Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Perspective

Hypoxia-Inducible Factors-Based Single Nucleotide Polymorphism in Breast Cancer with More Cancer Susceptibility

Author(s): Suman Kumar Ray and Sukhes Mukherjee*

Volume 23, Issue 4, 2023

Published on: 07 July, 2022

Page: [285 - 288] Pages: 4

DOI: 10.2174/1566524022666220513124853

Price: $65

Abstract

Hypoxia-inducible factors (HIFs) are a collection of transcriptional factors that engage in the regulation of oxygen homeostasis. They are hypoxia-responsive stress factors whose expression is linked to tumor growth and angiogenesis. HIF is a crucial player in the progression of breast cancer. Patients with high levels of hypoxia-inducible HIFs in their primary tumor biopsies had a higher chance of metastasis, the leading cause of breast cancer-related death. HIF polymorphisms have been shown in several epidemiological studies to influence breast cancer susceptibility. In the oxygendependent degradation domain, several short nucleotide polymorphisms (SNPs) of the HIF gene have been connected with higher HIF activity. To find SNP that make up the genetic diversity that underpins the phenotypic difference found between individuals in their susceptibility to cancer and the course of their disease, researchers used a variety of potential pathway-based approaches.

Keywords: Hypoxia-inducible factors, single nucleotide polymorphisms, breast cancer, SNPs, HIF-1, genome.

Next »
[1]
Ray SK, Mukherjee S. Epigenetic Reprogramming and Landscape of Transcriptomic Interactions: Impending Therapeutic Interference of Triple-Negative Breast Cancer in Molecular Medicine. Curr Mol Med 2021; 22(10): 831-50.
[http://dx.doi.org/10.2174/1566524021666211206092437] [PMID: 34872474]
[2]
Ray SK, Mukherjee S. Nutrigenomics and Life Style Facet- A Modulatory Molecular Evidence in Progression of Breast and Colon Cancer with Emerging Importance. Curr Mol Med 2021; 22(4): 336-48.
[http://dx.doi.org/10.2174/1566524021666210331151323] [PMID: 33797366]
[3]
Mroz EA, Rocco JW. The challenges of tumor genetic diversity. Cancer 2017; 123(6): 917-27.
[http://dx.doi.org/10.1002/cncr.30430] [PMID: 27861749]
[4]
Malhotra J. Molecular and genetic epidemiology of cancer in low- and medium-income countries. Ann Glob Health 2014; 80(5): 418-25.
[http://dx.doi.org/10.1016/j.aogh.2014.09.011] [PMID: 25512157]
[5]
Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science 2001; 291(5507): 1304-51.
[http://dx.doi.org/10.1126/science.1058040] [PMID: 11181995]
[6]
Sachidanandam R, Weissman D, Schmidt SC, et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 2001; 409(6822): 928-33.
[http://dx.doi.org/10.1038/35057149] [PMID: 11237013]
[7]
Beckman G, Birgander R, Själander A, et al. Is p53 polymorphism maintained by natural selection? Hum Hered 1994; 44(5): 266-70.
[http://dx.doi.org/10.1159/000154228] [PMID: 7927355]
[8]
Hill RP, Marie-Egyptienne DT, Hedley DW. Cancer stem cells, hypoxia and metastasis. Semin Radiat Oncol 2009; 19(2): 106-11.
[http://dx.doi.org/10.1016/j.semradonc.2008.12.002] [PMID: 19249648]
[9]
Ray SK, Mukherjee S. Imitating hypoxia and tumor microenvironment with immune evasion by employing three dimensional in vitro cellular models: Impressive tool in drug discovery. Recent Patents Anticancer Drug Discov 2021; 17(1): 80-91.
[http://dx.doi.org/10.2174/1574892816666210728115605] [PMID: 34323197]
[10]
Tsai YP, Wu KJ. Hypoxia-regulated target genes implicated in tumor metastasis. J Biomed Sci 2012; 19(1): 102.
[http://dx.doi.org/10.1186/1423-0127-19-102] [PMID: 23241400]
[11]
Zhao T, Lv J, Zhao J, Nzekebaloudou M. Hypoxia-inducible factor-1alpha gene polymorphisms and cancer risk: a meta-analysis. J Exp Clin Cancer Res 2009; 28(1): 159.
[http://dx.doi.org/10.1186/1756-9966-28-159] [PMID: 20035632]
[12]
Huang C-J, Lian S-L, Hou M-F, et al. SNP 1772 C > T of HIF-1α gene associates with breast cancer risk in a Taiwanese population. Cancer Cell Int 2014; 14(1): 87.
[http://dx.doi.org/10.1186/s12935-014-0087-7] [PMID: 25302049]
[13]
Mees G, Dierckx R, Vangestel C, Van de Wiele C. Molecular imaging of hypoxia with radiolabelled agents. Eur J Nucl Med Mol Imaging 2009; 36(10): 1674-86.
[http://dx.doi.org/10.1007/s00259-009-1195-9] [PMID: 19565239]
[14]
Schito L, Rey S, Tafani M, et al. Hypoxia-inducible factor 1-dependent expression of platelet-derived growth factor B promotes lymphatic metastasis of hypoxic breast cancer cells. Proc Natl Acad Sci USA 2012; 109(40): E2707-16.
[http://dx.doi.org/10.1073/pnas.1214019109] [PMID: 23012449]
[15]
Osinsky S, Zavelevich M, Vaupel P. Tumor hypoxia and malignant progression. Exp Oncol 2009; 31(2): 80-6.
[PMID: 19550396]
[16]
Liu ZJ, Semenza GL, Zhang HF. Hypoxia-inducible factor 1 and breast cancer metastasis. J Zhejiang Univ Sci 2015; 16(1): 32-43.
[http://dx.doi.org/10.1631/jzus.B1400221] [PMID: 25559953]
[17]
Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 2006; 70(5): 1469-80.
[http://dx.doi.org/10.1124/mol.106.027029] [PMID: 16887934]
[18]
Semenza GL. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci 2012; 33(4): 207-14.
[http://dx.doi.org/10.1016/j.tips.2012.01.005] [PMID: 22398146]
[19]
Wang HX, Qin C, Han FY, Wang XH, Li N. HIF-2α as a prognostic marker for breast cancer progression and patient survival. Genet Mol Res 2014; 13(2): 2817-26.
[http://dx.doi.org/10.4238/2014.January.22.6] [PMID: 24535905]
[20]
Liao D, Corle C, Seagroves TN, Johnson RS. Hypoxia-inducible factor-1α is a key regulator of metastasis in a transgenic model of cancer initiation and progression. Cancer Res 2007; 67(2): 563-72.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2701] [PMID: 17234764]
[21]
Paek J, Oh Y, Kim J, Lee JH. Single nucleotide polymorphisms in HIF-1α gene and residual ridge resorption (RRR) of mandible in Korean population. Gene Expr 2015; 16(3): 137-44.
[http://dx.doi.org/10.3727/105221615X14181440065490] [PMID: 25700369]
[22]
Liu SG, Gao C, Zhang RD, et al. FPGS rs1544105 polymorphism is associated with treatment outcome in pediatric B-cell precursor acute lymphoblastic leukemia. Cancer Cell Int 2013; 13(1): 107.
[http://dx.doi.org/10.1186/1475-2867-13-107] [PMID: 24168269]
[23]
Chang HW, Chuang LY, Tsai MT, Yang CH. The importance of integrating SNP and cheminformatics resources to pharmacogenomics. Curr Drug Metab 2012; 13(7): 991-9.
[http://dx.doi.org/10.2174/138920012802138679] [PMID: 22591347]
[24]
Cantor CR. The use of genetic SNPs as new diagnostic markers in preventive medicine. Ann N Y Acad Sci 2005; 1055(1): 48-57.
[http://dx.doi.org/10.1196/annals.1323.009] [PMID: 16387717]
[25]
Lin HJ, Kung YJ, Lin YJ, et al. Association of the lumican gene functional 3′-UTR polymorphism with high myopia. Invest Ophthalmol Vis Sci 2010; 51(1): 96-102.
[http://dx.doi.org/10.1167/iovs.09-3612] [PMID: 19643966]
[26]
Ding H, Jin X, Ding N, Fu Z, Song Y, Zhu J. Single nucleotide polymorphisms of CD20 gene and their relationship with clinical efficacy of R-CHOP in patients with diffuse large B cell lymphoma. Cancer Cell Int 2013; 13(1): 58.
[http://dx.doi.org/10.1186/1475-2867-13-58] [PMID: 23758737]
[27]
Kuo HC, Yang KD, Juo SH, et al. ITPKC single nucleotide polymorphism associated with the Kawasaki disease in a Taiwanese population. PLoS One 2011; 6(4): e17370.
[http://dx.doi.org/10.1371/journal.pone.0017370] [PMID: 21533171]
[28]
Chen FM, Ou-Yang F, Yang SF, Tsai EM, Hou MF. P53 codon 72 polymorphism in Taiwanese breast cancer patients. Kaohsiung J Med 2013; 29(5): 259-64.
[http://dx.doi.org/10.1016/j.kjms.2012.09.004] [PMID: 23639512]
[29]
Wei Y, Wang X, Zhang Z, et al. Role of Polymorphisms of FAM13A, PHLDB1, and CYP24A1 in Breast Cancer Risk. Curr Mol Med 2019; 19(8): 579-88.
[http://dx.doi.org/10.2174/1566524019666190619125109] [PMID: 31215377]
[30]
Chang WC, Woon PY, Hsu YW, Yang S, Chiu YC, Hou MF. The association between single-nucleotide polymorphisms of ORAI1 gene and breast cancer in a Taiwanese population. ScientificWorldJournal 2012; 2012: 916587.
[http://dx.doi.org/10.1100/2012/916587] [PMID: 22778704]
[31]
Bos R, Zhong H, Hanrahan CF, et al. Levels of hypoxia-inducible factor-1 alpha during breast carcinogenesis. J Natl Cancer Inst 2001; 93(4): 309-14.
[http://dx.doi.org/10.1093/jnci/93.4.309] [PMID: 11181778]
[32]
Jaakkola P, Mole DR, Tian YM, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001; 292(5516): 468-72.
[http://dx.doi.org/10.1126/science.1059796] [PMID: 11292861]
[33]
Shan C, Zheng Y, Wang M, et al. Polymorphisms in HIFs and breast cancer sutarsceptibility in Chinese women: a case-control study. Biosci Rep 2018; 38(5): BSR20180950.
[http://dx.doi.org/10.1042/BSR20180950] [PMID: 30135144]
[34]
Tanimoto K, Yoshiga K, Eguchi H, et al. Hypoxia-inducible factor-1α polymorphisms associated with enhanced transactivation capacity, implying clinical significance. Carcinogenesis 2003; 24(11): 1779-83.
[http://dx.doi.org/10.1093/carcin/bgg132] [PMID: 12919954]
[35]
Vaupel P. The role of hypoxia-induced factors in tumor progression. Oncologist 2004; 9(S5) (Suppl. 5): 10-7.
[http://dx.doi.org/10.1634/theoncologist.9-90005-10] [PMID: 15591418]
[36]
Jun JC, Rathore A, Younas H, Gilkes D, Polotsky VY. Hypoxia-Inducible Factors and Cancer. Curr Sleep Med Rep 2017; 3(1): 1-10.
[http://dx.doi.org/10.1007/s40675-017-0062-7] [PMID: 28944164]
[37]
Al Tameemi W, Dale TP, Al-Jumaily RMK, Forsyth NR. Hypoxia-Modified Cancer Cell Metabolism. Front Cell Dev Biol 2019; 7: 4.
[http://dx.doi.org/10.3389/fcell.2019.00004] [PMID: 30761299]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy