Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

A Short Review on Glucogallin and its Pharmacological Activities

Author(s): Anam Najib Khan, Rajveer Singh, Arka Bhattacharya, Rudra Chakravarti, Syamal Roy, Velayutham Ravichandiran and Dipanjan Ghosh*

Volume 22, Issue 22, 2022

Published on: 10 August, 2022

Page: [2820 - 2830] Pages: 11

DOI: 10.2174/1389557522666220513150907

Price: $65

conference banner
Abstract

Plant derived natural products have multifaceted beneficial roles in human pathophysiology. Plant secondary metabolites have been used as an adjunct medicine for a long time and β- Glucogallin is one such pharmaceutically important plant derived natural product. Β-glucogallin (1-O-galloyl-β-d-glucopyranose), a plant-derived polyphenolic ester, is regarded as the primary metabolite in the biosynthesis of hydrolyzable tannins. It is majorly found in amla, pomegranate, strawberry etc. Owing to its free radical scavenging properties, β-glucogallin (BG) is believed to protect against several diseases like diabetes and related complications like retinopathy, glaucoma, inflammation, hepatic damage, skin damage from UV, etc. Several semisynthetic derivatives of β-Glucogallin are being developed, which have better pharmacokinetic and pharmacodynamic parameters than β-glucogallin. Studies have shown the prophylactic role of β-Glucogallin in developing defence mechanisms against the advent and progression of certain diseases. β- glucogallin formulations have shown a positive effect as a neutraceutical. In this manuscript, we have discussed β-glucogallin, its natural sources, biosynthetic pathways, its semi-synthetic derivatives, and the plethora of its pharmacological activities like antioxidant-antiinflammatory, antidiabetic, cataract-preventing, anti glaucoma, and UV protectant. We have also highlighted various biological pathways, which are modulated by β-glucogallin. The manuscript will convey the importance of β-glucogallin as a compound of natural origin, having multifaceted health benefits.

Keywords: β-glucogallin, antioxidant, antidiabetic, neutraceutical, phenolic ester, UV protectant.

Graphical Abstract

[1]
Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouységu, L. Plant polyphenols: Chemical properties, biological activities, and synthesis. Angew. Chem. Int. Ed. Engl., 2011, 50(3), 586-621.
[http://dx.doi.org/10.1002/anie.201000044] [PMID: 21226137]
[2]
Akiyama, H.; Fujii, K.; Yamasaki, O.; Oono, T.; Iwatsuki, K. Antibacterial action of several tannins against Staphylococcus aureus. J. Antimicrob. Chemother., 2001, 48(4), 487-491.
[http://dx.doi.org/10.1093/jac/48.4.487] [PMID: 11581226]
[3]
Reddy, M.K.; Gupta, S.K.; Jacob, M.R.; Khan, S.I.; Ferreira, D. Antioxidant, antimalarial and antimicrobial activities of tannin-rich fractions, ellagitannins and phenolic acids from Punica granatum L. Planta Med., 2007, 73(5), 461-467.
[http://dx.doi.org/10.1055/s-2007-967167] [PMID: 17566148]
[4]
NCBI. PubChem Compound Summary for CID 124021, beta-Glucogallin; , 2021. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/beta-Glucogallin
[5]
Haslam, E. Practical polyphenolics: From structure to molecular recognition and physiological action. J. Nat. Prod., 1998, 61(11), 1454-1455.
[6]
Ribeiro, S.M.; Schieber, A. Bioactive compounds in mango (Mangifera indica L.). In: Bioactive Foods in Promoting Health; Watson, R.R.; Preedy, V.R., Eds.; Academic Press: Cambridge, Massachusetts, 2010; pp. 507-523.
[7]
Gross, G.G. Synthesis of β-glucogallin from UDP-glucose and gallic acid by an enzyme preparation from oak leaves. FEBS Lett., 1982, 148(1), 67-70.
[http://dx.doi.org/10.1016/0014-5793(82)81244-1]
[8]
Puppala, M.; Ponder, J.; Suryanarayana, P.; Reddy, G.B.; Petrash, J.M.; LaBarbera, D.V. The isolation and characterization of β-glucogallin as a novel aldose reductase inhibitor from Emblica officinalis. PLoS One, 2012, 7(4), e31399.
[http://dx.doi.org/10.1371/journal.pone.0031399] [PMID: 22485126]
[9]
Majeed, M.; Bhat, B.; Anand, T.S. Inhibition of UV induced adversaries by β-glucogallin from Amla (Emblica officinalis Gaertn.) fruits. Indian J. Nat. Prod. Resour., 2010, 1(4), 462-465.
[10]
Schulenburg, K.; Feller, A.; Hoffmann, T.; Schecker, J.H.; Martens, S.; Schwab, W. Formation of β-glucogallin, the precursor of ellagic acid in strawberry and raspberry. J. Exp. Bot., 2016, 67(8), 2299-2308.
[http://dx.doi.org/10.1093/jxb/erw036] [PMID: 26884604]
[11]
Macáková, K.; Kolečkář, V.; Cahlíková, L.; Chlebek, J.; Hošt’álková, A.; Kuča, K.; Jun, D.; Opletal, L. Tannins and their influence on health. In: Recent Advances in Medicinal Chemistry;; Atta-ur-Rahman, ; Choudhary, M.I.; Perry, G., Eds.; Bentham Science Publishers: Sharjah, UAE, 2014; pp. 159-208.
[12]
Ye, Q.; Zhang, S.; Qiu, N.; Liu, L.; Wang, W.; Xie, Q.; Chang, Q.; Chen, Q. Identification and characterization of glucosyltransferase that forms 1-galloyl-β-d-glucogallin in Canarium album L., a functional fruit rich in hydrolysable tannins. Molecules, 2021, 26(15), 4650.
[http://dx.doi.org/10.3390/molecules26154650] [PMID: 34361803]
[13]
Li, L.; Chang, K.C.; Zhou, Y.; Shieh, B.; Ponder, J.; Abraham, A.D.; Ali, H.; Snow, A.; Petrash, J.M.; LaBarbera, D.V. Design of an amide N-glycoside derivative of β-glucogallin: A stable, potent, and specific inhibitor of aldose reductase. J. Med. Chem., 2014, 57(1), 71-77.
[http://dx.doi.org/10.1021/jm401311d] [PMID: 24341381]
[14]
Chang, K.C.; Laffin, B.; Ponder, J.; Enzsöly, A.; Németh, J.; LaBarbera, D.V.; Petrash, J.M. Beta-glucogallin reduces the expression of lipopolysaccharide-induced inflammatory markers by inhibition of aldose reductase in murine macrophages and ocular tissues. Chem. Biol. Interact., 2013, 202(1-3), 283-287.
[http://dx.doi.org/10.1016/j.cbi.2012.12.001] [PMID: 23247009]
[15]
Györgydeák, Z.; Hadady, Z.; Felföldi, N.; Krakomperger, A.; Nagy, V.; Tóth, M.; Brunyánszki, A.; Docsa, T.; Gergely, P.; Somsák, L. Synthesis of N-(β-D-glucopyranosyl)- and N-(2-acetamido-2-deoxy-β-D-glucopyranosyl) amides as inhibitors of glycogen phosphorylase. Bioorg. Med. Chem., 2004, 12(18), 4861-4870.
[http://dx.doi.org/10.1016/j.bmc.2004.07.013] [PMID: 15336265]
[16]
Bonandi, E.; Christodoulou, M.S.; Fumagalli, G.; Perdicchia, D.; Rastelli, G.; Passarella, D. The 1,2,3-triazole ring as a bioisostere in medicinal chemistry. Drug Discov. Today, 2017, 22(10), 1572-1581.
[http://dx.doi.org/10.1016/j.drudis.2017.05.014] [PMID: 28676407]
[17]
Koenigs, W.; Knorr, E. On some derivatives of glucose and galactose. Ber. Dtsch. Chem. Ges., 1901, 34(1), 957-981.
[http://dx.doi.org/10.1002/cber.190103401162]
[18]
Reddy, M.R.; Aidhen, I.S.; Shruthi, K.; Reddy, G.B. Synthesis of C‐analogues of β‐glucogallin and aldose reductase inhibition studies. Eur. J. Org. Chem., 2017, (48), 7283-7294.
[http://dx.doi.org/10.1002/ejoc.201701468]
[19]
Satyamurthi, N.; Singh, J.; Aidhen, I.S. Synthesis and application of N-methoxy-N-methyl-2-phenylsulfonylacetamide as a two-carbon homologating agent. Synthesis, 2000, 2000(03), 375-382.
[http://dx.doi.org/10.1055/s-2000-6337]
[20]
Balasubramaniam, S.; Aidhen, I.S. Synthetic equivalents based on weinreb amide functionality for convenient access to monoprotected α-diketones. Synlett, 2007, (06), 0959-0963.
[http://dx.doi.org/10.1002/chin.200732123]
[21]
Tiwari, P.K.; Sivaraman, B.; Aidhen, I.S. α, α‐Diarylethylene glycols as valuable precursor for synthesis of 1, 1‐diarylethenes and α, α‐diaryl acetaldehydes. Eur. J. Org. Chem., 2017, (25), 3594-3605.
[http://dx.doi.org/10.1002/ejoc.201700467]
[22]
Tiwari, P.K.; Aidhen, I.S. Weinreb amide based building block for convenient access to vinyl ketones. Synlett, 2013, 24(14), 1777-1780.
[23]
Muir, R.M.; Ibáñez, A.M.; Uratsu, S.L.; Ingham, E.S.; Leslie, C.A.; McGranahan, G.H.; Batra, N.; Goyal, S.; Joseph, J.; Jemmis, E.D.; Dandekar, A.M. Mechanism of gallic acid biosynthesis in bacteria (Escherichia coli) and walnut (Juglans regia). Plant Mol. Biol., 2011, 75(6), 555-565.
[http://dx.doi.org/10.1007/s11103-011-9739-3] [PMID: 21279669]
[24]
Führing, J.I.; Cramer, J.T.; Schneider, J.; Baruch, P.; Gerardy-Schahn, R.; Fedorov, R. A quaternary mechanism enables the complex biological functions of octameric human UDP-glucose pyrophosphorylase, a key enzyme in cell metabolism. Sci. Rep., 2015, 5(1), 9618.
[http://dx.doi.org/10.1038/srep09618] [PMID: 25860585]
[25]
Cao, T.; Wang, J.; Wu, Y.; Wang, L.; Zhang, H. Antiglaucoma potential of β-glucogallin is mediated by modulating mitochondrial responses in experimentally induced glaucoma. Neuroimmunomodulation, 2021, 27(3), 1-10.
[http://dx.doi.org/10.1159/000512992] [PMID: 33571990]
[26]
Ma, Y.; Liu, F.; Xu, Y. Protective effect of β-glucogallin on damaged cataract against methylglyoxal induced oxidative stress in cultured lens epithelial cells. Med. Sci. Monit., 2019, 25, 9310-9318.
[http://dx.doi.org/10.12659/MSM.917869] [PMID: 31811113]
[27]
Ma, W.; Zhao, L.; Fontainhas, A.M.; Fariss, R.N.; Wong, W.T. Microglia in the mouse retina alter the structure and function of retinal pigmented epithelial cells: A potential cellular interaction relevant to AMD. PLoS One, 2009, 4(11), e7945.
[http://dx.doi.org/10.1371/journal.pone.0007945] [PMID: 19936204]
[28]
Xu, Y.F.; Fu, L.L.; Jiang, C.H.; Qin, Y.W.; Ni, Y.Q.; Fan, J.W. Naloxone inhibition of lipopolysaccharide-induced activation of retinal microglia is partly mediated via the p38 mitogen activated protein kinase signalling pathway. J. Int. Med. Res., 2012, 40(4), 1438-1448.
[http://dx.doi.org/10.1177/147323001204000422] [PMID: 22971495]
[29]
Medana, I.M.; Chan-Ling, T.; Hunt, N.H. Redistribution and degeneration of retinal astrocytes in experimental murine cerebral malaria: Relationship to disruption of the blood-retinal barrier. Glia, 1996, 16(1), 51-64.
[http://dx.doi.org/10.1002/(SICI)1098-1136(199601)16:1<51:AID-GLIA6>3.0.CO;2-E] [PMID: 8787773]
[30]
Bousquet, E.; Zhao, M.; Ly, A.; Leroux Les Jardins, G.; Goldenberg, B.; Naud, M.C.; Jonet, L.; Besson-Lescure, B.; Jaisser, F.; Farman, N.; De Kozak, Y.; Behar-Cohen, F. The aldosterone-mineralocorticoid receptor pathway exerts anti-inflammatory effects in endotoxin-induced uveitis. PLoS One, 2012, 7(11), e49036.
[http://dx.doi.org/10.1371/journal.pone.0049036] [PMID: 23152847]
[31]
Nelimarkka, L.O.; Nikkari, S.T.; Ravanti, L.S.; Kähäri, V.M.; Järveläinen, H.T. Collagenase-1, stromelysin-1 and 92 kDa gelatinase are associated with tumor necrosis factor-alpha induced morphological change of human endothelial cells in vitro. Matrix Biol., 1998, 17(4), 293-304.
[http://dx.doi.org/10.1016/S0945-053X(98)90082-8] [PMID: 9749945]
[32]
Gong, Y.; Hart, E.; Shchurin, A.; Hoover-Plow, J. Inflammatory macrophage migration requires MMP-9 activation by plasminogen in mice. J. Clin. Invest., 2008, 118(9), 3012-3024.
[http://dx.doi.org/10.1172/JCI32750] [PMID: 18677407]
[33]
Ammar, D.A.; Goswami, D.G.; Kant, R.; Fritz, K.S.; LaBarbera, D.V.; Agarwal, R. Beta glucogallin, a plant-derived antioxidant and anti-inflammatory agent, alleviates corneal injury from chloropicrin exposure. Invest. Ophthalmol. Vis. Sci., 2017, 58(8), 1177.
[34]
Deori, C.; Das, S.; Bordoloi, S.K. Study of hepatoprotective activity of Emblica officinalis (AMLA) in Albino rats. J. Evid. Based Med. Healthc., 2017, 4(54), 3298-3301.
[http://dx.doi.org/10.18410/jebmh/2017/655]
[35]
Lee, K.H. Discovery and development of natural product-derived chemotherapeutic agents based on a medicinal chemistry approach. J. Nat. Prod., 2010, 73(3), 500-516.
[http://dx.doi.org/10.1021/np900821e] [PMID: 20187635]
[36]
Huang, M.T.; Lee, C.Y.; Ho, C.T. Phenolic compounds in food and their effects on health. In: ACS Symposium Series; American Chemical Society, 1992.
[http://dx.doi.org/10.1021/bk-1992-0507]
[37]
Gross, G.G.; Hemingway, R.W.; Yoshida, T. Plant Polyphenols 2: Chemistry, Biology, Pharmacology, Ecology; Springer Science & Business Media: Berlin, Germany, 2012.
[38]
Chakravarti, R.; Singh, R.; Ghosh, A.; Dey, D.; Sharma, P.; Velayutham, R.; Roy, S.; Ghosh, D. A review on potential of natural products in the management of COVID-19. RSC Advances, 2021, 11(27), 16711-16735.
[http://dx.doi.org/10.1039/D1RA00644D]
[39]
Singh, R.; Gautam, A.; Chandel, S.; Ghosh, A.; Dey, D.; Roy, S.; Ravichandiran, V.; Ghosh, D. Protease inhibitory effect of natural polyphenolic compounds on SARS-CoV-2: An in silico study. Molecules, 2020, 25(20), 4604.
[http://dx.doi.org/10.3390/molecules25204604] [PMID: 33050360]
[40]
Kim, H.G.; Kim, K.S.; Kim, M.; Shin, S.H.; Lee, Y.G.; Bang, M.H.; Lee, D.G.; Baek, N.I. β-Glucogallin isolated from Fusidium coccineum and its enhancement of skin barrier effects. Appl. Biol. Chem., 2020, 63(1), 1-7.
[http://dx.doi.org/10.1186/s13765-020-00563-5]
[41]
Brewer, M.S. Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications. Compr. Rev. Food Sci. Food Saf., 2011, 10(4), 221-247.
[http://dx.doi.org/10.1111/j.1541-4337.2011.00156.x]
[42]
Xu, D.; Hu, M.J.; Wang, Y.Q.; Cui, Y.L. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules, 2019, 24(6), 1123.
[http://dx.doi.org/10.3390/molecules24061123] [PMID: 30901869]
[43]
Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M.T.; Wang, S.; Liu, H.; Yin, Y. Quercetin, inflammation and immunity. Nutrients, 2016, 8(3), 167.
[http://dx.doi.org/10.3390/nu8030167] [PMID: 26999194]
[44]
Rishitha, N.; Muthuraman, A. Therapeutic evaluation of solid lipid nanoparticle of quercetin in pentylenetetrazole induced cognitive impairment of zebrafish. Life Sci., 2018, 199, 80-87.
[http://dx.doi.org/10.1016/j.lfs.2018.03.010] [PMID: 29522770]
[45]
Wu, W.; Li, R.; Li, X.; He, J.; Jiang, S.; Liu, S.; Yang, J. Quercetin as an antiviral agent inhibits Influenza A Virus (IAV) entry. Viruses, 2015, 8(1), 6.
[http://dx.doi.org/10.3390/v8010006] [PMID: 26712783]
[46]
Nanjan, M.J.; Betz, J. Resveratrol for the management of diabetes and its downstream pathologies. Eur. Endocrinol., 2014, 10(1), 31-35.
[http://dx.doi.org/10.17925/EE.2014.10.01.31] [PMID: 29872461]
[47]
Burns, J.; Yokota, T.; Ashihara, H.; Lean, M.E.; Crozier, A. Plant foods and herbal sources of resveratrol. J. Agric. Food Chem., 2002, 50(11), 3337-3340.
[http://dx.doi.org/10.1021/jf0112973] [PMID: 12010007]
[48]
Berman, A.Y.; Motechin, R.A.; Wiesenfeld, M.Y.; Holz, M.K. The therapeutic potential of resveratrol: A review of clinical trials. NPJ Precis. Oncol., 2017, 1(1), 1-9.
[http://dx.doi.org/10.1038/s41698-017-0038-6] [PMID: 28989978]
[49]
Hwang, J.T.; Kwon, D.Y.; Park, O.J.; Kim, M.S. Resveratrol protects ROS-induced cell death by activating AMPK in H9c2 cardiac muscle cells. Genes Nutr., 2008, 2(4), 323-326.
[http://dx.doi.org/10.1007/s12263-007-0069-7] [PMID: 18850225]
[50]
Ko, J.H.; Sethi, G.; Um, J.Y.; Shanmugam, M.K.; Arfuso, F.; Kumar, A.P.; Bishayee, A.; Ahn, K.S. The role of resveratrol in cancer therapy. Int. J. Mol. Sci., 2017, 18(12), 2589.
[http://dx.doi.org/10.3390/ijms18122589] [PMID: 29194365]
[51]
Rege, S.D.; Geetha, T.; Griffin, G.D.; Broderick, T.L.; Babu, J.R. Neuroprotective effects of resveratrol in Alzheimer disease pathology. Front. Aging Neurosci., 2014, 6, 218.
[http://dx.doi.org/10.3389/fnagi.2014.00218] [PMID: 25309423]
[52]
Patel, K.; Patel, D.K. The beneficial role of rutin, a naturally occurring flavonoid in health promotion and disease prevention: A systematic review and update.Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases; Watson, R.R.; Preedy, V.R., Eds.; Academic Press: Cambridge, Massachusetts, 2019, pp. 457-479.
[http://dx.doi.org/10.1016/B978-0-12-813820-5.00026-X]
[53]
Enogieru, A.B.; Haylett, W.; Hiss, D.C.; Bardien, S.; Ekpo, O.E. Rutin as a potent antioxidant: Implications for neurodegenerative disorders. Oxid. Med. Cell. Longev., 2018, 2018, 6241017.
[http://dx.doi.org/10.1155/2018/6241017] [PMID: 30050657]
[54]
Ghorbani, A. Mechanisms of antidiabetic effects of flavonoid rutin. Biomed. Pharmacother., 2017, 96, 305-312.
[http://dx.doi.org/10.1016/j.biopha.2017.10.001] [PMID: 29017142]
[55]
Ganeshpurkar, A.; Saluja, A.K. The pharmacological potential of rutin. Saudi Pharm. J., 2017, 25(2), 149-164.
[http://dx.doi.org/10.1016/j.jsps.2016.04.025] [PMID: 28344465]
[56]
Khan, F.A.; Maalik, A.; Murtaza, G. Inhibitory mechanism against oxidative stress of caffeic acid. J. Food Drug Anal., 2016, 24(4), 695-702.
[http://dx.doi.org/10.1016/j.jfda.2016.05.003] [PMID: 28911606]
[57]
Jeong, C.H.; Kwak, J.H.; Kim, J.H.; Choi, G.N.; Kim, D.O.; Heo, H.J. Neuronal cell protective and antioxidant effects of phenolics obtained from Zanthoxylum piperitum leaf using in vitro model system. Food Chem., 2011, 125(2), 417-422.
[http://dx.doi.org/10.1016/j.foodchem.2010.09.022] [PMID: 30634246]
[58]
Rajendra Prasad, N.; Karthikeyan, A.; Karthikeyan, S.; Reddy, B.V. Inhibitory effect of caffeic acid on cancer cell proliferation by oxidative mechanism in human HT-1080 fibrosarcoma cell line. Mol. Cell. Biochem., 2011, 349(1-2), 11-19.
[http://dx.doi.org/10.1007/s11010-010-0655-7] [PMID: 21116690]
[59]
Zielińska, D.; Zieliński, H.; Laparra-Llopis, J.M.; Szawara-Nowak, D.; Honke, J.; Giménez-Bastida, J.A. Caffeic acid modulates processes associated with intestinal inflammation. Nutrients, 2021, 13(2), 554.
[http://dx.doi.org/10.3390/nu13020554] [PMID: 33567596]
[60]
Surai, P.F. Silymarin as a natural antioxidant: An overview of the current evidence and perspectives. Antioxidants, 2015, 4(1), 204-247.
[http://dx.doi.org/10.3390/antiox4010204] [PMID: 26785346]
[61]
Esmaeil, N.; Anaraki, S.B.; Gharagozloo, M.; Moayedi, B. Silymarin impacts on immune system as an immunomodulator: One key for many locks. Int. Immunopharmacol., 2017, 50, 194-201.
[http://dx.doi.org/10.1016/j.intimp.2017.06.030] [PMID: 28672215]
[62]
Salehi, B.; Fokou, P.V.T.; Sharifi-Rad, M.; Zucca, P.; Pezzani, R.; Martins, N.; Sharifi-Rad, J. The therapeutic potential of naringenin: A review of clinical trials. Pharmaceuticals (Basel), 2019, 12(1), 11.
[http://dx.doi.org/10.3390/ph12010011] [PMID: 30634637]
[63]
Rashmi, R.; Bojan Magesh, S.; Mohanram Ramkumar, K.; Suryanarayanan, S. Venkata SubbaRao, M. Antioxidant potential of naringenin helps to protect liver tissue from streptozotocin-induced damage. Rep. Biochem. Mol. Biol., 2018, 7(1), 76-84.
[PMID: 30324121]
[64]
Jayaraman, J.; Jesudoss, V.A.; Menon, V.P.; Namasivayam, N. Anti-inflammatory role of naringenin in rats with ethanol induced liver injury. Toxicol. Mech. Methods, 2012, 22(7), 568-576.
[http://dx.doi.org/10.3109/15376516.2012.707255] [PMID: 22900548]
[65]
Majeed, M.; Bhat, B.; Jadhav, A.N.; Srivastava, J.S.; Nagabhushanam, K. Ascorbic acid and tannins from Emblica officinalis Gaertn. Fruits--a revisit. J. Agric. Food Chem., 2009, 57(1), 220-225.
[http://dx.doi.org/10.1021/jf802900b] [PMID: 19063633]
[66]
Majeed, M.; Majeed, S.; Nagabhushanam, K.; Mundkur, L.; Neupane, P.; Shah, K. Clinical study to evaluate the efficacy and safety of a hair serum product in healthy adult male and female volunteers with hair fall. Clin. Cosmet. Investig. Dermatol., 2020, 13, 691-700.
[http://dx.doi.org/10.2147/CCID.S271013] [PMID: 33061509]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy