Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Design, Synthesis, and In vitro Anticancer Activity of Novel Chrysin Derivatives

Author(s): Qunying Yu*, Bo Huang and Yun Ling

Volume 20, Issue 7, 2023

Published on: 04 August, 2022

Page: [854 - 862] Pages: 9

DOI: 10.2174/1570180819666220512150604

Price: $65

Abstract

Background: Cancer is a serious threaten to human life, and drug developers are pushing hard to discover potent anticancer agents. Pyrimidine and flavonoids are both attractive entities in medicinal chemistry; it is necessary to get new cancer drugs capitalizing on the two frameworks.

Objective: This work includes the synthesis of series chrysin derivatives containing different substituted pyrimidines and an evaluation of their in vitro anticancer activity.

Methods: Chrysin was merged with different substituted pyrimidines. Their antiproliferative activity was screened against five cancer cell lines (A549, HepG2, HCT116, MCF-7, and PC-3) using MTS method, and the marketed anticancer drug erlotinib was used as a reference.

Results: Seventeen chrysin derivatives were synthesized. Compound 33E showed the best activity against A549, HepG2, MCF-7, and PC-3 cells, with IC50 values of 30.30 μM, 21.02 μM, 24.67 μM, 22.13 μM in A549, HepG2, MCF-7, PC-3 cells, respectively. Compound 33A showed the best activity against HCT116 cells, with an IC50 value of 4.83 μM in HCT116 cell lines.

Conclusion: In the present study, a new set of chrysin derivatives containing anilinopyrimidine, piperazine- pyrimidine and piperidine-pyrimidine were prepared. Two compounds (33D, 33E) display higher toxicity than erlotinib toward the five cancerous cell lines (A549, HepG2, HCT116, MCF-7, and PC-3), and one compound (33A) exhibits better inhibitory activity than erlotinib to the HCT116 cells. These results underline the significance of the strategy to merge chrysin with different substituted pyrimidines for obtaining efficient anticancer drugs.

Keywords: Chrysin, antiproliferative activity, anticancer, anilinopyrimidine, erlotinib, flavonoids.

Graphical Abstract

[1]
Rivera, L.B.; Bergers, G. CANCER. Tumor angiogenesis, from foe to friend. Science, 2015, 349(6249), 694-695.
[http://dx.doi.org/10.1126/science.aad0862] [PMID: 26273044]
[2]
Manohar, S.; Rajesh, U.C.; Khan, S.I.; Tekwani, B.L.; Rawat, D.S. Novel 4-aminoquinoline-pyrimidine based hybrids with improved in vitro and in vivo antimalarial activity. ACS Med. Chem. Lett., 2012, 3(7), 555-559.
[http://dx.doi.org/10.1021/ml3000808] [PMID: 24900509]
[3]
Chennuru, R.; Koya, R.T.; Kommavarapu, P.; Narasayya, S.V.; Muthudoss, P.; Muthudoss, P.; Babu, R.R.C.; Mahapatra, S. In situ metastable form: A route for the generation of hydrate and anhydrous forms of ceritinib. Cryst. Growth Des., 2017, 17(12), 6341-6352.
[http://dx.doi.org/10.1021/acs.cgd.7b01027]
[4]
Huang, W.S.; Liu, S.; Zou, D.; Thomas, M.; Wang, Y.; Zhou, T.; Romero, J.; Kohlmann, A.; Li, F.; Qi, J.; Cai, L.; Dwight, T.A.; Xu, Y.; Xu, R.; Dodd, R.; Toms, A.; Parillon, L.; Lu, X.; Anjum, R.; Zhang, S.; Wang, F.; Keats, J.; Wardwell, S.D.; Ning, Y.; Xu, Q.; Moran, L.E.; Mohemmad, Q.K.; Jang, H.G.; Clackson, T.; Narasimhan, N.I.; Rivera, V.M.; Zhu, X.; Dalgarno, D.; Shakespeare, W.C. Discovery of brigatinib (AP26113), a phosphine oxide-containing, potent, orally active inhibitor of anaplastic lymphoma kinase. J. Med. Chem., 2016, 59(10), 4948-4964.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00306] [PMID: 27144831]
[5]
Sakai, H.; Morise, M.; Kato, T.; Matsumoto, S.; Sakamoto, T.; Kumagai, T.; Tokito, T.; Atagi, S.; Kozuki, T.; Tanaka, H.; Chikamori, K.; Shinagawa, N.; Takeoka, H.; Bruns, R.; Straub, J.; Schumacher, K.M.; Paik, P.K. Tepotinib in patients with NSCLC harbouring MET exon 14 skipping: Japanese subset analysis from the Phase II VISION study. Jpn. J. Clin. Oncol., 2021, 51(8), 1261-1268.
[http://dx.doi.org/10.1093/jjco/hyab072] [PMID: 34037224]
[6]
Sun, L.P.; Chen, A.L.; Hung, H.C.; Chien, Y.H.; Huang, J.S.; Huang, C.Y.; Chen, Y.W.; Chen, C.N. Chrysin: A histone deacetylase 8 inhibitor with anticancer activity and a suitable candidate for the standardization of Chinese propolis. J. Agric. Food Chem., 2012, 60(47), 11748-11758.
[http://dx.doi.org/10.1021/jf303261r] [PMID: 23134323]
[7]
Kasala, E.R.; Bodduluru, L.N.; Madana, R.M. ; v, A.K.; Gogoi, R.; Barua, C.C. Chemopreventive and therapeutic potential of chrysin in cancer: mechanistic perspectives. Toxicol. Lett., 2015, 233(2), 214-225.
[http://dx.doi.org/10.1016/j.toxlet.2015.01.008] [PMID: 25596314]
[8]
Yufei, Z.; Yuqi, W.; Binyue, H.; Lingchen, T.; Xi, C.; Hoffelt, D.; Fuliang, H. Chrysin inhibits melanoma tumor metastasis via interfering with the foxm1/β-catenin signaling. J. Agric. Food Chem., 2020, 68(35), 9358-9367.
[http://dx.doi.org/10.1021/acs.jafc.0c03123] [PMID: 32797754]
[9]
Viegas-Junior, C.; Danuello, A.; da Silva Bolzani, V.; Barreiro, E.J.; Fraga, C.A.; Fraga, C.A.M. Molecular hybridization: A useful tool in the design of new drug prototypes. Curr. Med. Chem., 2007, 14(17), 1829-1852.
[http://dx.doi.org/10.2174/092986707781058805] [PMID: 17627520]

© 2025 Bentham Science Publishers | Privacy Policy