Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Recent Studies on the Pharmacological Activities and Structural Modifications of Compound-K

Author(s): Xianyang Wang, Mingming Zhang* and Yingxia Li*

Volume 22, Issue 22, 2022

Published on: 17 August, 2022

Page: [2847 - 2863] Pages: 17

DOI: 10.2174/1389557522666220513120828

Price: $65

Abstract

Ginsenosides, the essential active ingredients extracted from ginseng, have been well studied in the past several decades because of their numerous pharmacological properties including anti-tumor, anti-inflammatory, and anti-diabetic activities, as well as hepatoprotection, skin protection, and memory improvement, etc. Compound-K (CK) is the major metabolite derived from the deglycosylation of ginsenosides by intestinal bacteria and has been proved to be the actual active entity absorbed into the systemic circulation. In this review, we comprehensively elucidate the pharmacological activities of CK from the molecular mechanism, as well as its structurally modified derivatives. We hope this review would be helpful to get a systematic summary and provide constructive insights for the further research of CK.

Keywords: Compound-K, ginsenosides, pharmacological activities, derivatives, SAR, deglycosylation.

Graphical Abstract

[1]
Li, C.P.; Li, R.C. An introductory note to ginseng. Am. J. Chin. Med., 1973, 1(2), 249-261.
[http://dx.doi.org/10.1142/S0192415X73000279] [PMID: 4359507]
[2]
Chen, C.F.; Chiou, W.F.; Zhang, J.T. Comparison of the pharmacological effects of Panax ginseng and Panax quinquefolium. Acta Pharmacol. Sin., 2008, 29(9), 1103-1108.
[http://dx.doi.org/10.1111/j.1745-7254.2008.00868.x] [PMID: 18718179]
[3]
Yang, W-Z.; Hu, Y.; Wu, W-Y.; Ye, M.; Guo, D-A. Saponins in the genus Panax L. (Araliaceae): A systematic review of their chemical diversity. Phytochemistry, 2014, 106, 7-24.
[http://dx.doi.org/10.1016/j.phytochem.2014.07.012] [PMID: 25108743]
[4]
Yosioka, I.; Sugawara, T.; Imai, K.; Kitagawa, I. Soil bacterial hydrolysis leading to genuine aglycone. V. On ginsenosides-Rb1, Rb2, and Rc of the ginseng root saponins. Chem. Pharm. Bull. (Tokyo), 1972, 20(11), 2418-2421.
[http://dx.doi.org/10.1248/cpb.20.2418]
[5]
Hasegawa, H.; Sung, J-H.; Matsumiya, S.; Uchiyama, M. Main ginseng saponin metabolites formed by intestinal bacteria. Planta Med., 1996, 62(5), 453-457.
[http://dx.doi.org/10.1055/s-2006-957938] [PMID: 8923812]
[6]
Hasegawa, H.; Sung, J-H.; Benno, Y. Role of human intestinal Prevotella oris in hydrolyzing ginseng saponins. Planta Med., 1997, 63(5), 436-440.
[http://dx.doi.org/10.1055/s-2006-957729] [PMID: 9342949]
[7]
Akao, T.; Kanaoka, M.; Kobashi, K. Appearance of compound K, a major metabolite of ginsenoside Rb1 by intestinal bacteria, in rat plasma after oral administration--measurement of compound K by enzyme immunoassay. Biol. Pharm. Bull., 1998, 21(3), 245-249.
[http://dx.doi.org/10.1248/bpb.21.245] [PMID: 9556154]
[8]
Akao, T.; Kida, H.; Kanaoka, M.; Hattori, M.; Kobashi, K. Intestinal bacterial hydrolysis is required for the appearance of compound K in rat plasma after oral administration of ginsenoside Rb1 from Panax ginseng. J. Pharm. Pharmacol., 1998, 50(10), 1155-1160.
[http://dx.doi.org/10.1111/j.2042-7158.1998.tb03327.x] [PMID: 9821663]
[9]
Lee, J.; Lee, E.; Kim, D.; Lee, J.; Yoo, J.; Koh, B. Studies on absorption, distribution and metabolism of ginseng in humans after oral administration. J. Ethnopharmacol., 2009, 122(1), 143-148.
[http://dx.doi.org/10.1016/j.jep.2008.12.012] [PMID: 19146939]
[10]
Hasegawa, H. Proof of the mysterious efficacy of ginseng: Basic and clinical trials: Metabolic activation of ginsenoside: Deglycosylation by intestinal bacteria and esterification with fatty acid. J. Pharmacol. Sci., 2004, 95(2), 153-157.
[http://dx.doi.org/10.1254/jphs.FMJ04001X4] [PMID: 15215638]
[11]
Kim, D.H. Metabolism of ginsenosides to bioactive compounds by intestinal microflora and its industrial application. J. Ginseng Res., 2009, 33, 165-176.
[http://dx.doi.org/10.5142/JGR.2009.33.3.165]
[12]
Yang, X-D.; Yang, Y-Y.; Ouyang, D-S.; Yang, G-P. A review of biotransformation and pharmacology of ginsenoside compound K. Fitoterapia, 2015, 100(1), 208-220.
[http://dx.doi.org/10.1016/j.fitote.2014.11.019] [PMID: 25449425]
[13]
Oh, J.; Kim, J.S. Compound K derived from ginseng: Neuroprotection and cognitive improvement. Food Funct., 2016, 7(11), 4506-4515.
[http://dx.doi.org/10.1039/C6FO01077F] [PMID: 27801453]
[14]
Sharma, A.; Lee, H-J. Ginsenoside compound K: Insights into recent studies on pharmacokinetics and health-promoting activities. Biomolecules, 2020, 10(7), 1028-1067.
[http://dx.doi.org/10.3390/biom10071028] [PMID: 32664389]
[15]
Chen, B.B.; Glasser, J.R.; Coon, T.A.; Mallampalli, R.K. F-box protein FBXL2 exerts human lung tumor suppressor-like activity by ubiquitin-mediated degradation of cyclin D3 resulting in cell cycle arrest. Oncogene, 2012, 31(20), 2566-2579.
[http://dx.doi.org/10.1038/onc.2011.432] [PMID: 22020328]
[16]
Musgrove, E.A.; Caldon, C.E.; Barraclough, J.; Stone, A.; Sutherland, R.L. Cyclin D as a therapeutic target in cancer. Nat. Rev. Cancer, 2011, 11(8), 558-572.
[http://dx.doi.org/10.1038/nrc3090] [PMID: 21734724]
[17]
Wakabayashi, C.; Murakami, K.; Hasegawa, H.; Murata, J.; Saiki, I. An intestinal bacterial metabolite of ginseng protopanaxadiol saponins has the ability to induce apoptosis in tumor cells. Biochem. Biophys. Res. Commun., 1998, 246(3), 725-730.
[http://dx.doi.org/10.1006/bbrc.1998.8690] [PMID: 9618279]
[18]
Lee, S.; Kwon, M.C.; Jang, J-P.; Sohng, J.K.; Jung, H.J. The ginsenoside metabolite compound K inhibits growth, migration and stemness of glioblastoma cells. Int. J. Oncol., 2017, 51(2), 414-424.
[http://dx.doi.org/10.3892/ijo.2017.4054] [PMID: 28656196]
[19]
Lee, S.J.; Lee, J.S.; Lee, E.; Lim, T-G.; Byun, S. The ginsenoside metabolite compound K inhibits hormone independent breast cancer through downregulation of cyclin D1. J. Funct. Foods, 2018, 46, 159-166.
[http://dx.doi.org/10.1016/j.jff.2018.04.050]
[20]
Tait, S.W.; Green, D.R. Mitochondria and cell death: Outer membrane permeabilization and beyond. Nat. Rev. Mol. Cell Biol., 2010, 11(9), 621-632.
[http://dx.doi.org/10.1038/nrm2952] [PMID: 20683470]
[21]
Banker, D.E.; Groudine, M.; Norwood, T.; Appelbaum, F.R. Measurement of spontaneous and therapeutic agent-induced apoptosis with BCL-2 protein expression in acute myeloid leukemia. Blood, 1997, 89(1), 243-255.
[http://dx.doi.org/10.1182/blood.V89.1.243] [PMID: 8978298]
[22]
Lee, S-J.; Ko, W-G.; Kim, J-H.; Sung, J-H.; Moon, C.K.; Lee, B.H.; Lee, B-H. Induction of apoptosis by a novel intestinal metabolite of ginseng saponin via cytochrome c-mediated activation of caspase-3 protease. Biochem. Pharmacol., 2000, 60(5), 677-685.
[http://dx.doi.org/10.1016/S0006-2952(00)00362-2] [PMID: 10927026]
[23]
Oh, S.H.; Lee, B.H. A ginseng saponin metabolite-induced apoptosis in HepG2 cells involves a mitochondria-mediated pathway and its downstream caspase-8 activation and Bid cleavage. Toxicol. Appl. Pharmacol., 2004, 194(3), 221-229.
[http://dx.doi.org/10.1016/j.taap.2003.09.011] [PMID: 14761678]
[24]
Choi, E.; Kim, E.; Kim, J.H.; Yoon, K.; Kim, S.; Lee, J.; Cho, J.Y. AKT1-targeted proapoptotic activity of compound K in human breast cancer cells. J. Ginseng Res., 2019, 43(4), 692-698.
[http://dx.doi.org/10.1016/j.jgr.2019.07.001] [PMID: 31695573]
[25]
Ashizawa, T.; Miyata, H.; Iizuka, A.; Komiyama, M.; Oshita, C.; Kume, A.; Nogami, M.; Yagoto, M.; Ito, I.; Oishi, T.; Watanabe, R.; Mitsuya, K.; Matsuno, K.; Furuya, T.; Okawara, T.; Otsuka, M.; Ogo, N.; Asai, A.; Nakasu, Y.; Yamaguchi, K.; Akiyama, Y. Effect of the STAT3 inhibitor STX-0119 on the proliferation of cancer stem-like cells derived from recurrent glioblastoma. Int. J. Oncol., 2013, 43(1), 219-227.
[http://dx.doi.org/10.3892/ijo.2013.1916] [PMID: 23612755]
[26]
Feng, Y.; Liu, J.; Guo, W.; Guan, Y.; Xu, H.; Guo, Q.; Song, X.; Yi, F.; Liu, T.; Zhang, W.; Dong, X.; Cao, L.L.; O’Rourke, B.P.; Cao, L. Atg7 inhibits Warburg effect by suppressing PKM2 phosphorylation resulting reduced epithelial-mesenchymal transition. Int. J. Biol. Sci., 2018, 14(7), 775-783.
[http://dx.doi.org/10.7150/ijbs.26077] [PMID: 29910687]
[27]
Schell, J.C.; Olson, K.A.; Jiang, L.; Hawkins, A.J.; Van Vranken, J.G.; Xie, J.; Egnatchik, R.A.; Earl, E.G.; DeBerardinis, R.J.; Rutter, J. A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth. Mol. Cell, 2014, 56(3), 400-413.
[http://dx.doi.org/10.1016/j.molcel.2014.09.026] [PMID: 25458841]
[28]
Chen, H.F.; Wu, L.X.; Li, X.F.; Zhu, Y.C.; Wang, W.X.; Xu, C.W.; Huang, Z.Z.; Du, K.Q. Ginsenoside compound K inhibits growth of lung cancer cells via HIF-1α-mediated glucose metabolism. Cell. Mol. Biol., 2019, 65(4), 48-52.
[http://dx.doi.org/10.14715/cmb/2019.65.4.8] [PMID: 31078152]
[29]
Banerjee, K.; Resat, H. Constitutive activation of STAT3 in breast cancer cells: A review. Int. J. Cancer, 2016, 138(11), 2570-2578.
[http://dx.doi.org/10.1002/ijc.29923] [PMID: 26559373]
[30]
Luchetti, F.; Crinelli, R.; Cesarini, E.; Canonico, B.; Guidi, L.; Zerbinati, C.; Di Sario, G.; Zamai, L.; Magnani, M.; Papa, S.; Iuliano, L. Endothelial cells, endoplasmic reticulum stress and oxysterols. Redox Biol., 2017, 13, 581-587.
[http://dx.doi.org/10.1016/j.redox.2017.07.014] [PMID: 28783588]
[31]
Zhang, X.; Zhang, S.; Sun, Q.; Jiao, W.; Yan, Y.; Zhang, X.; Compound, K. Induces endoplasmic reticulum stress and apoptosis in human liver cancer cells by regulating STAT3. Molecules, 2018, 23(6), 1482.
[http://dx.doi.org/10.3390/molecules23061482] [PMID: 29921768]
[32]
Fokas, E.; Engenhart-Cabillic, R.; Daniilidis, K.; Rose, F.; An, H.X. Metastasis: The seed and soil theory gains identity. Cancer Metastasis Rev., 2007, 26(3-4), 705-715.
[http://dx.doi.org/10.1007/s10555-007-9088-5] [PMID: 17786535]
[33]
Fingleton, B. Matrix metalloproteinases: Roles in cancer and metastasis. Front. Biosci., 2006, 11(1), 479-491.
[http://dx.doi.org/10.2741/1811] [PMID: 16146745]
[34]
Jung, S.H.; Woo, M.S.; Kim, S.Y.; Kim, W.K.; Hyun, J.W.; Kim, E.J.; Kim, D.H.; Kim, H.S. Ginseng saponin metabolite suppresses phorbol ester-induced matrix metalloproteinase-9 expression through inhibition of activator protein-1 and mitogen-activated protein kinase signaling pathways in human astroglioma cells. Int. J. Cancer, 2006, 118(2), 490-497.
[http://dx.doi.org/10.1002/ijc.21356] [PMID: 16049964]
[35]
Van Waes, C. Nuclear factor-kappaB in development, prevention, and therapy of cancer. Clin. Cancer Res., 2007, 13(4), 1076-1082.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2221] [PMID: 17317814]
[36]
Zong, W.; Zeng, X.; Chen, S.; Chen, L.; Zhou, L.; Wang, X.; Gao, Q.; Zeng, G.; Hu, K.; Ouyang, D. Ginsenoside compound K attenuates cognitive deficits in vascular dementia rats by reducing the Aβ deposition. J. Pharmacol. Sci., 2019, 139(3), 223-230.
[http://dx.doi.org/10.1016/j.jphs.2019.01.013] [PMID: 30799178]
[37]
Guzik, T.J.; Korbut, R.; Adamek-Guzik, T. Nitric oxide and superoxide in inflammation and immune regulation. J. Physiol. Pharmacol., 2003, 54(4), 469-487.
[PMID: 14726604]
[38]
Ahn, S.; Siddiqi, M.H.; Noh, H-Y.; Kim, Y-J.; Kim, Y-J.; Jin, C-G.; Yang, D-C. Anti-inflammatory activity of ginsenosides in LPS stimulated RAW 264.7 cells. Sci. Bull. (Beijing), 2015, 60(8), 773-784.
[http://dx.doi.org/10.1007/s11434-015-0773-4]
[39]
Chen, J.; Si, M.; Wang, Y.; Liu, L.; Zhang, Y.; Zhou, A.; Wei, W. Ginsenoside metabolite compound K exerts anti-inflammatory and analgesic effects via downregulating COX2. Inflammopharmacology, 2019, 27(1), 157-166.
[http://dx.doi.org/10.1007/s10787-018-0504-y] [PMID: 29946770]
[40]
Joh, E.H.; Lee, I.A.; Jung, I.H.; Kim, D.H. Ginsenoside Rb1 and its metabolite compound K inhibit IRAK-1 activation-the key step of inflammation. Biochem. Pharmacol., 2011, 82(3), 278-286.
[http://dx.doi.org/10.1016/j.bcp.2011.05.003] [PMID: 21600888]
[41]
Fitzgerald, K.A.; Kagan, J.C. Toll-like receptors and the control of immunity. Cell, 2020, 180(6), 1044-1066.
[http://dx.doi.org/10.1016/j.cell.2020.02.041] [PMID: 32164908]
[42]
Yang, C.S.; Ko, S.R.; Cho, B.G.; Shin, D.M.; Yuk, J.M.; Li, S.; Kim, J.M.; Evans, R.M.; Jung, J.S.; Song, D.K.; Jo, E.K. The ginsenoside metabolite compound K, a novel agonist of glucocorticoid receptor, induces tolerance to endotoxin-induced lethal shock. J. Cell. Mol. Med., 2008, 12(5A), 1739-1753.
[http://dx.doi.org/10.1111/j.1582-4934.2007.00181.x] [PMID: 18053081]
[43]
Cuong, T.T.; Yang, C.S.; Yuk, J.M.; Lee, H.M.; Ko, S.R.; Cho, B.G.; Jo, E.K. Glucocorticoid receptor agonist compound K regulates Dectin-1-dependent inflammatory signaling through inhibition of reactive oxygen species. Life Sci., 2009, 85(17-18), 625-633.
[http://dx.doi.org/10.1016/j.lfs.2009.08.014] [PMID: 19733186]
[44]
Liu, K.K.; Wang, Q.T.; Yang, S.M.; Chen, J.Y.; Wu, H.X.; Wei, W. Ginsenoside compound K suppresses the abnormal activation of T lymphocytes in mice with collagen-induced arthritis. Acta Pharmacol. Sin., 2014, 35(5), 599-612.
[http://dx.doi.org/10.1038/aps.2014.7] [PMID: 24727939]
[45]
Chen, J.; Wang, Q.; Wu, H.; Liu, K.; Wu, Y.; Chang, Y.; Wei, W. The ginsenoside metabolite compound K exerts its anti-inflammatory activity by downregulating memory B cell in adjuvant-induced arthritis. Pharm. Biol., 2016, 54(7), 1280-1288.
[http://dx.doi.org/10.3109/13880209.2015.1074254] [PMID: 27218142]
[46]
Wang, R.; Zhang, M.; Hu, S.; Liu, K.; Tai, Y.; Tao, J.; Zhou, W.; Zhao, Z.; Wang, Q.; Wei, W. Ginsenoside metabolite compound-K regulates macrophage function through inhibition of β-arrestin2. Biomed. Pharmacother., 2019, 115, 108909.
[http://dx.doi.org/10.1016/j.biopha.2019.108909] [PMID: 31071508]
[47]
Drissi, H.; Zuscik, M.; Rosier, R.; O’Keefe, R. Transcriptional regulation of chondrocyte maturation: Potential involvement of transcription factors in OA pathogenesis. Mol. Aspects Med., 2005, 26(3), 169-179.
[http://dx.doi.org/10.1016/j.mam.2005.01.003] [PMID: 15811433]
[48]
Fernandes, J.C.; Martel-Pelletier, J.; Pelletier, J-P. The role of cytokines in osteoarthritis pathophysiology. Biorheology, 2002, 39(1-2), 237-246.
[PMID: 12082286]
[49]
Kang, S.; Siddiqi, M.H.; Yoon, S.J.; Ahn, S.; Noh, H-Y.; Kumar, N.S.; Kim, Y-J.; Yang, D-C. Therapeutic potential of compound K as an IKK inhibitor with implications for osteoarthritis prevention: An in silico and in vitro study. In Vitro Cell. Dev. Biol. Anim., 2016, 52(9), 895-905.
[http://dx.doi.org/10.1007/s11626-016-0062-9] [PMID: 27368432]
[50]
Han, G.C.; Ko, S.K.; Sung, J.H.; Chung, S.H. Compound K enhances insulin secretion with beneficial metabolic effects in db/db mice. J. Agric. Food Chem., 2007, 55(26), 10641-10648.
[http://dx.doi.org/10.1021/jf0722598] [PMID: 18034458]
[51]
Hardie, D.G.; Scott, J.W.; Pan, D.A.; Hudson, E.R. Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett., 2003, 546(1), 113-120.
[http://dx.doi.org/10.1016/S0014-5793(03)00560-X] [PMID: 12829246]
[52]
Kim, D.Y.; Yuan, H.D.; Chung, I.K.; Chung, S.H. Compound K, intestinal metabolite of ginsenoside, attenuates hepatic lipid accumulation via AMPK activation in human hepatoma cells. J. Agric. Food Chem., 2009, 57(4), 1532-1537.
[http://dx.doi.org/10.1021/jf802867b] [PMID: 19182950]
[53]
Huang, Y.C.; Lin, C.Y.; Huang, S.F.; Lin, H.C.; Chang, W.L.; Chang, T.C. Effect and mechanism of ginsenosides CK and Rg1 on stimulation of glucose uptake in 3T3-L1 adipocytes. J. Agric. Food Chem., 2010, 58(10), 6039-6047.
[http://dx.doi.org/10.1021/jf9034755] [PMID: 20441170]
[54]
Yuan, H.D.; Kim, S.J.; Chung, S.H. Beneficial effects of IH-901 on glucose and lipid metabolisms via activating adenosine monophosphate-activated protein kinase and phosphatidylinositol-3 kinase pathways. Metabolism, 2011, 60(1), 43-51.
[http://dx.doi.org/10.1016/j.metabol.2009.12.024] [PMID: 20153001]
[55]
Xia, X.; Yan, J.; Shen, Y.; Tang, K.; Yin, J.; Zhang, Y.; Yang, D.; Liang, H.; Ye, J.; Weng, J. Berberine improves glucose metabolism in diabetic rats by inhibition of hepatic gluconeogenesis. PLoS One, 2011, 6(2), e16556.
[http://dx.doi.org/10.1371/journal.pone.0016556] [PMID: 21304897]
[56]
Lin, J.; Handschin, C.; Spiegelman, B.M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab., 2005, 1(6), 361-370.
[http://dx.doi.org/10.1016/j.cmet.2005.05.004] [PMID: 16054085]
[57]
Li, W.; Zhang, M.; Gu, J.; Meng, Z.J.; Zhao, L-C.; Zheng, Y.N.; Chen, L.; Yang, G-L. Hypoglycemic effect of protopanaxadiol-type ginsenosides and compound K on Type 2 diabetes mice induced by high-fat diet combining with streptozotocin via suppression of hepatic gluconeogenesis. Fitoterapia, 2012, 83(1), 192-198.
[http://dx.doi.org/10.1016/j.fitote.2011.10.011] [PMID: 22056666]
[58]
Wei, S.; Li, W.; Yu, Y.; Yao, F. A, L.; Lan, X.; Guan, F.; Zhang, M.; Chen, L. Ginsenoside Compound K suppresses the hepatic gluconeogenesis via activating adenosine-5'monophosphate kinase: A study in vitro and in vivo. Life Sci., 2015, 139, 8-15.
[http://dx.doi.org/10.1016/j.lfs.2015.07.032] [PMID: 26285176]
[59]
Tohda, C.; Matsumoto, N.; Zou, K.; Meselhy, M.R.; Komatsu, K. Abeta(25-35)-induced memory impairment, axonal atrophy, and synaptic loss are ameliorated by M1, A metabolite of protopanaxadiol-type saponins. Neuropsychopharmacology, 2004, 29(5), 860-868.
[http://dx.doi.org/10.1038/sj.npp.1300388] [PMID: 15010693]
[60]
Seo, J.Y.; Ju, S.H.; Oh, J.; Lee, S.K.; Kim, J-S. Neuroprotective and cognition-enhancing effects of compound K isolated from red ginseng. J. Agric. Food Chem., 2016, 64(14), 2855-2864.
[http://dx.doi.org/10.1021/acs.jafc.5b05789] [PMID: 27012214]
[61]
Yang, Q.; Lin, J.; Zhang, H.; Liu, Y.; Kan, M.; Xiu, Z.; Chen, X.; Lan, X.; Li, X.; Shi, X.; Li, N.; Qu, X. Ginsenoside compound K regulates amyloid β via the Nrf2/Keap1 signaling pathway in mice with scopolamine hydrobromide-induced memory impairments. J. Mol. Neurosci., 2019, 67(1), 62-71.
[http://dx.doi.org/10.1007/s12031-018-1210-3] [PMID: 30535776]
[62]
Du, J.; Zhang, L.; Liu, S.; Zhang, C.; Huang, X.; Li, J.; Zhao, N.; Wang, Z. PPARgamma transcriptionally regulates the expression of insulin-degrading enzyme in primary neurons. Biochem. Biophys. Res. Commun., 2009, 383(4), 485-490.
[http://dx.doi.org/10.1016/j.bbrc.2009.04.047] [PMID: 19383491]
[63]
Guerriero, R.M.; Giza, C.C.; Rotenberg, A. Glutamate and GABA imbalance following traumatic brain injury. Curr. Neurol. Neurosci. Rep., 2015, 15(5), 27.
[http://dx.doi.org/10.1007/s11910-015-0545-1] [PMID: 25796572]
[64]
McCabe, R.T.; Wamsley, J.K. Autoradiographic localization of subcomponents of the macromolecular GABA receptor complex. Life Sci., 1986, 39(21), 1937-1945.
[http://dx.doi.org/10.1016/0024-3205(86)90317-6] [PMID: 3023773]
[65]
Jang, S.; Ryu, J.H.; Kim, D.H.; Oh, S. Changes of [3H]MK-801, [3H]muscimol and [3H]flunitrazepam binding in rat brain by the prolonged ventricular infusion of transformed ginsenosides. Neurochem. Res., 2004, 29(12), 2257-2266.
[http://dx.doi.org/10.1007/s11064-004-7034-2] [PMID: 15672548]
[66]
Bae, M.Y.; Cho, J.H.; Choi, I.S.; Park, H.M.; Lee, M.G.; Kim, D.H.; Jang, I.S. Compound K, a metabolite of ginsenosides, facilitates spontaneous GABA release onto CA3 pyramidal neurons. J. Neurochem., 2010, 114(4), 1085-1096.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06833.x] [PMID: 20524959]
[67]
Zeng, X.; Hu, K.; Chen, L.; Zhou, L.; Luo, W.; Li, C.; Zong, W.; Chen, S.; Gao, Q.; Zeng, G. The effects of ginsenoside compound K against epilepsy by enhancing the γ-aminobutyric acid signaling pathway. Front. Pharmacol., 2018, 9, 1020.
[http://dx.doi.org/10.3389/fphar.2018.01020] [PMID: 30254585]
[68]
Wang, Q.; Tang, X.N.; Yenari, M.A. The inflammatory response in stroke. J. Neuroimmunol., 2007, 184(1-2), 53-68.
[http://dx.doi.org/10.1016/j.jneuroim.2006.11.014] [PMID: 17188755]
[69]
Park, J-S.; Shin, J.A.; Jung, J-S.; Hyun, J-W.; Van Le, T.K.; Kim, D-H.; Park, E-M.; Kim, H-S. Anti-inflammatory mechanism of compound K in activated microglia and its neuroprotective effect on experimental stroke in mice. J. Pharmacol. Exp. Ther., 2012, 341(1), 59-67.
[http://dx.doi.org/10.1124/jpet.111.189035] [PMID: 22207656]
[70]
Janson, J.; Laedtke, T.; Parisi, J.E.; O’Brien, P.; Petersen, R.C.; Butler, P.C. Increased risk of type 2 diabetes in Alzheimer disease. Diabetes, 2004, 53(2), 474-481.
[http://dx.doi.org/10.2337/diabetes.53.2.474] [PMID: 14747300]
[71]
Li, C-W.; Deng, M-Z.; Gao, Z-J.; Dang, Y-Y.; Zheng, G-D.; Yang, X-J.; Chao, Y-X.; Cai, Y-F.; Wu, X-L. Effects of compound K, a metabolite of ginsenosides, on memory and cognitive dysfunction in db/db mice involve the inhibition of ER stress and the NLRP3 inflammasome pathway. Food Funct., 2020, 11(5), 4416-4427.
[http://dx.doi.org/10.1039/C9FO02602A] [PMID: 32374299]
[72]
Cai, X.; Rosand, J. The Evaluation and management of adult intracerebral hemorrhage. Semin. Neurol., 2015, 35(6), 638-645.
[http://dx.doi.org/10.1055/s-0035-1564687] [PMID: 26595864]
[73]
Zhou, L.; Yang, F.; Yin, J-W.; Gu, X.; Xu, Y.; Liang, Y-Q. Compound K induces neurogenesis of neural stem cells in thrombin induced nerve injury through LXRα signaling in mice. Neurosci. Lett., 2020, 729, 135007.
[http://dx.doi.org/10.1016/j.neulet.2020.135007] [PMID: 32371156]
[74]
Lee, H-U.; Bae, E-A.; Han, M.J.; Kim, N-J.; Kim, D-H. Hepatoprotective effect of ginsenoside Rb1 and compound K on tert-butyl hydroperoxide-induced liver injury. Liver Int., 2005, 25(5), 1069-1073.
[http://dx.doi.org/10.1111/j.1478-3231.2005.01068.x] [PMID: 16162168]
[75]
Hamzawy, M.A.; El-Ghandour, Y.B.; Abdel-Aziem, S.H.; Ali, Z.H. Leptin and camel milk abate oxidative stress status, genotoxicity induced in valproic acid rat model of autism. Int. J. Immunopathol. Pharmacol., 2018, 32, 2058738418785514.
[http://dx.doi.org/10.1177/2058738418785514] [PMID: 30004275]
[76]
Zhou, L.; Chen, L.; Zeng, X.; Liao, J.; Ouyang, D. Ginsenoside compound K alleviates sodium valproate-induced hepatotoxicity in rats via antioxidant effect, regulation of peroxisome pathway and iron homeostasis. Toxicol. Appl. Pharmacol., 2020, 386, 114829.
[http://dx.doi.org/10.1016/j.taap.2019.114829] [PMID: 31734319]
[77]
Clark, J.M.; Brancati, F.L.; Diehl, A.M. Nonalcoholic fatty liver disease. Gastroenterology, 2002, 122(6), 1649-1657.
[http://dx.doi.org/10.1053/gast.2002.33573] [PMID: 12016429]
[78]
Chen, X-J.; Liu, W-J.; Wen, M-L.; Liang, H.; Wu, S-M.; Zhu, Y-Z.; Zhao, J-Y.; Dong, X-Q.; Li, M-G.; Bian, L.; Zou, C.G.; Ma, L.Q. Ameliorative effects of Compound K and ginsenoside Rh1 on non-alcoholic fatty liver disease in rats. Sci. Rep., 2017, 7, 41144.
[http://dx.doi.org/10.1038/srep41144] [PMID: 28106137]
[79]
Choi, N.; Kim, J.W.; Jeong, H.; Shin, D.G.; Seo, J.H.; Kim, J.H.; Lim, C.W.; Han, K.M.; Kim, B. Fermented ginseng, GBCK25, ameliorates steatosis and inflammation in nonalcoholic steatohepatitis model. J. Ginseng Res., 2019, 43(2), 196-208.
[http://dx.doi.org/10.1016/j.jgr.2017.10.002] [PMID: 30962734]
[80]
Kim, Y.M.; Jung, H.J.; Choi, J.S.; Nam, T.J. Anti-wrinkle effects of a tuna heart H2O fraction on Hs27 human fibroblasts. Int. J. Mol. Med., 2016, 37(1), 92-98.
[http://dx.doi.org/10.3892/ijmm.2015.2407] [PMID: 26572171]
[81]
Verdier-Sévrain, S.; Bonté, F. Skin hydration: A review on its molecular mechanisms. J. Cosmet. Dermatol., 2007, 6(2), 75-82.
[http://dx.doi.org/10.1111/j.1473-2165.2007.00300.x] [PMID: 17524122]
[82]
Kim, S.; Kang, B.Y.; Cho, S.Y.; Sung, D.S.; Chang, H.K.; Yeom, M.H.; Kim, D.H.; Sim, Y.C.; Lee, Y.S. Compound K induces expression of hyaluronan synthase 2 gene in transformed human keratinocytes and increases hyaluronan in hairless mouse skin. Biochem. Biophys. Res. Commun., 2004, 316(2), 348-355.
[http://dx.doi.org/10.1016/j.bbrc.2004.02.046] [PMID: 15020224]
[83]
He, D.; Sun, J.; Zhu, X.; Nian, S.; Liu, J. Compound K increases type I procollagen level and decreases matrix metalloproteinase-1 activity and level in ultraviolet-A-irradiated fibroblasts. J. Formos. Med. Assoc., 2011, 110(3), 153-160.
[http://dx.doi.org/10.1016/S0929-6646(11)60025-9] [PMID: 21497278]
[84]
Kim, E.; Kim, D.; Yoo, S.; Hong, Y.H.; Han, S.Y.; Jeong, S.; Jeong, D.; Kim, J-H.; Cho, J.Y.; Park, J. The skin protective effects of compound K, a metabolite of ginsenoside Rb1 from Panax ginseng. J. Ginseng Res., 2018, 42(2), 218-224.
[http://dx.doi.org/10.1016/j.jgr.2017.03.007] [PMID: 29719469]
[85]
Lim, T-G.; Jeon, A.J.; Yoon, J.H.; Song, D.; Kim, J-E.; Kwon, J.Y.; Kim, J.R.; Kang, N.J.; Park, J-S.; Yeom, M.H.; Oh, D.K.; Lim, Y.; Lee, C.C.; Lee, C.Y.; Lee, K.W. 20-O-β-D-glucopyranosyl-20(S)-protopanaxadiol, a metabolite of ginsenoside Rb1, enhances the production of hyaluronic acid through the activation of ERK and Akt mediated by Src tyrosin kinase in human keratinocytes. Int. J. Mol. Med., 2015, 35(5), 1388-1394.
[http://dx.doi.org/10.3892/ijmm.2015.2121] [PMID: 25738334]
[86]
Kripke, M.L.; Cox, P.A.; Alas, L.G.; Yarosh, D.B. Pyrimidine dimers in DNA initiate systemic immunosuppression in UV-irradiated mice. Proc. Natl. Acad. Sci. USA, 1992, 89(16), 7516-7520.
[http://dx.doi.org/10.1073/pnas.89.16.7516] [PMID: 1502162]
[87]
Cai, B-X.; Luo, D.; Lin, X-F.; Gao, J. Compound K suppresses ultraviolet radiation-induced apoptosis by inducing DNA repair in human keratinocytes. Arch. Pharm. Res., 2008, 31(11), 1483-1488.
[http://dx.doi.org/10.1007/s12272-001-2134-x] [PMID: 19023546]
[88]
Lei, J.; Li, X.; Gong, X.J.; Zheng, Y.N. Isolation, synthesis and structures of cytotoxic ginsenoside derivatives. Molecules, 2007, 12(9), 2140-2150.
[http://dx.doi.org/10.3390/12092140] [PMID: 17962732]
[89]
Li, K-K.; Yan, X-M.; Li, Z-N.; Yan, Q.; Gong, X-J. Synthesis and antitumor activity of three novel ginsenoside M1 derivatives with 3′-ester modifications. Bioorg. Chem., 2019, 90, 103061.
[http://dx.doi.org/10.1016/j.bioorg.2019.103061] [PMID: 31216505]
[90]
Zhang, B.; Zhu, X.M.; Hu, J.N.; Ye, H.; Luo, T.; Liu, X.R.; Li, H.Y.; Li, W.; Zheng, Y.N.; Deng, Z.Y. Absorption mechanism of ginsenoside compound K and its butyl and octyl ester prodrugs in Caco-2 cells. J. Agric. Food Chem., 2012, 60(41), 10278-10284.
[http://dx.doi.org/10.1021/jf303160y] [PMID: 23013417]
[91]
Huang, Y.; Liu, H.; Zhang, Y.; Li, J.; Wang, C.; Zhou, L.; Jia, Y.; Li, X. Synthesis and biological evaluation of ginsenoside compound K derivatives as a novel class of LXRα Activator. Molecules, 2017, 22(7), 1232.
[http://dx.doi.org/10.3390/molecules22071232] [PMID: 28737726]
[92]
Ren, S.; Liu, R.; Wang, Y.; Ding, N.; Li, Y. Synthesis and biological evaluation of Ginsenoside Compound K analogues as a novel class of anti-asthmatic agents. Bioorg. Med. Chem. Lett., 2019, 29(1), 51-55.
[http://dx.doi.org/10.1016/j.bmcl.2018.11.016] [PMID: 30448233]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy