Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Comprehensive Analysis of Epigenetic Associated Genes with Differential Gene Expression and Prognosis in Gastric Cancer

Author(s): Songlin An, Xinbao Li, Bing Li and Yan Li*

Volume 26, Issue 3, 2023

Published on: 29 July, 2022

Page: [527 - 538] Pages: 12

DOI: 10.2174/1386207325666220514142855

Price: $65

Abstract

Background: Gastric cancer (GC) is the most common malignancy of the human digestive system and represents the second leading cause of cancer-related deaths. As early GC is generally mild or asymptomatic and advanced GC is commonly diagnosed, early detection has a significant impact on clinical outcomes. This study aimed to identify epigenetic factors (EFs) as potential GC biomarkers.

Methods: We identified 3572 differential expressed genes (DEGs) from 436 GC tissues and 41 non-tumor adjacent samples through The Cancer Genome Atlas (TCGA) datasets. Among them, a total of 57 overlapped genes were identified as differentially expressed EFs (DE-EFs), including 25 up-regulated DE-EFs and 32 down-regulated DE-EFs.

Results: Then, Gene Ontology (GO) enrichment analysis revealed that the DE-EFs were mainly associated with histone modification, chromatin remodeling, histone binding, modificationdependent protein binding, etc. Meanwhile, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis results suggested that RNA degradation, thermogenesis, shigellosis, insulin resistance, AMPK, and FoxO signaling pathways play roles in the progression of GC. Subsequently, Cox regression and Kaplan-Meier analysis showed that higher expression levels of the three hub EFs, including BRCC3, USP12, and WAC, were associated with better patients’ OS. We also found that GC patients in the TCGA dataset with the earlier stage of TNM stage, invasion, depth of tumor, lymph node metastasis, distant metastasis, and younger age had significantly better GC patients’ OS.

Discussion: Furthermore, as the pathway enrichment analysis showed that BRCC3 participated in NOD-like receptors (NLRs)-mediated signaling and the homologous recombination (HR) pathways, strong and statistically significant positive relationships were found between BRCC3 with genes in NLRs signaling and HR pathways, including BRCA1, BRCA2, Rad51, BRE, TOPBP1, HSP90AA1, CASP1, NEK7, and SUGT1, respectively.

Conclusion: We found three hub EFs, namely BRCC3, USP12, and WAC, which were downregulated in GC tissues compared to normal tissues, associated with the overall survival of GC patients and could be used as potential biomarkers to predict prognosis in GC patients. The regulation of hub genes in GC may promote the exploration of the epigenetic mechanisms associated with tumorigenesis and provide potential targets for GC diagnosis and treatment.

Keywords: differentially expressed genes, survival, prognosis, carcinogenesis, BRCC3

Graphical Abstract

[1]
Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA Cancer J. Clin., 2016, 66(2), 115-132.
[http://dx.doi.org/10.3322/caac.21338] [PMID: 26808342]
[2]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mor-tality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[3]
Dicken, B.J.; Bigam, D.L.; Cass, C.; Mackey, J.R.; Joy, A.A.; Hamilton, S.M. Gastric adenocarcinoma: Review and considerations for fu-ture directions. Ann. Surg., 2005, 241(1), 27-39.
[http://dx.doi.org/10.1097/01.sla.0000149300.28588.23] [PMID: 15621988]
[4]
Lee, H.S.; Kim, W.H.; Kwak, Y.; Koh, J.; Bae, J.M.; Kim, K-M.; Chang, M.S.; Han, H.S.; Kim, J.M.; Kim, H.W.; Chang, H.K.; Choi, Y.H.; Park, J.Y.; Gu, M.J.; Lhee, M.J.; Kim, J.Y.; Kim, H.S.; Cho, M-Y. Molecular testing for gastrointestinal cancer. J. Pathol. Transl. Med., 2017, 51(2), 103-121.
[http://dx.doi.org/10.4132/jptm.2017.01.24] [PMID: 28219002]
[5]
Song, Z.; Wu, Y.; Yang, J.; Yang, D.; Fang, X. Progress in the treatment of advanced gastric cancer. Tumour Biol., 2017, 39(7), 1010428317714626.
[http://dx.doi.org/10.1177/1010428317714626] [PMID: 28671042]
[6]
Miyahara, R.; Niwa, Y.; Matsuura, T.; Maeda, O.; Ando, T.; Ohmiya, N.; Itoh, A.; Hirooka, Y.; Goto, H. Prevalence and prognosis of gas-tric cancer detected by screening in a large Japanese population: Data from a single institute over 30 years. J. Gastroenterol. Hepatol., 2007, 22(9), 1435-1442.
[http://dx.doi.org/10.1111/j.1440-1746.2007.04991.x] [PMID: 17573829]
[7]
Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev., 2002, 16(1), 6-21.
[http://dx.doi.org/10.1101/gad.947102] [PMID: 11782440]
[8]
Feinberg, A.P. Genome-scale approaches to the epigenetics of common human disease. Virchows Arch., 2010, 456(1), 13-21.
[http://dx.doi.org/10.1007/s00428-009-0847-2] [PMID: 19844740]
[9]
Jones, P. Out of Africa and into epigenetics: Discovering reprogramming drugs. Nat. Cell Biol., 2011, 13(1), 2.
[http://dx.doi.org/10.1038/ncb0111-2] [PMID: 21173799]
[10]
Baylin, S.B.; Jones, P.A. A decade of exploring the cancer epigenome - biological and translational implications. Nat. Rev. Cancer, 2011, 11(10), 726-734.
[http://dx.doi.org/10.1038/nrc3130] [PMID: 21941284]
[11]
Biswas, S.; Rao, C.M. Epigenetic tools (The Writers, The Readers and The Erasers) and their implications in cancer therapy. Eur. J. Pharmacol., 2018, 837, 8-24.
[http://dx.doi.org/10.1016/j.ejphar.2018.08.021] [PMID: 30125562]
[12]
Hao, X.; Luo, H.; Krawczyk, M.; Wei, W.; Wang, W.; Wang, J.; Flagg, K.; Hou, J.; Zhang, H.; Yi, S.; Jafari, M.; Lin, D.; Chung, C.; Caugh-ey, B.A.; Li, G.; Dhar, D.; Shi, W.; Zheng, L.; Hou, R.; Zhu, J.; Zhao, L.; Fu, X.; Zhang, E.; Zhang, C.; Zhu, J-K.; Karin, M.; Xu, R-H.; Zhang, K. DNA methylation markers for diagnosis and prognosis of common cancers. Proc. Natl. Acad. Sci. USA, 2017, 114(28), 7414-7419.
[http://dx.doi.org/10.1073/pnas.1703577114] [PMID: 28652331]
[13]
Hattori, N.; Ushijima, T. Compendium of aberrant DNA methylation and histone modifications in cancer. Biochem. Biophys. Res. Commun., 2014, 455(1-2), 3-9.
[http://dx.doi.org/10.1016/j.bbrc.2014.08.140] [PMID: 25194808]
[14]
Marks, P.; Rifkind, R.A.; Richon, V.M.; Breslow, R.; Miller, T.; Kelly, W.K. Histone deacetylases and cancer: Causes and therapies. Nat. Rev. Cancer, 2001, 1(3), 194-202.
[http://dx.doi.org/10.1038/35106079] [PMID: 11902574]
[15]
Tan, Y.; Zhang, S.; Zhu, H.; Chu, Y.; Zhou, H.; Liu, D.; Huo, J. Histone deacetylase 6 selective inhibitor ACY1215 inhibits cell prolifera-tion and enhances the chemotherapeutic effect of 5-fluorouracil in HCT116 cells. Ann. Transl. Med., 2019, 7(1), 2.
[http://dx.doi.org/10.21037/atm.2018.11.48] [PMID: 30788349]
[16]
Han, T-S.; Ban, H.S.; Hur, K.; Cho, H-S. The epigenetic regulation of HCC metastasis. Int. J. Mol. Sci., 2018, 19(12), E3978.
[http://dx.doi.org/10.3390/ijms19123978] [PMID: 30544763]
[17]
Dos Santos, P.W.D.S.; Machado, A.R.T.; De Grandis, R.A.; Ribeiro, D.L.; Tuttis, K.; Morselli, M.; Aissa, A.F.; Pellegrini, M.; Antunes, L.M.G. Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem. Toxicol., 2020, 136, 111047.
[http://dx.doi.org/10.1016/j.fct.2019.111047] [PMID: 31838189]
[18]
Hama, N.; Totoki, Y.; Miura, F.; Tatsuno, K.; Saito-Adachi, M.; Nakamura, H.; Arai, Y.; Hosoda, F.; Urushidate, T.; Ohashi, S.; Mukai, W.; Hiraoka, N.; Aburatani, H.; Ito, T.; Shibata, T. Epigenetic landscape influences the liver cancer genome architecture. Nat. Commun., 2018, 9(1), 1643.
[http://dx.doi.org/10.1038/s41467-018-03999-y] [PMID: 29691395]
[19]
Nishida, N.; Kudo, M. Alteration of epigenetic profile in human hepatocellular carcinoma and its clinical implications. Liver Cancer, 2014, 3(3-4), 417-427.
[http://dx.doi.org/10.1159/000343860] [PMID: 26280003]
[20]
Okugawa, Y.; Grady, W.M.; Goel, A. Epigenetic alterations in colorectal cancer: Emerging biomarkers. Gastroenterology, 2015, 149(5), 1204-1225.e12.
[http://dx.doi.org/10.1053/j.gastro.2015.07.011] [PMID: 26216839]
[21]
Teng, J-J.; Zhao, W-J.; Zhang, X-L.; Zhao, D-K.; Qiu, X-Y.; Chen, X-D.; Yang, L. Downregulation of promoter methylation gene PRDM5 contributes to the development of tumor proliferation and predicts poor prognosis in gastric cancer. J. Cancer, 2021, 12(22), 6921-6930.
[http://dx.doi.org/10.7150/jca.59998] [PMID: 34659579]
[22]
Motoo, I.; Nanjo, S.; Ando, T.; Yamashita, S.; Ushijima, T.; Yasuda, I. Methylation silencing of ULK2 via epithelial-mesenchymal transi-tion causes transformation to poorly differentiated gastric cancers. Gastric Cancer, 2021.
[http://dx.doi.org/10.1007/s10120-021-01250-0] [PMID: 34554345]
[23]
Jenuwein, T.; Allis, C.D. Translating the histone code. Science, 2001, 293(5532), 1074-1080.
[http://dx.doi.org/10.1126/science.1063127] [PMID: 11498575]
[24]
Salgado, E.; Bian, X.; Feng, A.; Shim, H.; Liang, Z. HDAC9 overexpression confers invasive and angiogenic potential to triple negative breast cancer cells via modulating microRNA-206. Biochem. Biophys. Res. Commun., 2018, 503(2), 1087-1091.
[http://dx.doi.org/10.1016/j.bbrc.2018.06.120] [PMID: 29936177]
[25]
Au, S.L-K.; Wong, C.C-L.; Lee, J.M-F.; Wong, C-M.; Ng, I.O-L. EZH2-mediated H3K27me3 is involved in epigenetic repression of delet-ed in liver cancer 1 in human cancers. PLoS One, 2013, 8(6), e68226.
[http://dx.doi.org/10.1371/journal.pone.0068226] [PMID: 23826380]
[26]
Tian, L.; Fang, Y.X.; Xue, J.L.; Chen, J.Z. Four microRNAs promote prostate cell proliferation with regulation of PTEN and its down-stream signals in vitro. PLoS One, 2013, 8(9), e75885.
[http://dx.doi.org/10.1371/journal.pone.0075885] [PMID: 24098737]
[27]
Guo, P.; Chen, W.; Li, H.; Li, M.; Li, L. The histone acetylation modifications of breast cancer and their therapeutic implications. Pathol. Oncol. Res., 2018, 24(4), 807-813.
[http://dx.doi.org/10.1007/s12253-018-0433-5] [PMID: 29948617]
[28]
Nowacka-Zawisza, M.; Wiśnik, E. DNA methylation and histone modifications as epigenetic regulation in prostate cancer. (Review). Oncol. Rep., 2017, 38(5), 2587-2596.
[http://dx.doi.org/10.3892/or.2017.5972] [PMID: 29048620]
[29]
Tomczak, K.; Czerwińska, P.; Wiznerowicz, M. The Cancer Genome Atlas (TCGA): An immeasurable source of knowledge. Contemp. Oncol. (Pozn.), 2015, 19(1A), A68-A77.
[http://dx.doi.org/10.5114/wo.2014.47136] [PMID: 25691825]
[30]
Medvedeva, Y.A.; Lennartsson, A.; Ehsani, R.; Kulakovskiy, I.V.; Vorontsov, I.E.; Panahandeh, P.; Khimulya, G.; Kasukawa, T.; Drab-løs, F. EpiFactors: A comprehensive database of human epigenetic factors and complexes. Database (Oxford), 2015, 2015, bav067.
[http://dx.doi.org/10.1093/database/bav067] [PMID: 26153137]
[31]
Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7), e47.
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[32]
Ito, K.; Murphy, D. Application of ggplot2 to pharmacometric graphics. CPT Pharmacometrics Syst. Pharmacol., 2013, 2, e79.
[http://dx.doi.org/10.1038/psp.2013.56] [PMID: 24132163]
[33]
Chen, H.; Boutros, P.C. VennDiagram: A package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics, 2011, 12, 35.
[http://dx.doi.org/10.1186/1471-2105-12-35] [PMID: 21269502]
[34]
Yu, G.; Wang, L-G.; Han, Y.; He, Q-Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[35]
Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 2000, 28(1), 27-30.
[http://dx.doi.org/10.1093/nar/28.1.27] [PMID: 10592173]
[36]
Walter, W.; Sánchez-Cabo, F.; Ricote, M. GOplot: An R package for visually combining expression data with functional analysis. Bioinformatics, 2015, 31(17), 2912-2914.
[http://dx.doi.org/10.1093/bioinformatics/btv300] [PMID: 25964631]
[37]
Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; Mering, C.V. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 2019, 47(D1), D607-D613.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[38]
Chatterjee, A.; Rodger, E.J.; Eccles, M.R. Epigenetic drivers of tumourigenesis and cancer metastasis. Semin. Cancer Biol., 2018, 51, 149-159.
[http://dx.doi.org/10.1016/j.semcancer.2017.08.004] [PMID: 28807546]
[39]
Hull, E.E.; Montgomery, M.R.; Leyva, K.J. Epigenetic regulation of the biosynthesis & enzymatic modification of heparan sulfate proteo-glycans: Implications for tumorigenesis and cancer biomarkers. Int. J. Mol. Sci., 2017, 18(7), E1361.
[http://dx.doi.org/10.3390/ijms18071361] [PMID: 28672878]
[40]
Liang, Y.; Xu, P.; Zou, Q.; Luo, H.; Yu, W. An epigenetic perspective on tumorigenesis: Loss of cell identity, enhancer switching, and NamiRNA network. Semin. Cancer Biol., 2019, 57, 1-9.
[http://dx.doi.org/10.1016/j.semcancer.2018.09.001] [PMID: 30213688]
[41]
McEvoy, J.D.; Dyer, M.A. Genetic and epigenetic discoveries in human retinoblastoma. Crit. Rev. Oncog., 2015, 20(3-4), 217-225.
[http://dx.doi.org/10.1615/CritRevOncog.2015013711] [PMID: 26349417]
[42]
Boudreau, H.E.; Broustas, C.G.; Gokhale, P.C.; Kumar, D.; Mewani, R.R.; Rone, J.D.; Haddad, B.R.; Kasid, U. Expression of BRCC3, a novel cell cycle regulated molecule, is associated with increased phospho-ERK and cell proliferation. Int. J. Mol. Med., 2007, 19(1), 29-39.
[http://dx.doi.org/10.3892/ijmm.19.1.29] [PMID: 17143545]
[43]
Chai, K.M.; Wang, C-Y.; Liaw, H-J.; Fang, K-M.; Yang, C-S.; Tzeng, S-F. Downregulation of BRCA1-BRCA2-containing complex subunit 3 sensitizes glioma cells to temozolomide. Oncotarget, 2014, 5(21), 10901-10915.
[http://dx.doi.org/10.18632/oncotarget.2543] [PMID: 25337721]
[44]
Huang, D.; Nagata, Y.; Grossmann, V.; Radivoyevitch, T.; Okuno, Y.; Nagae, G.; Hosono, N.; Schnittger, S.; Sanada, M.; Przychodzen, B.; Kon, A.; Polprasert, C.; Shen, W.; Clemente, M.J.; Phillips, J.G.; Alpermann, T.; Yoshida, K.; Nadarajah, N.; Sekeres, M.A.; Oakley, K.; Nguyen, N.; Shiraishi, Y.; Shiozawa, Y.; Chiba, K.; Tanaka, H.; Koeffler, H.P.; Klein, H-U.; Dugas, M.; Aburatani, H.; Miyano, S.; Haferlach, C.; Kern, W.; Haferlach, T.; Du, Y.; Ogawa, S.; Makishima, H. BRCC3 mutations in myeloid neoplasms. Haematologica, 2015, 100(8), 1051-1057.
[PMID: 26001790]
[45]
Tu, Z.; Xu, B.; Qu, C.; Tao, Y.; Chen, C.; Hua, W.; Feng, G.; Chang, H.; Liu, Z.; Li, G.; Jiang, C.; Yi, W.; Zeng, M.; Xia, Y. BRCC3 acts as a prognostic marker in nasopharyngeal carcinoma patients treated with radiotherapy and mediates radiation resistance in vitro. Radiat. Oncol., 2015, 10, 123.
[http://dx.doi.org/10.1186/s13014-015-0427-3] [PMID: 26024915]
[46]
Liu, L.; Zeng, Z.; Yi, J.; Zuo, L.; Lv, J.; Yuan, J.; Lin, Z.; Luo, R.; Feng, X. Expression and clinical significance of transcription factor 4 (TCF4) in epithelial ovarian cancer. Cancer Biomark., 2019, 24(2), 213-221.
[http://dx.doi.org/10.3233/CBM-181849] [PMID: 30614797]
[47]
Liu, P.; Lu, Z.; Liu, L.; Li, R.; Liang, Z.; Shen, M.; Xu, H.; Ren, D.; Ji, M.; Yuan, S.; Shang, D.; Zhang, Y.; Liu, H.; Tu, Z. NOD-like recep-tor signaling in inflammation-associated cancers: From functions to targeted therapies. Phytomedicine, 2019, 64, 152925.
[http://dx.doi.org/10.1016/j.phymed.2019.152925] [PMID: 31465982]
[48]
Saxena, S.; Jha, S. Role of NOD- like Receptors in Glioma Angiogenesis: Insights into future therapeutic interventions. Cytokine Growth Factor Rev., 2017, 34, 15-26.
[http://dx.doi.org/10.1016/j.cytogfr.2017.02.001] [PMID: 28233643]
[49]
Hoppe, M.M.; Sundar, R.; Tan, D.S.P.; Jeyasekharan, A.D. Biomarkers for homologous recombination deficiency in cancer. J. Natl. Cancer Inst., 2018, 110(7), 704-713.
[http://dx.doi.org/10.1093/jnci/djy085] [PMID: 29788099]
[50]
Prakash, R.; Zhang, Y.; Feng, W.; Jasin, M. Homologous recombination and human health: The roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb. Perspect. Biol., 2015, 7(4), a016600.
[http://dx.doi.org/10.1101/cshperspect.a016600] [PMID: 25833843]
[51]
Riaz, N.; Blecua, P.; Lim, R.S.; Shen, R.; Higginson, D.S.; Weinhold, N.; Norton, L.; Weigelt, B.; Powell, S.N.; Reis-Filho, J.S. Pan-cancer analysis of bi-allelic alterations in homologous recombination DNA repair genes. Nat. Commun., 2017, 8(1), 857.
[http://dx.doi.org/10.1038/s41467-017-00921-w] [PMID: 29021619]
[52]
King, M-C.; Marks, J.H.; Mandell, J.B. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science, 2003, 302(5645), 643-646.
[http://dx.doi.org/10.1126/science.1088759] [PMID: 14576434]
[53]
Morrical, S.W. DNA-pairing and annealing processes in homologous recombination and homology-directed repair. Cold Spring Harb. Perspect. Biol., 2015, 7(2), a016444.
[http://dx.doi.org/10.1101/cshperspect.a016444] [PMID: 25646379]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy