Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Preparation of the Chitosan/Poly-γ-Glutamic Acid/Glabrid in Hybrid Nanoparticles and Study on its Releasing Property

Author(s): Hanjiu Chen, Jie Zhuang, Xu Wu, Xingliang Shen, Qianjie Zhang and Wanping Zhang*

Volume 20, Issue 8, 2023

Published on: 01 August, 2022

Page: [1195 - 1205] Pages: 11

DOI: 10.2174/1567201819666220513122319

Price: $65

Abstract

Aim: The aim of this study was to encapsulate glabridin (GB) into nanoparticles, prepared by an ionic-gelation method blended with chitosan (CS) and poly-γ-glutamic acid (γ-PGA) to address the issue of poor stability and low water solubility of glabridin.

Methods: The physicochemical properties of nanoparticles were investigated by transmission electron microscope (TEM), dynamic light scattering (DLS) and fourier-transform infrared (FT-IR) spectroscopy.

Results: FT-IR results indicated that the spontaneous interaction between CS, γ-PGA and GB can form a cross linked network-structure, leading to the spontaneous formation of nanoparticles. Morphology of the complex particles was nano-scale spherical shape. Furthermore, particle size was decreased according to the decrease of γ-PGA contents and CS, accompanying with the increase of mixed solution transmittance. The mγ-PGA : mGB = 1: 1 and mCS: (mγ-PGA + mGB) =1: 1 were considered to be a proper preparation condition of CS/γ-PGA/GB hybrid nanoparticles, which produced the smaller nanoparticles with the satisfactory encapsulation efficiency (EE), loading content (LC) and sustained GB release. With the increase of pH values, the potential, EE, and LC decreased gradually, while the particle size increased. The nanoparticles prepared with higher molecular weight γ-PGA had larger particle size and less loading capacity on GB. Additionally, moderate weight ratio of CS/γ-PGA/GB, low pH, and high molecular weight of γ-PGA were favorable for sustained release.

Conclusion: It can be concluded that the physicochemical properties of nanoparticles and GB release behaviors were affected by several factors including the weight ratio of CS/γ-PGA/GB, pHvalues, and γ-PGA molecular weight (MW). Nanoencapsulation using CS, γ-PGA and GB has a potential application for the development of functional cosmetic products with skin-whitening effect.

Keywords: Chitosan, poly-γ-glutamic acid, glabridin, nanoparticles, releasing property, anti cancer.

Graphical Abstract

[1]
Chin, Y.W.; Jung, H.A.; Liu, Y.; Su, B.N.; Castoro, J.A.; Keller, W.J.; Pereira, M.A.; Kinghorn, A.D. Anti-oxidant constituents of the roots and stolons of licorice (Glycyrrhiza glabra). J. Agric. Food Chem., 2007, 55(12), 4691-4697.
[http://dx.doi.org/10.1021/jf0703553] [PMID: 17516657]
[2]
Fuhrman, B.; Buch, S.; Vaya, J.; Belinky, P.A.; Coleman, R.; Hayek, T.; Aviram, M. Licorice extract and its major polyphenol glabridin protect low-density lipoprotein against lipid peroxidation: In vitro and ex vivo studies in humans and in atherosclerotic apolipoprotein E-deficient mice. Am. J. Clin. Nutr., 1997, 66(2), 267-275.
[http://dx.doi.org/10.1093/ajcn/66.2.267] [PMID: 9250104]
[3]
Hsu, Y.L.; Wu, L.Y.; Hou, M.F.; Tsai, E.M.; Lee, J.N.; Liang, H.L.; Jong, Y.J.; Hung, C.H.; Kuo, P.L. Glabridin, an isoflavan from licorice root, inhibits migration, invasion and angiogenesis of MDA-MB-231 human breast adenocarcinoma cells by inhibiting focal adhesion kinase/Rho signaling pathway. Mol. Nutr. Food Res., 2011, 55(2), 318-327.
[http://dx.doi.org/10.1002/mnfr.201000148] [PMID: 20626003]
[4]
Hasanein, P. Glabridin as a major active isoflavan from Glycyrrhiza glabra (licorice) reverses learning and memory deficits in diabetic rats. Acta Physiol. Hung., 2011, 98(2), 221-230.
[http://dx.doi.org/10.1556/APhysiol.98.2011.2.14] [PMID: 21616781]
[5]
Gupta, V.K.; Fatima, A.; Faridi, U.; Negi, A.S.; Shanker, K.; Kumar, J.K.; Rahuja, N.; Luqman, S.; Sisodia, B.S.; Saikia, D.; Darokar, M.P.; Khanuja, S.P. Antimicrobial potential of Glycyrrhiza glabra roots. J. Ethnopharmacol., 2008, 116(2), 377-380.
[http://dx.doi.org/10.1016/j.jep.2007.11.037] [PMID: 18182260]
[6]
Chen, J.; Yu, X.; Huang, Y. Inhibitory mechanisms of glabridin on tyrosinase. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 168, 111-117.
[http://dx.doi.org/10.1016/j.saa.2016.06.008] [PMID: 27288962]
[7]
Chen, J.; Fang, Q.; Liu, S.; Yang, G.; Gao, Y. Influences of several factors on the photolysis of glabridin under UV irradiation. J. Photochem. Photobiol. Chem., 2017, 339, 12-18.
[http://dx.doi.org/10.1016/j.jphotochem.2017.02.012]
[8]
Liu, C.; Hu, J.; Sui, H.; Zhao, Q.; Zhang, X.; Wang, W. Enhanced skin permeation of glabridin using eutectic mixture-based nanoemulsion. Drug Deliv. Transl. Res., 2017, 7(2), 325-332.
[http://dx.doi.org/10.1007/s13346-017-0359-6] [PMID: 28188607]
[9]
Ravindran, R.; Mitra, K.; Arumugam, S.K.; Doble, M. Preparation of Curdlan sulphate - Chitosan nanoparticles as a drug carrier to target Mycobacterium smegmatis infected macrophages. Carbohydr. Polym., 2021, 258(1-2)117686
[http://dx.doi.org/10.1016/j.carbpol.2021.117686] [PMID: 33593559]
[10]
Joshi, K.M.; Shelar, A.; Kasabe, U.; Nikam, L.K.; Pawar, R.A.; Sangshetti, J.; Kale, B.B.; Singh, A.V.; Patil, R.; Chaskar, M.G. Biofilm inhibition in Candida albicans with biogenic hierarchical zinc-oxide nanoparticles. Mater. Sci. Eng. C, 2021, 3112592
[http://dx.doi.org/10.1016/j.msec.2021.112592]
[11]
Li, Y.; Li, X.; Wei, Y.; Tao, Y. Chitosan-based self-healing hydrogel for bioapplications. Chin. Chem. Lett., 2017, 28(11), 2053-2057.
[http://dx.doi.org/10.1016/j.cclet.2017.09.004]
[12]
Janes, K.A.; Fresneau, M.P.; Marazuela, A.; Fabra, A.; Alonso, M.J. Chitosan nanoparticles as delivery systems for doxorubicin. J. Control. Release, 2001, 73(2-3), 255-267.
[http://dx.doi.org/10.1016/S0168-3659(01)00294-2] [PMID: 11516503]
[13]
Kim, D.G.; Jeong, Y.I.; Choi, C.; Roh, S.H.; Kang, S.K.; Jang, M.K.; Nah, J.W. Retinol-encapsulated low molecular water-soluble chitosan nanoparticles. Int. J. Pharm., 2006, 319(1-2), 130-138.
[http://dx.doi.org/10.1016/j.ijpharm.2006.03.040] [PMID: 16713152]
[14]
Park, Y.S.; Park, H.J.; Lee, J. Stabilization of glabridin by chitosan nano-complex. J. Korean Soc. Appl. Biol. Chem., 2012, 55(4), 457-462.
[http://dx.doi.org/10.1007/s13765-012-2001-0]
[15]
Otagiri, M.; Saito, H.; Shiraishi, S.; Imai, T. Interaction of indomethacin with low molecular weight chitosan, and improvements of some pharmaceutical properties of indomethacin by molecular weight chitosans. Int. J. Pharm., 1991, 67(1), 11-20.
[http://dx.doi.org/10.1016/0378-5173(91)90260-U]
[16]
Buescher, J.M.; Margaritis, A. Microbial biosynthesis of polyglutamic acid biopolymer and applications in the biopharmaceutical, biomedical and food industries. Crit. Rev. Biotechnol., 2007, 27(1), 1-19.
[http://dx.doi.org/10.1080/07388550601166458] [PMID: 17364686]
[17]
Buescher, J.M.; Buescher, A. γ-Polyglutamic acid produced by Bacillus subtilis (natto): Structural characteristics, chemical properties and biological functionalities. J. Chin. Chem. Soc. (Taipei), 2006, 53(6), 1363-1384.
[http://dx.doi.org/10.1002/jccs.200600182]
[18]
Wu, C.; Wu, T.; Fang, Z.; Zheng, J.; Xu, S.; Chen, S.; Hu, Y.; Formation, X.Ye. characterization and release kinetics of chitosan/γ-PGA encapsulated nisin nanoparticles. RSC Advances, 2016, 6(52), 46686-46695.
[http://dx.doi.org/10.1039/C6RA06003J]
[19]
Hu, Q.; Bae, M.; Fleming, E.; Lee, J.Y.; Luo, Y. Biocompatible polymeric nanoparticles with exceptional gastrointestinal stability as oral delivery vehicles for lipophilic bioactives. Food Hydrocoll., 2019, 89, 386-395.
[http://dx.doi.org/10.1016/j.foodhyd.2018.10.057]
[20]
Sonaje, K.; Chen, Y.J.; Chen, H.L.; Wey, S.P.; Juang, J.H.; Nguyen, H.N.; Hsu, C.W.; Lin, K.J.; Sung, H.W. Enteric-coated capsules filled with freeze-dried chitosan/poly(gamma-glutamic acid) nanoparticles for oral insulin delivery. Biomaterials, 2010, 31(12), 3384-3394.
[http://dx.doi.org/10.1016/j.biomaterials.2010.01.042] [PMID: 20149435]
[21]
Hellmers, F.; Ferguson, P.; Koropatnick, J.; Krull, R.; Margaritis, A. Characterization and in vitro cytotoxicity of doxorubicin-loaded-polyglutamic acid-chitosan composite nanoparticles. Biochem. Eng. J., 2013, 75, 72-78.
[http://dx.doi.org/10.1016/j.bej.2013.03.019]
[22]
Meng, L.; Ji, B.; Huang, W.; Wang, D.; Tong, G.; Su, Y.; Zhu, X.; Yan, D. Preparation of pixantrone/poly(γ-glutamic acid) nanoparticles through complex self-assembly for oral chemotherapy. Macromol. Biosci., 2012, 12(11), 1524-1533.
[http://dx.doi.org/10.1002/mabi.201200137] [PMID: 23008063]
[23]
Ao, M.; Shi, Y.; Cui, Y.; Guo, W.; Wang, J.; Yu, L. Factors influencing glabridin stability. Nat. Prod. Commun., 2010, 5(12), 1907-1912.
[http://dx.doi.org/10.1177/1934578X1000501214] [PMID: 21299118]
[24]
Dwivedi, C.; Pandey, H.; Pandey, A.C.; Patil, S.; Ramteke, P.W.; Laux, P.; Luch, A.; Singh, A.V. In vivo biocompatibility of electrospun bio-degradable dual carrier (antibiotic + growth factor) in a mouse model-implications for rapid wound healing. Pharmaceutics, 2019, 11(4), 180.
[http://dx.doi.org/10.3390/pharmaceutics11040180] [PMID: 31013995]
[25]
Singh, A.V.; Maharjan, R.S.; Jungnickel, H.; Romanowski, H.; Hachenberger, Y.U.; Reichardt, P.; Bierkandt, F.; Siewert, K.; Gadicherla, A.; Laux, P.; Luch, A. Evaluating particle emissions and toxicity of 3D pen printed filaments with metal nanoparticles as additives: In vitro and in silico discriminant function analysis. ACS Sustain. Chem. Eng., 2021, 9(35), 11724-11737.
[http://dx.doi.org/10.1021/acssuschemeng.1c02589]
[26]
Gan, L.; Zhang, C.; Wu, F.; Li, H.; Zhang, W.P.; Zhang, Q.J. Microencapsulated nanostructured lipid carriers as delivery system for rutin. Mater. Technol., 2018, 33(5), 357-363.
[http://dx.doi.org/10.1080/10667857.2018.1446406]
[27]
Arof, A.K.; Osman, Z. FTIR studies of chitosan acetate based polymer electrolytes. Electrochim. Acta, 2003, 48(8), 993-999.
[http://dx.doi.org/10.1016/S0013-4686(02)00812-5]
[28]
Lin, Y.H.; Sonaje, K.; Lin, K.M.; Juang, J.H.; Mi, F.L.; Yang, H.W.; Sung, H.W. Multi-ion-crosslinked nanoparticles with pH-responsive characteristics for oral delivery of protein drugs. J. Control. Release, 2008, 132(2), 141-149.
[http://dx.doi.org/10.1016/j.jconrel.2008.08.020] [PMID: 18817821]
[29]
Yan, L.; Gao, S.; Shui, S.; Liu, S.; Qu, H.; Liu, C.; Zheng, L. Small interfering RNA-loaded chitosan hydrochloride/carboxymethyl chitosan nanoparticles for ultrasound-triggered release to hamper colorectal cancer growth in vitro. Int. J. Biol. Macromol., 2020, 162, 1303-1310.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.246] [PMID: 32603733]
[30]
Boonsongrit, Y.; Mueller, B.W.; Mitrevej, A. Characterization of drug-chitosan interaction by 1H NMR, FTIR and isothermal titration calorimetry. Eur. J. Pharm. Biopharm., 2008, 69(1), 388-395.
[http://dx.doi.org/10.1016/j.ejpb.2007.11.008] [PMID: 18164928]
[31]
Teixeira, G.Q.; Leite Pereira, C.; Castro, F.; Ferreira, J.R.; Gomez-Lazaro, M.; Aguiar, P.; Barbosa, M.A.; Neidlinger-Wilke, C.; Goncalves, R.M. Anti-inflammatory Chitosan/Poly-γ-glutamic acid nanoparticles control inflammation while remodeling extracellular matrix in degenerated intervertebral disc. Acta Biomater., 2016, 42, 168-179.
[http://dx.doi.org/10.1016/j.actbio.2016.06.013] [PMID: 27321188]
[32]
Rohilla, R.; Garg, T.; Bariwal, J.; Goyal, A.K.; Rath, G. Development, optimization and characterization of glycyrrhetinic acidchitosan nano-particles of atorvastatin for liver targeting. Drug Deliv., 2016, 23(7), 2290-2297.
[33]
Xu, R. Progress in nanoparticles characterization: Sizing and zeta potential measurement. Particuology, 2008, 6(2), 112-115.
[http://dx.doi.org/10.1016/j.partic.2007.12.002]
[34]
Gordon, S.; Teichmann, E.; Young, K.; Finnie, K.; Rades, T.; Hook, S. In vitro and in vivo investigation of thermosensitive chitosan hydrogels containing silica nanoparticles for vaccine delivery. Eur. J. Pharm. Sci., 2010, 41(2), 360-368.
[http://dx.doi.org/10.1016/j.ejps.2010.07.004] [PMID: 20633644]
[35]
Chen, Y.; Yan, X.; Zhao, J.; Feng, H.; Li, P.; Tong, Z.; Yang, Z.; Li, S.; Yang, J.; Jin, S. Preparation of the chitosan/poly(glutamic acid)/alginate polyelectrolyte complexing hydrogel and study on its drug releasing property. Carbohydr. Polym., 2018, 191, 8-16.
[http://dx.doi.org/10.1016/j.carbpol.2018.02.065] [PMID: 29661325]
[36]
Yang, N.; Wang, Y.; Zhang, Q.; Chen, L.; Zhao, Y. γ-Polyglutamic acid mediated crosslinking PNIPAAm-based thermo/pH-responsive hydrogels for controlled drug release. Biomaterials, 2010, 31, 3384-3394.
[http://dx.doi.org/10.1016/j.polymdegradstab.2017.07.028]
[37]
Lin, Y.H.; Chung, C.K.; Chen, C.T.; Liang, H.F.; Chen, S.C.; Sung, H.W. Preparation of nanoparticles composed of chitosan/poly-γ-glutamic acid and evaluation of their permeability through Caco-2 cells. Biomacromolecules, 2005, 6(2), 1104-1112.
[http://dx.doi.org/10.1021/bm049312a] [PMID: 15762683]
[38]
Singh, A.V.; Maharjan, R.S.; Kromer, C.; Laux, P.; Luch, A.; Vats, T.; Chandrasekar, V.; Dakua, S.P.; Park, B.W. Advances in smoking related in vitro inhalation toxicology: A perspective case of challenges and opportunities from progresses in lung-on-chip technologies. Chem. Res. Toxicol., 2021, 34(9), 1984-2002.
[http://dx.doi.org/10.1021/acs.chemrestox.1c00219] [PMID: 34397218]
[39]
Mohanraj, V.J.; Chen, Y. Nanoparticles-a review. Trop. J. Pharm. Res., 2006, 5(1), 561-573.
[http://dx.doi.org/10.4314/tjpr.v5i1.14634]
[40]
Malhotra, A.; Zhang, X.; Turkson, J.; Santra, S. Buffer-stable chitosan-polyglutamic acid hybrid nanoparticles for biomedical applications. Macromol. Biosci., 2013, 13(5), 603-613.
[http://dx.doi.org/10.1002/mabi.201200425] [PMID: 23460363]
[41]
Ajun, W.; Yan, S.; Li, G.; Li, H. Preparation of aspirin and probucol in combination loaded chitosan nanoparticles and in vitro release study. Carbohydr. Polym., 2009, 75(4), 566-574.
[http://dx.doi.org/10.1016/j.carbpol.2008.08.019]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy