95.
[http://dx.doi.org/10.1016/j.micpath.2017.02.019] [PMID: 28214590]
[100]
Prasad, P.R.; Kanchi, S.; Naidoo, E.B. In-vitro evaluation of copper nanoparticles cytotoxicity on prostate cancer cell lines and their antioxidant, sensing and catalytic activity: One-pot green approach. J. Photochem. Photobiol. B, 2016, 161, 375-382.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.06.008] [PMID: 27318296]
[101]
Tiwari, M.; Jain, P.; Chandrashekhar Hariharapura, R.; Narayanan, K.; Bhat, K. U.; Udupa, N.; Rao, J.V. Biosynthesis of copper nanoparticles using copper-resistant Bacillus cereus, a soil isolate. Process Biochem., 2016, 51(10), 1348-1356.
[http://dx.doi.org/10.1016/j.procbio.2016.08.008]
[102]
Rivero, P.J.; Urrutia, A.; Goicoechea, J.; Arregui, F.J. Nanomaterials for functional textiles and fibers. Nanoscale Res. Lett., 2015, 10(1), 501.
[http://dx.doi.org/10.1186/s11671-015-1195-6] [PMID: 26714863]
[103]
Krithiga, N. Synthesis, characterization and analysis of the effect of copper oxide nanoparticles in biological systems. Indian J. Nanosci., 2013, 1(1), 6-15.
[104]
Adam, N.; Leroux, F.; Knapen, D.; Bals, S.; Blust, R. The uptake of ZnO and CuO nanoparticles in the water-flea Daphnia magna under acute exposure scenarios. Environ. Pollut., 2014, 194, 130-137.
[http://dx.doi.org/10.1016/j.envpol.2014.06.037] [PMID: 25108488]
[105]
Geil, P.B.; Anderson, J.W. Nutrition and health implications of dry beans: A review. J. Am. Coll. Nutr., 1994, 13(6), 549-558.
[http://dx.doi.org/10.1080/07315724.1994.10718446] [PMID: 7706585]
[106]
Kerour, A.; Boudjadar, S.; Bourzami, R.; Allouche, B. Eco-friendly synthesis of cuprous oxide (Cu$_{2}$O) nanoparticles and improvement of their solar photocatalytic activities. J. Solid State Chem., 2018, 263, 79-83.
[http://dx.doi.org/10.1016/j.jssc.2018.04.010]
[107]
Khandel, P.; Yadaw, R.K.; Soni, D.K.; Kanwar, L.; Shahi, S.K. Biogenesis of metal nanoparticles and their pharmacological applications: Present status and application prospects. J. Nanostructure Chem., 2018, 8(3), 217-254.
[http://dx.doi.org/10.1007/s40097-018-0267-4]
[108]
Thneibat, A.; Fontana, M.; Cochran, M.A.; Gonzalez-Cabezas, C.; Moore, B.K.; Matis, B.A.; Lund, M.R. Anticariogenic and antibacterial properties of a copper varnish using an in vitro microbial caries model. Oper. Dent., 2008, 33(2), 142-148.
[http://dx.doi.org/10.2341/07-50] [PMID: 18435187]
[109]
Halevas, E.; Pantazaki, A. Copper nanoparticles as therapeutic anticancer agents. Nanomed. Nanotechnol. J.,, 2018. 119
[110]
Crisan, M.C.; Teodora, M.; Lucian, M. Copper nanoparticles: Synthesis and characterization, physiology, toxicity and antimicrobial applications. Appl. Sci. , 2022, 12(1), 141.
[http://dx.doi.org/10.3390/app12010141]
[111]
Chafekar, A.; Fielding, B.C. MERS-CoV: Understanding the latest human coronavirus threat. Viruses, 2018, 10(2), E93.
[http://dx.doi.org/10.3390/v10020093] [PMID: 29495250]
[112]
Talebian, S.; Wallace, G.G.; Schroeder, A.; Stellacci, F.; Conde, J. Nanotechnology-based disinfectants and sensors for SARS-CoV-2. Nat. Nanotechnol., 2020, 15(8), 618-621.
[http://dx.doi.org/10.1038/s41565-020-0751-0] [PMID: 32728083]
[113]
Wang, Z.; Chen, X.; Lu, Y.; Chen, F.; Zhang, W. Clinical characteristics and therapeutic procedure for four cases with 2019 novel coronavirus pneumonia receiving combined Chinese and Western medicine treatment. Biosci. Trends, 2020, 14(1), 64-68.
[http://dx.doi.org/10.5582/bst.2020.01030] [PMID: 32037389]
[114]
Chang, Y.C.; Tung, Y.A.; Lee, K.H.; Chen, T.F.; Hsiao, Y.C.; Chang, H.C.; Hsieh, T.T.; Su, C.H.; Wang, S.S.; Yu, J.Y.; Shih, S.; Lin, Y.H.; Lin, Y.H.; Tu, Y.C.E.; Hsu, C.H.; Juan, H.F.; Tung, C.W.; Chen, C.Y. Potential therapeutic agents for COVID-19 based on the analysis of protease and RNA polymerase docking. Preprints, 2020.
[http://dx.doi.org/10.20944/preprints202002.0242.v2]
[115]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[116]
Lai, C.C.; Shih, T.P.; Ko, W.C.; Tang, H.J.; Hsueh, P.R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents, 2020, 55(3), 105924.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105924] [PMID: 32081636]
[117]
Chang, D.; Xu, H.; Rebaza, A.; Sharma, L.; Dela Cruz, C.S. Protecting health-care workers from subclinical coronavirus infection. Lancet Respir. Med., 2020, 8(3), e13.
[http://dx.doi.org/10.1016/S2213-2600(20)30066-7] [PMID: 32061333]
[118]
Momattin, H.; Al-Ali, A.Y.; Al-Tawfiq, J.A. A systematic review of therapeutic agents for the treatment of the Middle East respiratory syndrome coronavirus (MERS-CoV). Travel Med. Infect. Dis., 2019, 30, 9-18.
[http://dx.doi.org/10.1016/j.tmaid.2019.06.012] [PMID: 31252170]
[119]
Joachimiak, M.P. Zinc against COVID-19? Symptom surveillance and deficiency risk groups. PLoS Negl. Trop. Dis., 2021, 15(1), e0008895.
[http://dx.doi.org/10.1371/journal.pntd.0008895]
[120]
Li, G.; De Clercq, E. Therapeutic options for the 2019 novel coronavirus (2019-NCoV). Nat. Rev. Drug Discov., 2019, 19(3), 149-150.
[http://dx.doi.org/10.1038/d41573-020-00016-0]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy