Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

ENaC and Its Regulatory Proteins as Drug Targets for Blood Pressure Control

Author(s): Daniela Rotin and Laurent Schild

Volume 9, Issue 8, 2008

Page: [709 - 716] Pages: 8

DOI: 10.2174/138945008785132367

Price: $65

Abstract

Hypertension is a serious medical problem affecting millions of people worldwide. A key protein regulating blood pressure is the Epithelial Na+ Channel (ENaC). In accord, loss of function mutations in ENaC (PHA1) cause hypotension, whereas gain of function mutations (Liddle syndrome) result in hypertension. The region mutated in Liddle syndrome, called the PY motif (L/PPxY), serves as a binding site for the ubiquitin ligase Nedd4-2, a C2-WW-Hect E3 ubiquitin ligase. Nedd4-2 binds the ENaC-PY motif via it WW domains, ubiquitylates the channel and targets it for endocytosis, a process impaired in Liddle syndrome due to poor binding of the channel to Nedd4-2. This leads to accumulation of active channels at the cell surface and increased Na+ (and fluid) absorption in the distal nephron, resulting in elevated blood volume and blood pressure. Compounds that destabilize cell surface ENaC, or enhance Nedd4-2 activity in the kidney, could potentially serve as drug targets for hypertension. In addition, recent discoveries of regulation of activation of ENaC by proteases such as furin, prostasin and elastase, which cleave the extracellular domain of this channel leading to it activation, as well as the identification of inhibitors that block the activity of these proteases, provide further avenues for drug targeting of ENaC and the control of blood pressure.

Keywords: Drug Targets, ENaC, Hypertension, Liddle syndrome, ubiquitin ligase, endocytosis

« Previous

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy