Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Review Article

Adjuvant Approach to Mitigate the Adverse Effects of Cancer Treatments Using Homeopathic Medicines

Author(s): Arun Kumar, Mahima Sharma, Suneel Prajapati and Pankaj Gupta*

Volume 18, Issue 4, 2022

Published on: 26 September, 2022

Page: [252 - 261] Pages: 10

DOI: 10.2174/1573394718666220512163517

Price: $65

conference banner
Abstract

Background: Worldwide, cancer patients are facing problems with life-and-death decisions due to the associated severe adverse and sometimes fatal effects of existing conventional treatments. Due to the severe adverse effects of existing therapies, effective cures are progressively explored for anticancer treatment. Mostly the conventional therapies are based upon nonspecific cellular destruction properties; therefore, a treatment approach is desired to reduce the toxic burden upon normal tissues. Among all alternative medicine systems, homeopathy is one of the most popular treatments for cancer patients globally due to its minimal side effects.

Methods: In this present review, we have attempted to comprehend the literature reports on homeopathic medicine in cancer treatment.

Results: Homeopathy has also proved its adjuvant approach to minimizing the symptomatic consequences of cancer. However, the insufficiency of evidence and lack of recurrence of the trials cause difficulty in drawing any conclusion about homeopathy as adjuvant therapy. Based upon the etiology, the genoprotective potential of homeopathic drugs was reviewed and found inconsequential evaluation and scanty literature.

Conclusion: Hence, the present review gives a comprehensive summary of retrospective studies and suggests an integration of rational drug selection, standard protocols, and quantitative analysis for revealing the differential role and plausible application of homeopathy in better cancer management.

Keywords: Cancer, radiotherapy, chemotherapy, adjuvant, complementary and alternative medicines (CAM).

Graphical Abstract

[1]
Plummer M, de Martel C, Vignat J, Ferlay J, Bray F, Franceschi S. Global burden of cancers attributable to infections in 2012: A synthetic analysis. Lancet Glob Health 2016; 4(9): e609-16.
[http://dx.doi.org/10.1016/S2214-109X(16)30143-7] [PMID: 27470177]
[2]
WHO. Seventieth world health assembly 2017. Available from: http://apps.who.int/gb/ebwha/pdf_files/WHA70-REC1/A70_2017_REC1-en.pdf#page=27 (Accessed on: 13 Sep, 2018).
[3]
Maor Y, Malnick S. Liver injury induced by anticancer chemotherapy and radiation therapy. Int J Hepatol 2013; 2013: 815105.
[http://dx.doi.org/10.1155/2013/815105] [PMID: 23970972]
[4]
Lee KW-C, Chan SL. Hepatotoxicity of targeted therapy for cancer. Expert Opin Drug Metab Toxicol 2016; 12(7): 789-802.
[http://dx.doi.org/10.1080/17425255.2016.1190831] [PMID: 27187715]
[5]
Han X, Zhou Y, Liu W. Precision cardio-oncology: Understanding the cardiotoxicity of cancer therapy. NPJ Precis Oncol 2017; 1(1): 31.
[http://dx.doi.org/10.1038/s41698-017-0034-x] [PMID: 29872712]
[6]
Stone JB, DeAngelis LM. Cancer-treatment-induced neurotoxicity-focus on newer treatments. Nat Rev Clin Oncol 2016; 13(2): 92-105.
[http://dx.doi.org/10.1038/nrclinonc.2015.152] [PMID: 26391778]
[7]
Zhao J. Cancer stem cells and chemoresistance: The smartest survives the raid. Pharmacol Ther 2016; 160: 145-58.
[http://dx.doi.org/10.1016/j.pharmthera.2016.02.008] [PMID: 26899500]
[8]
Chang JC. Cancer stem cells: Role in tumor growth, recurrence, metastasis, and treatment resistance. Medicine (Baltimore) 2016; 95 (Suppl. 1): S20-5.
[http://dx.doi.org/10.1097/MD.0000000000004766] [PMID: 27611935]
[9]
Barnett GC, West CM, Dunning AM, et al. Normal tissue reactions to radiotherapy: Towards tailoring treatment dose by genotype. Nat Rev Cancer 2009; 9(2): 134-42.
[http://dx.doi.org/10.1038/nrc2587] [PMID: 19148183]
[10]
Moding EJ, Kastan MB, Kirsch DG. Strategies for optimizing the response of cancer and normal tissues to radiation. Nat Rev Drug Discov 2013; 12(7): 526-42.
[http://dx.doi.org/10.1038/nrd4003] [PMID: 23812271]
[11]
Tannock IF. Conventional cancer therapy: Promise broken or promise delayed? Lancet 1998; 351 (Suppl. 2): SII9-16.
[12]
Baselga J, Bhardwaj N, Cantley LC, et al. AACR cancer progress report 2015. Clin Cancer Res 2015; 21(19): S1-S128.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1846] [PMID: 26429991]
[13]
Cortez AJ, Tudrej P, Kujawa KA, Lisowska KM. Advances in ovarian cancer therapy. Cancer Chemother Pharmacol 2018; 81(1): 17-38.
[http://dx.doi.org/10.1007/s00280-017-3501-8] [PMID: 29249039]
[14]
Bucci MK, Bevan A, Roach M III. Advances in radiation therapy: Conventional to 3D, to IMRT, to 4D, and beyond. CA Cancer J Clin 2005; 55(2): 117-34.
[http://dx.doi.org/10.3322/canjclin.55.2.117] [PMID: 15761080]
[15]
Premkumar K, Abraham SK, Santhiya ST, Ramesh A. Protective effect of Spirulina fusiformis on chemical-induced genotoxicity in mice. Fitoterapia 2004; 75(1): 24-31.
[http://dx.doi.org/10.1016/j.fitote.2003.07.008] [PMID: 14693216]
[16]
Stamatia P, Dimitra K. Amifostine protects the white cell line against genotoxic damage in patients undergoing pelvic radiotherapy. J Clin Toxicol 2012; 2(6): 2-5.
[http://dx.doi.org/10.4172/2161-0495.1000139]
[17]
Kumar A, Selvan TG, Tripathi AM, et al. Sesamol attenuates genotoxicity in bone marrow cells of whole-body γ-irradiated mice. Mutagenesis 2015; 30(5): 651-61.
[http://dx.doi.org/10.1093/mutage/gev026] [PMID: 25863274]
[18]
Kumar A, Choudhary S, Adhikari JS, Chaudhury NK. Sesamol ameliorates radiation induced DNA damage in hematopoietic system of whole body γ-irradiated mice. Environ Mol Mutagen 2018; 59(1): 79-90.
[http://dx.doi.org/10.1002/em.22118] [PMID: 28766757]
[19]
Katoch O, Kumar A, Adhikari JS, Dwarakanath BS, Agrawala PK. Sulforaphane mitigates genotoxicity induced by radiation and anticancer drugs in human lymphocytes. Mutat Res Genet Toxicol Environ Mutagen 2013; 758(1-2): 29-34.
[http://dx.doi.org/10.1016/j.mrgentox.2013.08.009] [PMID: 24004877]
[20]
Koukourakis MI. Amifostine: Is there evidence of tumor protection? Semin Oncol 2003; 30(6) (Suppl. 18): 18-30.
[http://dx.doi.org/10.1053/j.seminoncol.2003.11.014] [PMID: 14727237]
[21]
Hofer M, Falk M, Komůrková D, et al. Two new faces of amifostine: protector from DNA damage in normal cells and inhibitor of DNA repair in cancer cells. J Med Chem 2016; 59(7): 3003-17.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01628] [PMID: 26978566]
[22]
Khuda-Bukhsh AR, Moffett JR, Arun P, Namboodiri MAA. Laboratory research in homeopathy. Pro. Integr Cancer Ther 2006; 5(4): 320-32.
[http://dx.doi.org/10.1177/1534735406294794] [PMID: 17101761]
[23]
Banerjee P, Bhattacharyya SS, Pathak S, Naoual B, Belon P, Khuda-Bukhsh AR. Comparative efficacy of two microdoses of a potentized homeopathic drug, arsenicum album, to ameliorate toxicity induced by repeated sublethal injections of arsenic trioxide in mice. Pathobiology 2008; 75(3): 156-70.
[http://dx.doi.org/10.1159/000124976] [PMID: 18550913]
[24]
Samadder A, Das S, Das J, Paul A, Boujedaini N, Khuda-Bukhsh AR. The potentized homeopathic drug, Lycopodium clavatum (5C and 15C) has anti-cancer effect on hela cells in vitro. J Acupunct Meridian Stud 2013; 6(4): 180-7.
[http://dx.doi.org/10.1016/j.jams.2013.04.004] [PMID: 23972240]
[25]
Biswas SJ, Pathak S, Bhattacharjee N, Das JK, Khuda-Bukhsh AR. Efficacy of the potentized homeopathic drug, Carcinosin 200, fed alone and in combination with another drug, Chelidonium 200, in amelioration of p-dimethylaminoazobenzene-induced hepatocarcinogenesis in mice. J Altern Complement Med 2005; 11(5): 839-54.
[http://dx.doi.org/10.1089/acm.2005.11.839] [PMID: 16296917]
[26]
Khuda-Bukhsh AR, Mondal J, Shah R. Therapeutic potential of HIV nosode 30c as evaluated in A549 lung cancer cells. Homeopathy 2017; 106(4): 203-13.
[http://dx.doi.org/10.1016/j.homp.2017.09.001] [PMID: 29157470]
[27]
Montfort H. A new homeopathic approach to neoplastic diseases: From cell destruction to carcinogen-induced apoptosis. Br Homeopath J 2000; 89(2): 78-83.
[http://dx.doi.org/10.1054/homp.1999.0364] [PMID: 10826447]
[28]
Ghosh S, Bishayee K, Paul A, et al. Homeopathic mother tincture of Phytolacca decandra induces apoptosis in skin melanoma cells by activating caspase-mediated signaling via reactive oxygen species elevation. J Integr Med 2013; 11(2): 116-24.
[http://dx.doi.org/10.3736/jintegrmed2013014] [PMID: 23506692]
[29]
Remya V, Kuttan G. Homeopathic remedies with antineoplastic properties have immunomodulatory effects in experimental animals. Homeopathy 2015; 104(3): 211-9.
[http://dx.doi.org/10.1016/j.homp.2014.11.004] [PMID: 26143455]
[30]
Pathak S, Multani AS, Banerji P, Banerji P. Ruta 6 selectively induces cell death in brain cancer cells but proliferation in normal peripheral blood lymphocytes: A novel treatment for human brain cancer. Int J Oncol 2003; 23(4): 975-82.
[http://dx.doi.org/10.3892/ijo.23.4.975] [PMID: 12963976]
[31]
Es S, Kuttan G, Kc P, Kuttan R. Effect of homeopathic medicines on transplanted tumors in mice. Asian Pac J Cancer Prev 2007; 8(3): 390-4.
[PMID: 18159975]
[32]
Fisher B. Laboratory and clinical research in breast cancer-a personal adventure: The David A. Karnofsky memorial lecture. Cancer Res 1980; 40(11): 3863-74.
[PMID: 7008932]
[33]
Baskar R, Balajee AS, Geard CR, Hande MP. Isoform-specific activation of protein kinase c in irradiated human fibroblasts and their bystander cells. Int J Biochem Cell Biol 2008; 40(1): 125-34.
[http://dx.doi.org/10.1016/j.biocel.2007.07.002] [PMID: 17709275]
[34]
Pinar B, Henríquez-Hernández LA, Lara PC, et al. Radiation induced apoptosis and initial DNA damage are inversely related in locally advanced breast cancer patients. Radiat Oncol 2010; 5(1): 85.
[http://dx.doi.org/10.1186/1748-717X-5-85] [PMID: 20868468]
[35]
Roninson IB. Tumor cell senescence in cancer treatment. Cancer Res 2003; 63(11): 2705-15.
[PMID: 12782571]
[36]
Dewey WC, Ling CC, Meyn RE. Radiation-induced apoptosis: Relevance to radiotherapy. Int J Radiat Oncol Biol Phys 1995; 33(4): 781-96.
[http://dx.doi.org/10.1016/0360-3016(95)00214-8] [PMID: 7591884]
[37]
Rupnow BA, Knox SJ. The role of radiation-induced apoptosis as a determinant of tumor responses to radiation therapy. Apoptosis 1999; 4(2): 115-43.
[http://dx.doi.org/10.1023/A:1009675028784] [PMID: 14634289]
[38]
Cragg MS, Harris C, Strasser A, Scott CL. Unleashing the power of inhibitors of oncogenic kinases through BH3 mimetics. Nat Rev Cancer 2009; 9(5): 321-6.
[http://dx.doi.org/10.1038/nrc2615] [PMID: 19343035]
[39]
Baskar R, Dai J, Wenlong N, Yeo R, Yeoh K-W. Biological response of cancer cells to radiation treatment. Front Mol Biosci 2014; 1: 24.
[http://dx.doi.org/10.3389/fmolb.2014.00024] [PMID: 25988165]
[40]
Mothersill C, Seymour C. Radiation-induced bystander and other non-targeted effects: Novel intervention points in cancer therapy? Curr Cancer Drug Targets 2006; 6(5): 447-54.
[http://dx.doi.org/10.2174/156800906777723976] [PMID: 16918311]
[41]
Sokolov MV, Neumann RD. Radiation-induced bystander effects in cultured human stem cells. PLoS One 2010; 5(12): e14195.
[http://dx.doi.org/10.1371/journal.pone.0014195] [PMID: 21152027]
[42]
Pozo G, Pérez-Escutia MA, Ruíz A, et al. Management of interruptions in radiotherapy treatments: Adaptive implementation in high workload sites. Rep Pract Oncol Radiother 2019; 24(2): 239-44.
[http://dx.doi.org/10.1016/j.rpor.2019.02.003] [PMID: 30858768]
[43]
González Ferreira JA, Jaén Olasolo J, Azinovic I, Jeremic B. Effect of radiotherapy delay in overall treatment time on local control and survival in head and neck cancer: Review of the literature. Rep Pract Oncol Radiother 2015; 20(5): 328-39.
[http://dx.doi.org/10.1016/j.rpor.2015.05.010] [PMID: 26549990]
[44]
Nielsen KM, Offersen BV, Nielsen HM, Vaage-Nilsen M, Yusuf SW. Short and long term radiation induced cardiovascular disease in patients with cancer. Clin Cardiol 2017; 40(4): 255-61.
[http://dx.doi.org/10.1002/clc.22634] [PMID: 28139844]
[45]
DeVita VT Jr, Chu E. A history of cancer chemotherapy. Cancer Res 2008; 68(21): 8643-53.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6611] [PMID: 18974103]
[46]
Thariat J, Hannoun-Levi J-M, Sun Myint A, Vuong T, Gérard J-P. Past, present, and future of radiotherapy for the benefit of patients. Nat Rev Clin Oncol 2013; 10(1): 52-60.
[http://dx.doi.org/10.1038/nrclinonc.2012.203] [PMID: 23183635]
[47]
Yue J, Lu H, Liu J, Berwick M, Shen Z. Filamin-A as a marker and target for DNA damage based cancer therapy. DNA Repair (Amst) 2012; 11(2): 192-200.
[http://dx.doi.org/10.1016/j.dnarep.2011.10.019] [PMID: 22051193]
[48]
Baskar R, Lee KA, Yeo R, Yeoh KW. Cancer and radiation therapy: Current advances and future directions. Int J Med Sci 2012; 9(3): 193-9.
[http://dx.doi.org/10.7150/ijms.3635] [PMID: 22408567]
[49]
Borrego-Soto G, Ortiz-López R, Rojas-Martínez A. Ionizing radiation-induced DNA injury and damage detection in patients with breast cancer. Genet Mol Biol 2015; 38(4): 420-32.
[http://dx.doi.org/10.1590/S1415-475738420150019] [PMID: 26692152]
[50]
Khanna A. DNA damage in cancer therapeutics: A boon or a curse? Cancer Res 2015; 75(11): 2133-8.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3247] [PMID: 25931285]
[51]
Nickoloff JA, Boss MK, Allen CP, LaRue SM. Translational research in radiation-induced DNA damage signaling and repair. Transl Cancer Res 2017; b: S875-91.
[http://dx.doi.org/10.21037/tcr.2017.06.02]
[52]
Povirk LF, Shuker DE. DNA damage and mutagenesis induced by nitrogen mustards. Mutat Res 1994; 318(3): 205-26.
[http://dx.doi.org/10.1016/0165-1110(94)90015-9] [PMID: 7527485]
[53]
Sessink PJM, Van de Kerkhof MCA, Anzion RBM, Noordhoek J, Bos RP. Environmental contamination and assessment of exposure to antineoplastic agents by determination of cyclophosphamide in urine of exposed pharmacy technicians: Is skin absorption an important exposure route? Arch Environ Health 1994; 49(3): 165-9.
[http://dx.doi.org/10.1080/00039896.1994.9940377] [PMID: 8185386]
[54]
Miller BE, Miller FR, Heppner GH. Interactions between tumor subpopulations affecting their sensitivity to the antineoplastic agents cyclo-phosphamide and methotrexate. Cancer Res 1981; 41(11 Pt 1): 4378-81.
[PMID: 7306965]
[55]
Kondo N, Takahashi A, Ono K, Ohnishi T. DNA damage induced by alkylating agents and repair pathways. J Nucleic Acids 2010; 2010: 543531.
[http://dx.doi.org/10.4061/2010/543531] [PMID: 21113301]
[56]
Nikolova T, Roos WP, Krämer OH, Strik HM, Kaina B. Chloroethylating nitrosoureas in cancer therapy: DNA damage, repair and cell death signaling. Biochim Biophys Acta Rev Cancer 2017; 1868(1): 29-39.
[http://dx.doi.org/10.1016/j.bbcan.2017.01.004] [PMID: 28143714]
[57]
Zhang J, Stevens MF, Bradshaw TD. Temozolomide: Mechanisms of action, repair and resistance. Curr Mol Pharmacol 2012; 5(1): 102-14.
[http://dx.doi.org/10.2174/1874467211205010102] [PMID: 22122467]
[58]
Rocha CRR, Silva MM, Quinet A, Cabral-Neto JB, Menck CFM. DNA repair pathways and cisplatin resistance: An intimate relationship. Clinics (São Paulo) 2018; 73 (Suppl. 1): e478s.
[http://dx.doi.org/10.6061/clinics/2018/e478s] [PMID: 30208165]
[59]
Srivastava M, Raghavan SC. DNA double-strand break repair inhibitors as cancer therapeutics. Chem Biol 2015; 22(1): 17-29.
[http://dx.doi.org/10.1016/j.chembiol.2014.11.013] [PMID: 25579208]
[60]
Huehls AM, Huntoon CJ, Joshi PM, et al. Genomically incorporated 5-fluorouracil that escapes ung-initiated base excision repair blocks dna replication and activates homologous recombination. Mol Pharmacol 2016; 89(1): 53-62.
[http://dx.doi.org/10.1124/mol.115.100164] [PMID: 26494862]
[61]
Mehta A, Haber JE. Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb Perspect Biol 2014; 6(9): a016428.
[http://dx.doi.org/10.1101/cshperspect.a016428] [PMID: 25104768]
[62]
Kunz C, Focke F, Saito Y, et al. Base excision by thymine DNA glycosylase mediates DNA-directed cytotoxicity of 5-fluorouracil. PLoS Biol 2009; 7(4): e91.
[http://dx.doi.org/10.1371/journal.pbio.1000091] [PMID: 19402749]
[63]
Nitiss JL. Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer 2009; 9(5): 338-50.
[http://dx.doi.org/10.1038/nrc2607] [PMID: 19377506]
[64]
Pommier Y, Leo E, Zhang H, Marchand C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol 2010; 17(5): 421-33.
[http://dx.doi.org/10.1016/j.chembiol.2010.04.012] [PMID: 20534341]
[65]
Rivankar S. An overview of doxorubicin formulations in cancer therapy. J Cancer Res Ther 2014; 10(4): 853-8.
[http://dx.doi.org/10.4103/0973-1482.139267] [PMID: 25579518]
[66]
Venditto VJ, Simanek EE. Cancer therapies utilizing the camptothecins: A review of the in vivo literature. Mol Pharm 2010; 7(2): 307-49.
[http://dx.doi.org/10.1021/mp900243b] [PMID: 20108971]
[67]
Banáth JP, Olive PL. Expression of phosphorylated histone H2AX as a surrogate of cell killing by drugs that create DNA double-strand breaks. Cancer Res 2003; 63(15): 4347-50.
[PMID: 12907603]
[68]
Greenspan EM, Fieber M, Lesnick G, Edelman S. Response of advanced breast carcinoma to the combination of the antimetabolite, Methotrexate, and the alkylating agent, thio-TEPA. J Mt Sinai Hosp N Y 1963; 30: 246-67.
[PMID: 13950199]
[69]
Einhorn LH, Donohue J. Cis-diamminedichloroplatinum, vinblastine, and bleomycin combination chemotherapy in disseminated testicular cancer. Ann Intern Med 1977; 87(3): 293-8.
[http://dx.doi.org/10.7326/0003-4819-87-3-293] [PMID: 71004]
[70]
Einhorn LH. Testicular cancer as a model for a curable neoplasm: The Richard and Hinda Rosenthal Foundation Award Lecture. Cancer Res 1981; 41(9 Pt 1): 3275-80.
[PMID: 6167346]
[71]
Arruebo M, Vilaboa N, Sáez-Gutierrez B, et al. Assessment of the evolution of cancer treatment therapies. Cancers (Basel) 2011; 3(3): 3279-330.
[http://dx.doi.org/10.3390/cancers3033279] [PMID: 24212956]
[72]
Mills CC, Kolb EA, Sampson VB. Development of chemotherapy with cell-cycle inhibitors for adult and pediatric cancer therapy. Cancer Res 2018; 78(2): 320-5.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-2782] [PMID: 29311160]
[73]
Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA. DNA repair pathways as targets for cancer therapy. Nat Rev Cancer 2008; 8(3): 193-204.
[http://dx.doi.org/10.1038/nrc2342] [PMID: 18256616]
[74]
Matney TS, Nguyen TV, Connor TH, Dana WJ, Theiss JC. Genotoxic classification of anticancer drugs. Teratog Carcinog Mutagen 1985; 5(5): 319-28.
[http://dx.doi.org/10.1002/tcm.1770050502] [PMID: 2867614]
[75]
Swift LH, Golsteyn RM. Genotoxic anti-cancer agents and their relationship to DNA damage, mitosis, and checkpoint adaptation in proliferating cancer cells. Int J Mol Sci 2014; 15(3): 3403-31.
[http://dx.doi.org/10.3390/ijms15033403] [PMID: 24573252]
[76]
Dolfini E, Bianchi E, Ubezio P, Volontè M, Fuhrman Conti AM. Genotoxic damage induced by doxorubicin in two human melanoma cell lines. Cytotechnology 1987; 1(1): 95-7.
[http://dx.doi.org/10.1007/BF00351132] [PMID: 22358450]
[77]
Villani P, Orsière T, Duffaud F, Digue L, Bouvenot G, Botta A. Genotoxic and clastogenic effects of doxorubicin. Therapie 1998; 53(4): 391-5.
[PMID: 9806010]
[78]
Brearley MJ. Chemotherapy: Feline soft tissue and general surgery. Saunders Ltd. 2014; pp. 161-7.
[http://dx.doi.org/10.1016/B978-0-7020-4336-9.00016-0]
[79]
Milajerdi A, Djafarian K, Hosseini B. The toxicity of saffron (Crocus sativus L.) and its constituents against normal and cancer cells. J Nutr Intermed Metab 2016; 3: 23-32.
[http://dx.doi.org/10.1016/j.jnim.2015.12.332]
[80]
Kumar S, Ahmad MK, Waseem MP. Drug targets for cancer treatment: An overview. Med Chem (Los Angeles) 2015; 5(3): 5.
[http://dx.doi.org/10.4172/2161-0444.1000252]
[81]
Mishra S, Mishra RP. A comparison of the in vitro genotoxicity of anticancer drugs melphalan and mitoxantrone. Am J Biomed Sci 2013; 5: 171-6.
[http://dx.doi.org/10.5099/aj130300171]
[82]
Blagosklonny MV. Analysis of FDA approved anticancer drugs reveals the future of cancer therapy. Cell Cycle 2004; 3(8): 1035-42.
[http://dx.doi.org/10.4161/cc.3.8.1023] [PMID: 15254418]
[83]
Partridge AH, Burstein HJ, Winer EP. Side effects of chemotherapy and combined chemohormonal therapy in women with early-stage breast cancer. J Natl Cancer Inst Monogr 2001; 2001(30): 135-42.
[http://dx.doi.org/10.1093/oxfordjournals.jncimonographs.a003451] [PMID: 11773307]
[84]
Li T, Xing Y, Liu SC, Han XM, Li WC, Chen M. Long-term versus short-term introvesical chemotherapy in patients with non-muscle-invasive bladder cancer: A systematic review and meta-analysis of the published results of randomized clinical trials. J Huazhong Univ Sci Technolog Med Sci 2014; 34(5): 706-15.
[http://dx.doi.org/10.1007/s11596-014-1340-y] [PMID: 25318881]
[85]
Sitzia J, Huggins L. Side effects of cyclophosphamide, methotrexate, and 5-fluorouracil (CMF) chemotherapy for breast cancer. Cancer Pract 1998; 6(1): 13-21.
[http://dx.doi.org/10.1046/j.1523-5394.1998.1998006013.x] [PMID: 9460322]
[86]
Hengstler JG, Fuchs J, Oesch F. DNA strand breaks and DNA cross-links in peripheral mononuclear blood cells of ovarian cancer patients during chemotherapy with cyclophosphamide/carboplatin. Cancer Res 1992; 52(20): 5622-6.
[PMID: 1394186]
[87]
Emadi A, Jones RJ, Brodsky RA. Cyclophosphamide and cancer: Golden anniversary. Nat Rev Clin Oncol 2009; 6(11): 638-47.
[http://dx.doi.org/10.1038/nrclinonc.2009.146] [PMID: 19786984]
[88]
Kopjar N, Garaj-Vrhovac V, Milas I. Assessment of chemotherapy-induced DNA damage in peripheral blood leukocytes of cancer patients using the alkaline comet assay. Teratog Carcinog Mutagen 2002; 22(1): 13-30.
[http://dx.doi.org/10.1002/tcm.1035] [PMID: 11754384]
[89]
Sánchez-Suárez P, Ostrosky-Wegman P, Gallegos-Hernández F, et al. DNA damage in peripheral blood lymphocytes in patients during combined chemotherapy for breast cancer. Mutat Res 2008; 640(1-2): 8-15.
[http://dx.doi.org/10.1016/j.mrfmmm.2007.11.008] [PMID: 18207203]
[90]
Stallard S, Morrison JG, George WD, Kaye SB. Distribution of doxorubicin to normal breast and tumour tissue in patients undergoing mastectomy. Cancer Chemother Pharmacol 1990; 25(4): 286-90.
[http://dx.doi.org/10.1007/BF00684887] [PMID: 2295114]
[91]
Wang S, Konorev EA, Kotamraju S, Joseph J, Kalivendi S, Kalyanaraman B. Doxorubicin induces apoptosis in normal and tumor cells via distinctly different mechanisms. intermediacy of H(2)O(2)- and p53-dependent pathways. J Biol Chem 2004; 279(24): 25535-43.
[http://dx.doi.org/10.1074/jbc.M400944200] [PMID: 15054096]
[92]
Quispe-Tintaya W, Lee M, Dong X, Weiser DA, Vijg J, Maslov AY. Bleomycin-induced genome structural variations in normal, non-tumor cells. Sci Rep 2018; 8(1): 16523.
[http://dx.doi.org/10.1038/s41598-018-34580-8] [PMID: 30410071]
[93]
Thorn CF, Oshiro C, Marsh S, et al. Doxorubicin pathways: Pharmacodynamics and adverse effects. Pharmacogenet Genomics 2011; 21(7): 440-6.
[http://dx.doi.org/10.1097/FPC.0b013e32833ffb56] [PMID: 21048526]
[94]
May JE, Donaldson C, Gynn L, Morse HR. Chemotherapy-induced genotoxic damage to bone marrow cells: Long-term implications. Mutagenesis 2018; 33(3): 241-51.
[http://dx.doi.org/10.1093/mutage/gey014] [PMID: 30239865]
[95]
Hall S, Rudrawar S, Zunk M, et al. Protection against radiotherapy-induced toxicity. Antioxidants 2016; 5(3): 22.
[http://dx.doi.org/10.3390/antiox5030022] [PMID: 27399787]
[96]
Bayat Mokhtari R, Homayouni TS, Baluch N, et al. Combination therapy in combating cancer. Oncotarget 2017; 8(23): 38022-43.
[http://dx.doi.org/10.18632/oncotarget.16723] [PMID: 28410237]
[97]
Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther 2018; 3(1): 7.
[http://dx.doi.org/10.1038/s41392-017-0004-3] [PMID: 29560283]
[98]
Savage P, Mahmoud S. Development and economic trends in cancer therapeutic drugs: A 5-year update 2010-2014. Br J Cancer 2015; 112(6): 1037-41.
[http://dx.doi.org/10.1038/bjc.2015.56] [PMID: 25668005]
[99]
Dholaria B, Hammond W, Shreders A, Lou Y. Emerging therapeutic agents for lung cancer. J Hematol Oncol 2016; 9(1): 138.
[http://dx.doi.org/10.1186/s13045-016-0365-z] [PMID: 27938382]
[100]
Sak K. Chemotherapy and dietary phytochemical agents. Chemother Res Pract 2012; 2012: 282570.
[http://dx.doi.org/10.1155/2012/282570] [PMID: 23320169]
[101]
Mukherjee A, Sikdar S, Khuda-bukhsh AR. Evaluation of ameliorative potential of isolated flavonol fractions from Thuja occidentalis in lung cancer cells and in Benzo (a) pyrene induced lung toxicity in mice. Int J Trad Complement Med 2016; 1: 1-13.
[102]
Saha SK, Roy S, Khuda-Bukhsh AR. Ultra-highly diluted plant extracts of Hydrastis canadensis and Marsdenia condurango induce epigenetic modifications and alter gene expression profiles in HeLa cells in vitro. J Integr Med 2015; 13(6): 400-11.
[http://dx.doi.org/10.1016/S2095-4964(15)60201-1] [PMID: 26559365]
[103]
Gras M, Vallard A, Brosse C, et al. Use of complementary and alternative medicines among cancer patients: A single-center study. Oncology 2019; 97(1): 18-25.
[http://dx.doi.org/10.1159/000499629] [PMID: 31132779]
[104]
Luo Q, Asher GN. Complementary and alternative medicine use at a comprehensive cancer center. Integr Cancer Ther 2017; 16(1): 104-9.
[http://dx.doi.org/10.1177/1534735416643384] [PMID: 27151586]
[105]
Lafferty WE, Tyree PT, Devlin SM, Andersen MR, Diehr PK. Complementary and alternative medicine provider use and expenditures by cancer treatment phase. Am J Manag Care 2008; 14(5): 326-34.
[PMID: 18471036]
[106]
van der Weg F, Streuli RA. Use of alternative medicine by patients with cancer in a rural area of Switzerland. Swiss Med Wkly 2003; 133(15-16): 233-40.
[PMID: 12811673]
[107]
Manfred M. Homeopathic cancer drugs: Oncology materia medica 2017. Available from: https://www.narayana-verlag.com/homeopathy/pdf/Homeopathic-Cancer-Drugs-Oncology-Materia-Medica-2-Vols-Manfred-Mueller.23512_3_sample_remedy_germanium.pdf (Accessed on: 13 Sep, 2019).
[108]
Wood P. Homeopathic Cancer Drugs: Oncology materia medica. homoeopathic links 2018; 31(2): 168.
[http://dx.doi.org/10.1055/s-0038-1654692]
[109]
Boericke W. Pocket manual of homoeopathic materia medica & repertory: Comprising of the characteristic and guiding symptoms of all remedies (clinical and pathogenetic) including Indian drugs. (1st ed.), India: B Jain Pub Pvt Ltd. 2018.
[110]
Glickman-Simon R, Pettit J. Viscum album (mistletoe) for pancreatic cancer, electromagnetic field therapy for osteoarthritis, homeopathy for multidrug-resistant tuberculosis, vitamin D for depression, acupuncture for insomnia. Explore (NY) 2015; 11(3): 231-5.
[http://dx.doi.org/10.1016/j.explore.2015.02.013] [PMID: 25835350]
[111]
Thompson EA, Reillly D. The homeopathic approach to symptom control in the cancer patient: A prospective observational study. Palliat Med 2002; 16(3): 227-33.
[http://dx.doi.org/10.1191/0269216302pm539oa] [PMID: 12046999]
[112]
Ernst E, Sagar SM. Homeopathy for cancer? Curr Oncol 2007; 14(4): 128-30.
[http://dx.doi.org/10.3390/curroncol14040004] [PMID: 17710204]
[113]
Frenkel M. Is there a role for homeopathy in cancer care? Questions and challenges. Curr Oncol Rep 2015; 17(9): 43.
[http://dx.doi.org/10.1007/s11912-015-0467-8] [PMID: 26210222]
[114]
Bhattacharjee N, Pathak S, Khuda-Bukhsh AR. Amelioration of carcinogen-induced toxicity in mice by administration of a potentized home-opathic drug, natrum sulphuricum 200. Evid Based Complement Alternat Med 2009; 6(1): 65-75.
[http://dx.doi.org/10.1093/ecam/nem067] [PMID: 18955221]
[115]
MacLaughlin BW, Gutsmuths B, Pretner E, et al. Effects of homeopathic preparations on human prostate cancer growth in cellular and animal models. Integr Cancer Ther 2006; 5(4): 362-72.
[http://dx.doi.org/10.1177/1534735406295350] [PMID: 17101766]
[116]
Banerjee A, Pathak S, Biswas SJ, et al. Chelidonium majus 30C and 200C in induced hepato-toxicity in rats. Homeopathy 2010; 99(3): 167-76.
[http://dx.doi.org/10.1016/j.homp.2010.05.008] [PMID: 20674840]
[117]
Pathak S, Kumar Das J, Jyoti Biswas S, Khuda-Bukhsh AR. Protective potentials of a potentized homeopathic drug, Lycopodium-30, in ameliorating azo dye induced hepatocarcinogenesis in mice. Mol Cell Biochem 2006; 285(1-2): 121-31.
[http://dx.doi.org/10.1007/s11010-005-9065-7] [PMID: 16538399]
[118]
Pathak S, Banerjee A, Paul S, Khuda-Bukhsh AR. Protective potentials of a plant extract (Lycopodium clavatum) on mice chronically fed hepato-carcinogens. Indian J Exp Biol 2009; 47(7): 602-7.
[PMID: 19761046]
[119]
Biswas R, Mandal SK, Dutta S, Bhattacharyya SS, Boujedaini N, Khuda-Bukhsh AR. Thujone-Rich Fraction of Thuja occidentalis demonstrates major anti-cancer potentials: Evidences from in vitro studies on A375 cells. Evid Based Complement Alternat Med 2011; 2011: 568148.
[http://dx.doi.org/10.1093/ecam/neq042] [PMID: 21647317]
[120]
Saha S, Bhattacharjee P, Mukherjee S, et al. Contribution of the ROS-p53 feedback loop in thuja-induced apoptosis of mammary epithelial carcinoma cells. Oncol Rep 2014; 31(4): 1589-98.
[http://dx.doi.org/10.3892/or.2014.2993] [PMID: 24482097]
[121]
Kumar KBH, Sunila ES, Kuttan G, Preethi KC, Venugopal CN, Kuttan R. Inhibition of chemically induced carcinogenesis by drugs used in homeopathic medicine. Asian Pac J Cancer Prev 2007; 8(1): 98-102.
[PMID: 17477781]
[122]
Mondal J, Das J, Shah R, Khuda-Bukhsh AR. A homeopathic nosode, Hepatitis C 30 demonstrates anticancer effect against liver cancer cells in vitro by modulating telomerase and topoisomerase II activities as also by promoting apoptosis via intrinsic mitochondrial pathway. J Integr Med 2016; 14(3): 209-18.
[http://dx.doi.org/10.1016/S2095-4964(16)60251-0] [PMID: 27181128]
[123]
Mondal J, Panigrahi AK, Khuda-Bukhsh AR. Anticancer potential of Conium maculatum extract against cancer cells in vitro: Drug-DNA interaction and its ability to induce apoptosis through ROS generation. Pharmacogn Mag 2014; 10(39) (Suppl. 3): S524-33.
[http://dx.doi.org/10.4103/0973-1296.139792] [PMID: 25298670]
[124]
Sikdar S, Mukherjee A, Boujedaini N, Khuda-Bukhsh AR. Ethanolic extract of Condurango (Marsdenia condurango) used in traditional systems of medicine including homeopathy against cancer can induce DNA damage and apoptosis in non small lung cancer cells, A549 and H522, in vitro. TANG 2013; 3(1): 1-9.
[http://dx.doi.org/10.5667/tang.2012.0044]
[125]
Saha S, Bhattacharjee P, Guha D, et al. Sulphur alters NFκB-p300 cross-talk in favour of p53-p300 to induce apoptosis in non-small cell lung carcinoma. Int J Oncol 2015; 47(2): 573-82.
[http://dx.doi.org/10.3892/ijo.2015.3061] [PMID: 26095308]
[126]
Hoffman C. Benefits of complementary therapies. Breast Cancer Res 2007; 9(S2): 9.
[http://dx.doi.org/10.1186/bcr1807]
[127]
Dos Santos AP, Cardoso TN, Waisse S, Bonamin LV. Homeopathy in experimental cancer models: A systematic review. Homeopathy 2021; 110(2): 76-85.
[http://dx.doi.org/10.1055/s-0040-1716369] [PMID: 33348419]
[128]
Kassab S, Cummings M, Berkovitz S, van Haselen R, Fisher P. Homeopathic medicines for adverse effects of cancer treatments. Cochrane Database Syst Rev 2009; 15(2): CD004845.
[http://dx.doi.org/10.1002/14651858.CD004845.pub2] [PMID: 19370613]
[129]
Rostock M, Naumann J, Guethlin C, Guenther L, Bartsch H, Walach H. Classical homeopathy in the treatment of cancer patients - a proAdjuvant spective observational study of two independent cohorts. BMC Cancer 2011; 11: 19.
[http://dx.doi.org/10.1186/1471-2407-11-19]
[130]
Kulkarni A, Nagarkar BM. No radiation protection by use of homoeopathic medicines. Hahnemann Homoeopath Sand 1988; 12: 20-3.
[131]
Balzarini A, Felisi E, Martini A, De Conno F. Efficacy of homeopathic treatment of skin reactions during radiotherapy for breast cancer: A randomised, double-blind clinical trial. Br Homeopath J 2000; 89(1): 8-12.
[http://dx.doi.org/10.1054/homp.1999.0328] [PMID: 10703904]
[132]
Pommier P, Gomez F, Sunyach MP, D’Hombres A, Carrie C, Montbarbon X. Phase III randomized trial of Calendula officinalis compared with trolamine for the prevention of acute dermatitis during irradiation for breast cancer. J Clin Oncol 2004; 22(8): 1447-53.
[http://dx.doi.org/10.1200/JCO.2004.07.063] [PMID: 15084618]
[133]
Oberbaum M, Yaniv I, Ben-Gal Y, et al. A randomized, controlled clinical trial of the homeopathic medication TRAUMEEL S in the treat-ment of chemotherapy-induced stomatitis in children undergoing stem cell transplantation. Cancer 2001; 92(3): 684-90.
[http://dx.doi.org/10.1002/1097-0142(20010801)92:3<684::AID-CNCR1371>3.0.CO;2-#] [PMID: 11505416]
[134]
Sorrentino L, Piraneo S, Riggio E, et al. Is there a role for homeopathy in breast cancer surgery? A first randomized clinical trial on treatment with Arnica montana to reduce post-operative seroma and bleeding in patients undergoing total mastectomy. J Intercult Ethnopharmacol 2017; 6(1): 1-8.
[http://dx.doi.org/10.5455/jice.20161229055245] [PMID: 28163953]
[135]
Singh C, Sood P, Kaur M. Efficacy of homoeopathy in cancer treatment- An observational study. J Adv Med Dent Scie Res 2018; 6: 53-62.
[136]
Frass M, Friehs H, Thallinger C, et al. Influence of adjunctive classical homeopathy on global health status and subjective wellbeing in cancer patients - A pragmatic randomized controlled trial. Complement Ther Med 2015; 23(3): 309-17.
[http://dx.doi.org/10.1016/j.ctim.2015.03.004] [PMID: 26051564]
[137]
Rostock M, Naumann J, Guethlin C, Guenther L, Bartsch HH, Walach H. Classical homeopathy in the treatment of cancer patients-a prospective observational study of two independent cohorts. BMC Cancer 2011; 11(1): 19.
[http://dx.doi.org/10.1186/1471-2407-11-19] [PMID: 21241504]
[138]
Pitari G. Scientific research in homeopathic medicine: Validation, methodology and perspectives. Adv Access Publ 2006; 4: 271-3.
[139]
Ernst E, Pittler MH. Efficacy of homeopathic arnica: A systematic review of placebo-controlled clinical trials. Arch Surg 1998; 133(11): 1187-90.
[http://dx.doi.org/10.1001/archsurg.133.11.1187] [PMID: 9820349]
[140]
Doehring C, Sundrum A. Efficacy of homeopathy in livestock according to peer-reviewed publications from 1981 to 2014. Vet Rec 2016; 179(24): 628.
[http://dx.doi.org/10.1136/vr.103779] [PMID: 27956476]
[141]
Gold PD, Sullivan ML. Curated by Iris Bell M 2017. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22894650 (Accessed on: 16 Aug, 2019).
[142]
Frass M, Lechleitner P, Gründling C, et al. Homeopathic treatment as an add-on therapy may improve quality of life and prolong survival in patients with non-small cell lung cancer: A prospective, randomized, placebo-controlled, double-blind, three-arm, multicenter study. Oncologist 2020; 25(12): e1930-55.
[http://dx.doi.org/10.1002/onco.13548] [PMID: 33010094]
[143]
Ojo O. Nutrition and chronic conditions. Nutrients 2019; 11(2): 459.
[http://dx.doi.org/10.3390/nu11020459]
[144]
Sunila ES, Kuttan G. Protective effect of Thuja occidentalis against radiation-induced toxicity in mice. Integr Cancer Ther 2005; 4(4): 322-8.
[http://dx.doi.org/10.1177/1534735405282251] [PMID: 16282509]
[145]
Mukherjee A, Boujedaini N, Khuda-Bukhsh AR. Homeopathic Thuja 30C ameliorates benzo(a)pyrene-induced DNA damage, stress and viability of perfused lung cells of mice in vitro. J Integr Med 2013; 11(6): 397-404.
[http://dx.doi.org/10.3736/jintegrmed2013054] [PMID: 24299603]
[146]
Das S, Das J, Samadder A, Bhattacharyya SS, Das D, Khuda-Bukhsh AR. Biosynthesized silver nanoparticles by ethanolic extracts of Phytolacca decandra, Gelsemium sempervirens, Hydrastis canadensis and Thuja occidentalis induce differential cytotoxicity through G2/M arrest in A375 cells. Colloids Surf B Biointerfaces 2013; 101: 325-36.
[http://dx.doi.org/10.1016/j.colsurfb.2012.07.008] [PMID: 23010037]
[147]
Aherne SA, O’Brien NM. Mechanism of protection by the flavonoids, quercetin and rutin, against tert-butylhydroperoxide- and menadione-induced DNA single strand breaks in Caco-2 cells. Free Radic Biol Med 2000; 29(6): 507-14.
[http://dx.doi.org/10.1016/S0891-5849(00)00360-9] [PMID: 11025194]
[148]
Bear WL, Teel RW. Effects of citrus flavonoids on the mutagenicity of heterocyclic amines and on cytochrome P450 1A2 activity. Anticancer Res 2000; 20(5B): 3609-14.
[PMID: 11131669]
[149]
Preethi KC, Nair CKK, Kuttan R. Clastogenic potential of Ruta graveolens extract and a homeopathic preparation in mouse bone marrow cells. Asian Pac J Cancer Prev 2008; 9(4): 763-9.
[PMID: 19256773]
[150]
Das S, Saha SK, De A, Das D, Khuda-Bukhsh AR. Potential of the homeopathic remedy, Arnica Montana 30C, to reduce DNA damage in Escherichia coli exposed to ultraviolet irradiation through up-regulation of nucleotide excision repair genes. J Chin Integr Med 2012; 10(3): 337-46.
[http://dx.doi.org/10.3736/jcim20120314] [PMID: 22409925]
[151]
Khuda-Bukhsh AR, Banik S. Assessment of cytogenetic damage in X-irradiated mice, and its alteration by oral administration of a potentized homœopathic drug, Ginseng 30. Br homoeopathic J 1992; 81(2): 114.
[http://dx.doi.org/10.1016/S0007-0785(05)80544-7]
[152]
Sikdar S, Khuda-bukhsh AR. Post-cancer treatment of Condurango 30C, traditionally used in homeopathy, ameliorates tissue damage and stimulates reactive oxygen species in benzo [a] pyrene-induced lung cancer of rat. TANG 2013; 3(3): 1-8.
[http://dx.doi.org/10.5667/tang.2013.0015]
[153]
Dhawan A, Anderson D. The comet assay in toxicology. Cambridge: Royal Society of Chemistry 2009.
[http://dx.doi.org/10.1039/9781847559746]
[154]
OECD. Test No 489: In Vivo Mammalian Alkaline Comet Assay, OECD Guidelines for the Testing of Chemicals. OECD Publishing Section 2014; 4: pp. 1-21.
[155]
Khan S, Kumar A, Adhikari JS, Rizvi MA, Chaudhury NK. Protective effect of sesamol against 60Co γ-ray-induced hematopoietic and gastrointestinal injury in C57BL/6 male mice. Free Radic Res 2015; 49(11): 1344-61.
[http://dx.doi.org/10.3109/10715762.2015.1071485] [PMID: 26156438]
[156]
Biechonski S, Olender L, Zipin-Roitman A, et al. Attenuated DNA damage responses and increased apoptosis characterize human hematopoietic stem cells exposed to irradiation. Sci Rep 2018; 8(1): 6071.
[http://dx.doi.org/10.1038/s41598-018-24440-w] [PMID: 29666389]
[157]
Du X, Pan H, Zhang C, et al. Zingiber officinale extract modulates γ-rays-induced immunosuppression in mice. J Med Plants Res 2010; 4: 1647-55.
[158]
Leal MF, Antunes LMG, Lamarão MFV, et al. The protective effect of Canova homeopathic medicine in cyclophosphamide-treated non-human primates. Food Chem Toxicol 2012; 50(12): 4412-20.
[http://dx.doi.org/10.1016/j.fct.2012.09.002] [PMID: 22982473]
[159]
Yadav R, Jee B, Rao KS. How homeopathic medicine works in cancer treatment: Deep insight from clinical to experimental studies. J Exp Ther Oncol 2019; 13(1): 71-6.
[PMID: 30658031]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy