Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

A Mini Review on the Chemical and Bio-Medicinal Aspects along with Energy Storage Applications of Anthraquinone and its Analogues

Author(s): Nusrat Shafiq*, Gul Zareen, Uzma Arshad, Fazeelat Imtiaz, Maryam Rashid, Shagufta Parveen, Farah Yasmin and Basharat Ali

Volume 21, Issue 2, 2024

Published on: 16 February, 2023

Page: [134 - 150] Pages: 17

DOI: 10.2174/1570193X19666220512141411

Price: $65

Abstract

Quinones have established enthusiasm of the researchers because of their enormous applicable properties. Researchers are now concerned about the synthesized and natural anthraquinone based derivatives due to their distinctive properties. Intensive research has been made with special focus on laxative, antiulcerogenic, inhibition of enzymes, cytotoxicity, antimicrobial, antiinflammatory, antiarthritic, antirheumatic, antidepressant, fungicidal, insecticidal, antioxidant and antitumor activity of anthraquinone based derivatives. The awareness of environmental protection, safety and health, free of pollution, disease and particularly to maintain green, are the derivatives being considered and acknowledged in medicinal research as well as in pharmaceutical world. Anthraquinone linked with amino derivatives has wide-spectrum therapeutic applications and a center of focus as an important biological scaffold in different fields like medicines, electronic industry, and cosmetics. Owing to the remarkable activities of anthraquinone, we outline the structural data, their sources, synthetic routes and therapeutic potentials.

Keywords: Anthraquinones, anti-depressant, antiarthritic, Friedel-crafts, phthalic anhydride, storage batteries

Graphical Abstract

[1]
Locatelli, M.; Epifano, F.; Genovese, S.; Carlucci, G. Koncić M.Z.; Kosalec, I.; Kremer, D. Anthraquinone profile, antioxidant and antimicrobial properties of bark extracts of Rhamnus catharticus and R. orbiculatus. Nat. Prod. Commun., 2011, 6(9), 1275-1280.
[http://dx.doi.org/10.1177/1934578X1100600917] [PMID: 21941897]
[2]
Rodríguez, F.; Blanco, M.D.; Adrados, L.F.; Burillo, J.; Tijero, J.F. Selective oxidation of anthracene to anthraquinone in acetic acid with air in presence of nitric acid. Tetrahedron Lett., 1989, 30(18), 2417-2420.
[http://dx.doi.org/10.1016/S0040-4039(01)80415-9]
[3]
Pandith, S.A.; Hussain, A.; Bhat, W.W.; Dhar, N.; Qazi, A.K.; Rana, S.; Razdan, S.; Wani, T.A.; Shah, M.A.; Bedi, Y.; Hamid, A.; Lattoo, S.K. Evaluation of anthraquinones from Himalayan rhubarb (Rheum emodi Wall. ex Meissn.) as antiproliferative agents. S. Afr. J. Bot., 2014, 95, 1-8.
[http://dx.doi.org/10.1016/j.sajb.2014.07.012]
[4]
SEN. S. N. Crystal structure of anthraquinone; Calcutta University, 1948.
[5]
Murty, B. The space group of anthraquinone. Acta Crystallogr., 1955, 8(2), 113-114.
[http://dx.doi.org/10.1107/S0365110X5500042X]
[6]
Prakash, A. Refinement of the crystal structure of anthraquinone. Acta Crystallogr., 1967, 22(3), 439-440.
[http://dx.doi.org/10.1107/S0365110X67000878] [PMID: 5630459]
[7]
Moss, G. Nomenclature of fused and bridged fused ring systems (IUPAC Recommendations 1998). Pure Appl. Chem., 1998, 70(1), 143-216.
[http://dx.doi.org/10.1351/pac199870010143]
[8]
Laurent, A. Ueber verschiedene Verbindungen des Anthracen’s. Justus Liebigs Ann. Chem., 1840, 34(3), 287-296.
[http://dx.doi.org/10.1002/jlac.18400340305]
[9]
Chien, S.-C.; Wu, Y.-C.; Chen, Z.-W.; Yang, W.-C. Naturally occurring anthraquinones: Chemistry and therapeutic potential in autoimmune diabetes. Evid. Based Complement. Altern. Med., 2015, 2015
[http://dx.doi.org/10.1155/2015/357357]
[10]
Yao, M.; Yamazaki, S-i.; Senoh, H.; Sakai, T.; Kiyobayashi, T. Crystalline polycyclic quinone derivatives as organic positive-electrode materials for use in rechargeable lithium batteries. Mater. Sci. Eng. B, 2012, 177(6), 483-487.
[http://dx.doi.org/10.1016/j.mseb.2012.02.007]
[11]
Wangchuk, P. Therapeutic applications of natural products in herbal medicines, biodiscovery programs, and biomedicine. J. Biological. Active Prod. Nat., 2018, 8(1), 1-20.
[http://dx.doi.org/10.1080/22311866.2018.1426495]
[12]
Tutin, F.; Clewer, H.W.B. XCIX. The constituents of rhubarb. J. Chem. Soc. Trans., 1911, 99(0), 946-967.
[http://dx.doi.org/10.1039/CT9119900946]
[13]
Tikhomirov, A.S.; Shtil, A.A.; Shchekotikhin, A.E. Advances in the discovery of anthraquinone-based anticancer agents. Rec. Pat. Anticancer Drug Discov., 2018, 13(2), 159-183.
[http://dx.doi.org/10.2174/1574892813666171206123114] [PMID: 29210664]
[14]
Panichayupakaranant, P.; Sakunpak, A.; Sakunphueak, A. Quantitative HPLC determination and extraction of anthraquinones in Senna alata leaves. J. Chromatogr. Sci., 2009, 47(3), 197-200.
[http://dx.doi.org/10.1093/chromsci/47.3.197] [PMID: 19298705]
[15]
Kuo, Y-H.; Lee, P-H.; Wein, Y-S. Four new compounds from the seeds of Cassia fistula. J. Nat. Prod., 2002, 65(8), 1165-1167.
[http://dx.doi.org/10.1021/np020003k] [PMID: 12193023]
[16]
Sydiskis, R.J.; Owen, D.G.; Lohr, J.L.; Rosler, K.H.; Blomster, R.N. Inactivation of enveloped viruses by anthraquinones extracted from plants. Antimicrob. Agents Chemother., 1991, 35(12), 2463-2466.
[http://dx.doi.org/10.1128/AAC.35.12.2463] [PMID: 1810179]
[17]
Dey, P.M.; Harborne, J.B. Plant biochemistry; Elsevier: Amsterdam, 1997.
[18]
Han, Y-S.; Van der Heijden, R.; Verpoorte, R. Biosynthesis of anthraquinones in cell cultures of the Rubiaceae. Plant Cell Tissue Organ Cult., 2001, 67(3), 201-220.
[http://dx.doi.org/10.1023/A:1012758922713]
[19]
Srinivas, G.; Babykutty, S.; Sathiadevan, P.P.; Srinivas, P. Molecular mechanism of emodin action: Transition from laxative ingredient to an antitumor agent. Med. Res. Rev., 2007, 27(5), 591-608.
[http://dx.doi.org/10.1002/med.20095] [PMID: 17019678]
[20]
Mohammed, M.M.; El-Souda, S.S.; El-Hallouty, S.M.; Kobayashi, N. Antiviral and cytotoxic activities of anthraquinones isolated from Cassia roxburghii Linn. leaves. Herba Pol., 2013, 59(4), 33-44.
[http://dx.doi.org/10.2478/hepo-2013-0022]
[21]
Shang, X-F.; Zhao, Z-M.; Li, J-C.; Yang, G-Z.; Liu, Y-Q.; Dai, L-X.; Zhang, Z-J.; Yang, Z-G.; Miao, X-L.; Yang, C-J.; Zhang, J-Y. Insecticidal and antifungal activities of Rheum palmatum L. anthraquinones and structurally related compounds. Ind. Crops Prod., 2019, 137, 508-520.
[http://dx.doi.org/10.1016/j.indcrop.2019.05.055]
[22]
Wang, W.; Chen, R.; Luo, Z.; Wang, W.; Chen, J. Antimicrobial activity and molecular docking studies of a novel anthraquinone from a marine-derived fungus Aspergillus versicolor. Nat. Prod. Res., 2018, 32(5), 558-563.
[http://dx.doi.org/10.1080/14786419.2017.1329732] [PMID: 28511613]
[23]
Kim, Y-M.; Lee, C-H.; Kim, H-G.; Lee, H-S. Anthraquinones isolated from Cassia tora (Leguminosae) seed show an antifungal property against phytopathogenic fungi. J. Agric. Food Chem., 2004, 52(20), 6096-6100.
[http://dx.doi.org/10.1021/jf049379p] [PMID: 15453672]
[24]
Osman, C.P.; Ismail, N.H.; Ahmad, R.; Ahmat, N.; Awang, K.; Jaafar, F.M. Anthraquinones with antiplasmodial activity from the roots of Rennellia elliptica Korth. (Rubiaceae). Molecules, 2010, 15(10), 7218-7226.
[http://dx.doi.org/10.3390/molecules15107218] [PMID: 20966871]
[25]
Liu, H.; Gu, L.B.; Tu, Y.; Hu, H.; Huang, Y.R.; Sun, W. Emodin ameliorates cisplatin-induced apoptosis of rat renal tubular cells in vitro by activating autophagy. Acta Pharmacol. Sin., 2016, 37(2), 235-245.
[http://dx.doi.org/10.1038/aps.2015.114] [PMID: 26775661]
[26]
Ma, J-W.; Hung, C-M.; Lin, Y-C.; Ho, C-T.; Kao, J-Y.; Way, T-D. Aloe-emodin inhibits HER-2 expression through the downregulation of Y-box binding protein-1 in HER-2-overexpressing human breast cancer cells. Oncotarget, 2016, 7(37), 58915-58930.
[http://dx.doi.org/10.18632/oncotarget.10410] [PMID: 27391337]
[27]
Iwanowycz, S.; Wang, J.; Hodge, J.; Wang, Y.; Yu, F.; Fan, D. Emodin inhibits breast cancer growth by blocking the tumor-promoting feedforward loop between cancer cells and macrophages. Mol. Cancer Ther., 2016, 15(8), 1931-1942.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0987] [PMID: 27196773]
[28]
Mijatović S.; Maksimović-Ivanić D. Aloe emodin: From anti-to pro-tumor action. Hrana Ishr., 2018, 59(2), 59-67.
[http://dx.doi.org/10.5937/HraIsh1802059M]
[29]
Sougiannis, A. T.; Kelley, B.; Velazquez, K. E.; Enos, R. T.; Bader, J. E.; Chatzistamou, I.; Pena, M. M.; Nagarkatti, M.; Carson, s. A.; Fan, D. Emodin, a natural anthraquinone, may help protect gastrointestinal health during chemotherapy treatment by decreasing inflammation of the gastric mucosa and preserving gut morphology. The FASEB J., 2019, 33(1_supplement), 368.2-368.2.
[http://dx.doi.org/10.1096/fasebj.2019.33.1_supplement.368.2]
[30]
Dhorajiwala, T.M.; Halder, S.T.; Samant, L. Comparative in silico molecular docking analysis of l-threonine-3-dehydrogenase, a protein target against African trypanosomiasis using selected phytochemicals. J. Appl. Biotechnol. Reports, 2019, 6(3), 101-108.
[http://dx.doi.org/10.29252/JABR.06.03.04]
[31]
Sudhakar, P.; Prabhu, V.V.; Jamuna, B.; Adithya, R.; Joy, A.; Anand, R. Preclinical toxicological evaluation of Aloe vera health drinks in wistar rats. Inter. J. Res. Pharma. Sci. Technol., 2018, 1(1), 27-32.
[http://dx.doi.org/10.33974/ijrpst.v1i1.33]
[32]
Radha, M.H.; Laxmipriya, N.P. Evaluation of biological properties and clinical effectiveness of Aloe vera: A systematic review. J. Tradit. Complement. Med., 2014, 5(1), 21-26.
[http://dx.doi.org/10.1016/j.jtcme.2014.10.006] [PMID: 26151005]
[33]
Fraihat, A.; Alatrash, L.; Abbasi, R.; Abu-Irmaileh, B.; Hamed, S.; Mohammad, M.; Abu-Rish, E.; Bustanji, Y. Inhibitory effects of methanol extracts of selected plants on the proliferation of two human melanoma cell lines. Trop. J. Pharm. Res., 2018, 17(6), 1081-1086.
[http://dx.doi.org/10.4314/tjpr.v17i6.15]
[34]
Huang, Q.; Lu, G.; Shen, H.M.; Chung, M.C.; Ong, C.N. Anti-cancer properties of anthraquinones from rhubarb. Med. Res. Rev., 2007, 27(5), 609-630.
[http://dx.doi.org/10.1002/med.20094] [PMID: 17022020]
[35]
Mian, M.; Brunelleschi, S.; Tarli, S.; Rubino, A.; Benetti, D.; Fantozzi, R.; Zilletti, L. Rhein: An anthraquinone that modulates superoxide anion production from human neutrophils. J. Pharm. Pharmacol., 1987, 39(10), 845-847.
[http://dx.doi.org/10.1111/j.2042-7158.1987.tb05131.x] [PMID: 2891826]
[36]
Aviello, G.; Rowland, I.; Gill, C.I.; Acquaviva, A.M.; Capasso, F.; McCann, M.; Capasso, R.; Izzo, A.A.; Borrelli, F. Anti-proliferative effect of rhein, an anthraquinone isolated from Cassia species, on Caco-2 human adenocarcinoma cells. J. Cell. Mol. Med., 2010, 14(7), 2006-2014.
[http://dx.doi.org/10.1111/j.1582-4934.2009.00815.x] [PMID: 19538468]
[37]
Anekpankul, T.; Goto, M.; Sasaki, M.; Pavasant, P.; Shotipruk, A. Extraction of anti-cancer damnacanthal from roots of Morinda citrifolia by subcritical water. Separ. Purif. Tech., 2007, 55(3), 343-349.
[http://dx.doi.org/10.1016/j.seppur.2007.01.004]
[38]
Aziz, M.Y.; Omar, A.R.; Subramani, T.; Yeap, S.K.; Ho, W.Y.; Ismail, N.H.; Ahmad, S.; Alitheen, N.B.; Alitheen, N.B. Damnacanthal is a potent inducer of apoptosis with anticancer activity by stimulating p53 and p21 genes in MCF-7 breast cancer cells. Oncol. Lett., 2014, 7(5), 1479-1484.
[http://dx.doi.org/10.3892/ol.2014.1898] [PMID: 24765160]
[39]
Tajudin, T.; Mat, N.; Siti-Aishah, A. B.; Yusran, A. A. M.; Alwi, A.; Ali, A. M. Cytotoxicity, antiproliferative effects, and apoptosis induction of methanolic extract of Cynometra cauliflora Linn. whole fruit on human promyelocytic leukemia HL-60 cells. Evid. Based Complem. Altern. Med., 2012, 2012
[40]
Ali, A.M.; Ismail, N.H.; Mackeen, M.M.; Yazan, L.S.; Mohamed, S.M.; Ho, A.S.; Lajis, N.H. Antiviral, cyototoxic and antimicrobial activities of anthraquinones isolated from the roots of Morinda elliptica. Pharm. Biol., 2000, 38(4), 298-301.
[http://dx.doi.org/10.1076/1388-0209(200009)38:4;1-A;FT298] [PMID: 21214480]
[41]
Nualsanit, T.; Rojanapanthu, P.; Gritsanapan, W.; Lee, S-H.; Lawson, D.; Baek, S.J. Damnacanthal, a noni component, exhibits antitumorigenic activity in human colorectal cancer cells. J. Nutr. Biochem., 2012, 23(8), 915-923.
[http://dx.doi.org/10.1016/j.jnutbio.2011.04.017] [PMID: 21852088]
[42]
Abu, N.; Zamberi, N.R.; Yeap, S.K.; Nordin, N.; Mohamad, N.E.; Romli, M.F.; Rasol, N.E.; Subramani, T.; Ismail, N.H.; Alitheen, N.B. Subchronic toxicity, immunoregulation and anti-breast tumor effect of Nordamnacantal, an anthraquinone extracted from the stems of Morinda citrifolia L. BMC Complement. Altern. Med., 2018, 18(1), 31.
[http://dx.doi.org/10.1186/s12906-018-2102-3] [PMID: 29374471]
[43]
He, Y-Q.; Zhang, Q.; Shen, Y.; Han, T.; Zhang, Q-L.; Zhang, J-H.; Lin, B.; Song, H-T.; Hsu, H-Y.; Qin, L-P.; Xin, H.L.; Zhang, Q.Y. Rubiadin-1-methyl ether from Morinda officinalis How. Inhibits osteoclastogenesis through blocking RANKL-induced NF-κB pathway. Biochem. Biophys. Res. Commun., 2018, 506(4), 927-931.
[http://dx.doi.org/10.1016/j.bbrc.2018.10.100] [PMID: 30392907]
[44]
Parameswaran, P.; Gawas, D.; Tilvi, S.; Naik, C.G. In: Biological active anthraquinone analogs from the fungus Eurotium sp Proceedings of the National Seminar on New Frontiers in Marine Bioscience Research, 2004, pp. 22-23.
[45]
Gill, M.; Morgan, P.M. New fungal anthraquinones. ARKIVOC, 2001, 7, 145-156.
[46]
Nout, M.; Aidoo, K. Asian fungal fermented food. Industrial Applications; Springer, 2002, pp. 23-47.
[http://dx.doi.org/10.1007/978-3-662-10378-4_2]
[47]
Matsuda, H.; Shimoda, H.; Morikawa, T.; Yoshikawa, M. Phytoestrogens from the roots of Polygonum cuspidatum (Polygonaceae): Structure-requirement of hydroxyanthraquinones for estrogenic activity. Bioorg. Med. Chem. Lett., 2001, 11(14), 1839-1842.
[http://dx.doi.org/10.1016/S0960-894X(01)00318-3] [PMID: 11459643]
[48]
Yang, F.; Zhang, T.; Ito, Y. Large-scale separation of resveratrol, anthraglycoside A and anthraglycoside B from Polygonum cuspidatum Sieb. et Zucc by high-speed counter-current chromatography. J. Chromatogr. A, 2001, 919(2), 443-448.
[http://dx.doi.org/10.1016/S0021-9673(01)00846-9] [PMID: 11442052]
[49]
Park, J.; Lee, C. The Encyclopedia of Medicinal Plants; Shinilbooks: Seoul, Korea, 2000.
[50]
Shen, M-Y.; Liu, Y-J.; Don, M-J.; Liu, H-Y.; Chen, Z-W.; Mettling, C.; Corbeau, P.; Chiang, C-K.; Jang, Y-S.; Li, T-H.; Young, P.; Chang, C.L.; Lin, Y.L.; Yang, W.C. Combined phytochemistry and chemotaxis assays for identification and mechanistic analysis of anti-inflammatory phytochemicals in Fallopia japonica. PLoS One, 2011, 6(11)e27480
[http://dx.doi.org/10.1371/journal.pone.0027480] [PMID: 22087325]
[51]
El-Readi, M.; Eid, S.; Al-Amoudi, H.; Wink, M. Fallopia japonica: Bioactive secondary metabolites and molecular mode of anticancer. J. Tradi. Med. Clin. Natur., 2016, 5(193), 2.
[http://dx.doi.org/10.4172/2573-4555.1000193]
[52]
Liu, Z.; Liu, M.; Liu, M.; Li, J. Methylanthraquinone from Hedyotis diffusa WILLD induces Ca2+-mediated apoptosis in human breast cancer cells. Toxicol. In Vitro, 2010, 24(1), 142-147.
[http://dx.doi.org/10.1016/j.tiv.2009.08.002] [PMID: 19686834]
[53]
Yan, Y.; Su, X.; Liang, Y.; Zhang, J.; Shi, C.; Lu, Y.; Gu, L.; Fu, L. Emodin azide methyl anthraquinone derivative triggers mitochondrial-dependent cell apoptosis involving in caspase-8-mediated Bid cleavage. Mol. Cancer Ther., 2008, 7(6), 1688-1697.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-2362] [PMID: 18566240]
[54]
Abu-Darwish, S.M.; Ateyyat, A.M. The pharmacological and pesticidal actions of naturally occurring 1, 8-dihydroxyanthraquinones derivatives. World J. Agric. Sci., 2008, 4(4), 495-505.
[55]
Malik, E.M.; Müller, C.E. Anthraquinones as pharmacological tools and drugs. Med. Res. Rev., 2016, 36(4), 705-748.
[http://dx.doi.org/10.1002/med.21391] [PMID: 27111664]
[56]
Kizek, R.; Adam, V.; Hrabeta, J.; Eckschlager, T.; Smutny, S.; Burda, J.V.; Frei, E.; Stiborova, M. Anthracyclines and ellipticines as DNA-damaging anticancer drugs: Recent advances. Pharmacol. Ther., 2012, 133(1), 26-39.
[http://dx.doi.org/10.1016/j.pharmthera.2011.07.006] [PMID: 21839775]
[57]
Lefevre, D.; Riou, J-F.; Ahomadegbe, J.C.; Zhou, D.Y.; Benard, J.; Riou, G. Study of molecular markers of resistance to m-AMSA in a human breast cancer cell line. Decrease of topoisomerase II and increase of both topoisomerase I and acidic glutathione S transferase. Biochem. Pharmacol., 1991, 41(12), 1967-1979.
[http://dx.doi.org/10.1016/0006-2952(91)90138-U] [PMID: 1645555]
[58]
Huang, H-S.; Chiou, J-F.; Fong, Y.; Hou, C-C.; Lu, Y-C.; Wang, J-Y.; Shih, J-W.; Pan, Y-R.; Lin, J-J. Activation of human telomerase reverse transcriptase expression by some new symmetrical bis-substituted derivatives of the anthraquinone. J. Med. Chem., 2003, 46(15), 3300-3307.
[http://dx.doi.org/10.1021/jm020492l] [PMID: 12852760]
[59]
Minotti, G.; Menna, P.; Salvatorelli, E.; Cairo, G.; Gianni, L. Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev., 2004, 56(2), 185-229.
[http://dx.doi.org/10.1124/pr.56.2.6] [PMID: 15169927]
[60]
Skladanowski, A.; Konopa, J. Mitoxantrone and ametantrone induce interstrand cross-links in DNA of tumour cells. Br. J. Cancer, 2000, 82(7), 1300-1304.
[http://dx.doi.org/10.1054/bjoc.1999.1095] [PMID: 10755405]
[61]
Adhikari, A.; Mahar, K.S. DNA targeted anthraquinone derivatives: An important anticancer agents. Int. J. Pharm. Pharm. Sci., 2016, 8, 17-25.
[62]
Patel, N. B.; Patel, A. L. New 2-aminopyridine containing acid anthraquinone dyes, their application and microbial studies. Indian J. Chem. Section B, 2009, 48(5) Available from: https://www.researchgate.net/publication/237616474_New_2-aminopyridine_containing_acid_anthraquinone_dyes_their_ application_ and_microbial_studies
[63]
Dollendorf, C.; Kreth, S.K.; Choi, S.W.; Ritter, H. Polymerization of novel methacrylated anthraquinone dyes. Beilstein J. Org. Chem., 2013, 9, 453-459.
[http://dx.doi.org/10.3762/bjoc.9.48] [PMID: 23503994]
[64]
Gouda, M.A.; Berghot, M.A.; Shoeib, A.I.; Khalil, A.M. Synthesis and antimicrobial of new anthraquinone derivatives incorporating pyrazole moiety. Eur. J. Med. Chem., 2010, 45(5), 1843-1848.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.021] [PMID: 20144494]
[65]
Tikhomirov, A.S.; Bykov, E.E.; Luzikov, Y.N.; Korolev, A.M.; Shchekotikhin, A.E. Heterocyclic analogs of 5, 12-naphtacen-equinone 13*. Synthesis of 4, 11-diaminoanthra [2, 3-b] furan-5, 10-diones and sulfur-containing analogs. Chem. Heterocycl. Compd., 2016, 52(10), 797-802.
[http://dx.doi.org/10.1007/s10593-016-1968-6]
[66]
Zee-Cheng, R.K.; Cheng, C.C. Structure-activity relationship study of anthraquinones: 1,4-dihydroxy-5,8-bis[[2-(2-hydroxyethoxy)-ethyl]amino]-9,10-anthracenedione, an analog of an established antineoplastic agent. J. Pharm. Sci., 1982, 71(6), 708-709.
[http://dx.doi.org/10.1002/jps.2600710626] [PMID: 7097541]
[67]
Schmidt, D.; Häupler, B.; Hager, M.D.; Schubert, U.S. Poly (DCAQI): Synthesis and characterization of a new redox-active polymer. J. Polym. Sci. A Polym. Chem., 2016, 54(13), 1998-2003.
[http://dx.doi.org/10.1002/pola.28066]
[68]
Vilanova-Sanchez, A.; Gasior, A.C.; Toocheck, N.; Weaver, L.; Wood, R.J.; Reck, C.A.; Wagner, A.; Hoover, E.; Gagnon, R.; Jaggers, J.; Maloof, T.; Nash, O.; Williams, C.; Levitt, M.A. Are Senna based laxatives safe when used as long term treatment for constipation in children? J. Pediatr. Surg., 2018, 53(4), 722-727.
[http://dx.doi.org/10.1016/j.jpedsurg.2018.01.002] [PMID: 29429768]
[69]
Zarren, G.; Nisar, B.; Sher, F. Synthesis of anthraquinone based electroactive polymers: A critical review; Mater. Today Sustain, 2019, p. 100019.
[70]
Son, E.J.; Kim, J.H.; Kim, K.; Park, C.B. Quinone and its derivatives for energy harvesting and storage materials. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4(29), 11179-11202.
[http://dx.doi.org/10.1039/C6TA03123D]
[71]
Deng, W.; Liang, X.; Wu, X.; Qian, J.; Cao, Y.; Ai, X.; Feng, J.; Yang, H. A low cost, all-organic Na-ion battery based on polymeric cathode and anode. Sci. Rep., 2013, 3(1), 2671.
[http://dx.doi.org/10.1038/srep02671] [PMID: 24036973]
[72]
Milczarek, G.; Inganäs, O. Renewable cathode materials from biopolymer/conjugated polymer interpenetrating networks. Science, 2012, 335(6075), 1468-1471.
[http://dx.doi.org/10.1126/science.1215159] [PMID: 22442478]
[73]
Iordache, A.; Maurel, V.; Mouesca, J-M.; Pécaut, J.; Dubois, L.; Gutel, T. Monothioanthraquinone as an organic active material for greener lithium batteries. J. Power Sources, 2014, 267, 553-559.
[http://dx.doi.org/10.1016/j.jpowsour.2014.05.050]
[74]
Oyaizu, K.; Choi, W.; Nishide, H. Functionalization of poly (4-chloromethylstyrene) with anthraquinone pendants for organic anode-active materials. Polym. Adv. Technol., 2011, 22(8), 1242-1247.
[http://dx.doi.org/10.1002/pat.1968]
[75]
Wang, G.; Fu, X.; Huang, J.; Wu, L.; Du, Q. Synthesis and spectroelectrochemical properties of two new dithienylpyrroles bearing anthraquinone units and their polymer films. Electrochim. Acta, 2010, 55(23), 6933-6940.
[http://dx.doi.org/10.1016/j.electacta.2010.07.012]
[76]
Ho, T-L.; Tse-Wai, H.; Wong, C. Ceric ammonium nitrate oxidation of polynuclear aromatic hydrocarbons to quinones. Synthesis, 1973, 1973(04), 206-206.
[http://dx.doi.org/10.1055/s-1973-22174]
[77]
Wang, Y-G.; Wei, X-Y.; Wang, S-K.; Xie, R-L.; Li, P.; Liu, F-J.; Zong, Z-M.A. FeCl3-based ionic liquid for the oxidation of anthracene to anthraquinone. Fuel Process. Technol., 2015, 135, 157-161.
[http://dx.doi.org/10.1016/j.fuproc.2014.12.022]
[78]
Danielsen, K.; Ivanova, G.I.; Spassov, S.L.; Sandström, J.; Sohár, P.; Sillanpää, R.; Homsi, M.N.; Kuske, F.K.H.; Haugg, M.; Trabesinger-Rüf, N.; Weinhold, E.G. Anthraquinones by cyclisation of benzoylbenzoic acids produced by the AlCl3-mediated Friedel-Crafts reaction of phthalic anhydrides with aromatic compounds. Acta Chem. Scand., 1996, 50(10), 954-957.
[http://dx.doi.org/10.3891/acta.chem.scand.50-0954]
[79]
Sadeghi-Aliabadi, H.; Tabarzadi, M.; Zarghi, A. Synthesis and cytotoxic evaluation of two novel anthraquinone derivatives. Farmaco, 2004, 59(8), 645-649.
[http://dx.doi.org/10.1016/j.farmac.2004.03.006] [PMID: 15262534]
[80]
Francis, R.; Shin, S.J.; Omori, S.; Amidon, T.; Blain, T. Soda pulping of hardwoods catalyzed by anthraquinone and methyl substituted anthraquinones. J. Wood Chem. Technol., 2006, 26(2), 141-152.
[http://dx.doi.org/10.1080/02773810600701737]
[81]
Ota, E. Some aromatic reactions using AlCl3-rich molten salts. ECS Proc., 1987, 1987, p. pp. 1002-1010.
[82]
Devi, N.; Ganguly, M. Friedel-Craft reaction in dry media under microwave irradiation., 2008, 39(5) Available from: https://onlinelibrary.wiley.com/doi/10.1002/chin.200815036
[83]
Singh, R.; Geetanjali, G. SINGH, R. Isolation and synthesis of anthraquinones and related compounds of Rubia cordifolia. J. Serb. Chem. Soc., 2005, 70(7), 937-942.
[http://dx.doi.org/10.2298/JSC0507937S]
[84]
Dhananjeyan, M.R.; Milev, Y.P.; Kron, M.A.; Nair, M.G. Synthesis and activity of substituted anthraquinones against a human filarial parasite, Brugia malayi. J. Med. Chem., 2005, 48(8), 2822-2830.
[http://dx.doi.org/10.1021/jm0492655] [PMID: 15828820]
[85]
Madje, B.R.; Shelke, K.F.; Sapkal, S.B.; Kakade, G.K.; Shingare, M.S. An efficient one-pot synthesis of anthraquinone derivatives catalyzed by alum in aqueous media. Green Chem. Lett. Rev., 2010, 3(4), 269-273.
[http://dx.doi.org/10.1080/17518251003776877]
[86]
Madje, B.; Ubale, M.; Bharad, J.; Shingare, M.B. (HSO4)3: An efficient solid acid catalyst for the synthesis of anthraquinone derivatives. Bull. Catal. Soc. India, 2011, 9(2), 19-25.
[87]
Naeimi, H.; Brojerdi, S.S. Facile and efficient one-pot synthesis of anthraquinones from benzene derivatives catalyzed by silica sulfuric acid. Polycycl. Aromat. Compd., 2014, 34(5), 504-517.
[http://dx.doi.org/10.1080/10406638.2014.910238]
[88]
Zhizhina, E.G.; Matveev, K.I.; Russkikh, V.V. Catalytic synthesis of 1, 4-naphtho-and 9, 10-anthraquinones according to the diene synthesis reaction for pulp and paper industry. Chem. Sustain. Develop., 2004, 12(1), 47-51.
[89]
Gogin, L.; Zhizhina, E.; Pai, Z. Synthesis of 1, 4-dimethyl-9, 10-anthraquinone from 1, 4-naphthoquinone and 2, 4-hexadiene in the presence of heteropoly acids. Kinet. Catal., 2019, 60(1), 69-73.
[http://dx.doi.org/10.1134/S0023158419010087]
[90]
Wang, Y.; Miao, W-R.; Liu, Q.; Cheng, L-B.; Wang, G-R. Synthesis of anthraquinone from phthalic anhydride with benzene over zeolite catalyst. Studies in Surface Science and Catalysis; Elsevier: Amsterdam, 2002, Vol. 142, pp. 1007-1014.
[91]
Chakiri, A.B.; Hodge, P. Synthesis of isopropyl-substituted anthraquinones via Friedel-Crafts acylations: Migration of isopropyl groups. R. Soc. Open Sci., 2017, 4(8)170451
[http://dx.doi.org/10.1098/rsos.170451] [PMID: 28878991]
[92]
Chudasama, U.V.; Ghodke, S.V.; Parangi, T.F. Green routes to synthesis of anthraquinone derivatives via friedel crafts reaction under solvent free conditions using solid acid catalyst. Int. J. Engg. Res. Sci. Tech., 2015, 4(1), 97-115.
[93]
Naeimi, H.; Namdari, R. Rapid, efficient and one pot synthesis of anthraquinone derivatives catalyzed by Lewis acid/methanesulfonic acid under heterogeneous conditions. Dyes Pigments, 2009, 81(3), 259-263.
[http://dx.doi.org/10.1016/j.dyepig.2008.10.019]
[94]
Gogin, L.; Zhizhina, E.; Pai, Z. One-pot process to produce anthraquinone derivatives: Prospective wood delignification catalysts. Kinet. Catal., 2018, 59(5), 578-584.
[http://dx.doi.org/10.1134/S0023158418050051]
[95]
Suchand, B.; Satyanarayana, G. Palladium-catalyzed direct acylation: One-pot relay synthesis of anthraquinones. Synthesis, 2019, 51(03), 769-779.
[http://dx.doi.org/10.1055/s-0037-1610296]
[96]
Yeap, S.; Akhtar, M.N.; Lim, K.L.; Abu, N.; Ho, W.Y.; Zareen, S.; Roohani, K.; Ky, H.; Tan, S.W.; Lajis, N.; Alitheen, N.B. Synthesis of an anthraquinone derivative (DHAQC) and its effect on induction of G2/M arrest and apoptosis in breast cancer MCF-7 cell line. Drug Des. Devel. Ther., 2015, 9, 983-992.
[PMID: 25733816]
[97]
Perchellet, E.M.; Magill, M.J.; Huang, X.; Dalke, D.M.; Hua, D.H.; Perchellet, J-P. 1,4-Anthraquinone: An anticancer drug that blocks nucleoside transport, inhibits macromolecule synthesis, induces DNA fragmentation, and decreases the growth and viability of L1210 leukemic cells in the same nanomolar range as daunorubicin in vitro. Anticancer Drugs, 2000, 11(5), 339-352.
[http://dx.doi.org/10.1097/00001813-200006000-00004] [PMID: 10912950]
[98]
De Leoz, M.L.A.; Chua, M.T.; Endoma-Arias, M.A.A.; Concepcion, G.P.; Cruz, L.J. A modified procedure for the preparation of mitoxantrone. Philipp. J. Sci., 2006, 135(2), 83.
[99]
Kumar, P.H.; Prakash, S.S.; Kumar, S.K.; Diwakar, L.; Reddy, G.C. Synthesis of mitoxantrone analogues and their in-vitro cytotoxicity. Synthesis, 2011, 3(2), 690-694.
[100]
Preobrazhenskaya, M.N.; Shchekotikhin, A.E.; Shtil, A.A.; Huang, H. Antitumor anthraquinone analogues for multidrug resistant tumor cells. J. Med. Sci.-Taipei, 2006, 26(1), 1.
[101]
Murdock, K.C.; Child, R.G.; Fabio, P.F.; Angier, R.B.; Wallace, R.E.; Durr, F.E.; Citarella, R.V. Antitumor agents. 1. 1,4-Bis[(aminoalkyl)amino]-9,10-anthracenediones. J. Med. Chem., 1979, 22(9), 1024-1030.
[http://dx.doi.org/10.1021/jm00195a002] [PMID: 490545]
[102]
Feng, S.; Wang, W. Bioactivities and structure-activity relationships of natural tetrahydroanthraquinone compounds: A review. Front. Pharmacol., 2020, 11, 799.
[http://dx.doi.org/10.3389/fphar.2020.00799] [PMID: 32536871]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy