Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

QSAR Study on the Antitumor Activity of Novel 1,2, 3-Triazole Compounds based on Topomer Comfa Method

Author(s): Qiu Lie Wei, Zhang Xing and Tong Jian Bo*

Volume 20, Issue 6, 2023

Published on: 30 June, 2022

Page: [674 - 683] Pages: 10

DOI: 10.2174/1570180819666220512123310

Price: $65

conference banner
Abstract

Background: The high mortality rate of cancer is endangering human health, and the research and development of new anticancer drugs have the attention of scientists worldwide. Sulfonamides have become the focus of anticancer drug research. 1,2,3-triazole compounds can inhibit the formation of a variety of tumor cells. Based on the excellent antitumor activity exhibited by the 1,2,3-triazole compound skeleton, the sulfonamide moiety in the sulfonamide structure can be introduced into the triazole compound skeleton to obtain highly active anticancer drugs.

Methods: The Topomer CoMFA method was used to study the three-dimensional quantitative structureactivity relationship of 58 new 1,2,3-triazole compounds with sulfa groups, and a 3D-QSAR model was obtained.

Results: The cross-validation coefficient q2 is 0.545, the non-cross-correlation coefficient r2 is 0. 754, r2pred is 0.930, the optimal number of principal components N is 4, and the standard estimation error SEE is 0.319. These results show that the model has good internal and external forecasting capabilities. By searching for the R group in the Topomer search module and combining it with the more active groups in the existing molecules, 6 new compounds with theoretically higher anti-HL-60 (leukemia cell line) activity are obtained.

Conclusion: The prediction result of the Topomer CoMFA model is good, and the statistical verification is effective. The prediction results of ADMET show that the 6 new compounds meet the drug requirements and are expected to become potential anti-HL-60 inhibitors, providing guidance for the synthesis of anti-tumor drugs.

Keywords: 3D-QSAR, 1, 2, 3-triazole derivatives, molecular design, ADMET, HL-60, leukemia cell line.

Graphical Abstract

[1]
Kashmiri, L.; Pinki, Y. Recent advancements in 1,4-disubstituted 1H-1,2,3-triazoles as potential anticancer agents. Anti-Cancer. Agent. Me., 2018, 18(1), 21-37.
[http://dx.doi.org/10.2174/1871520616666160811113531]
[2]
Tripolszky, A.; Tóth, E.; Szabó, P.T.; Hackler, L., Jr; Kari, B.; Puskás, L.G.; Bálint, E. Synthesis and in vitro cytotoxicity and antibacterial activity of novel 1,2,3-triazol-5-yl-phosphonates. Molecules, 2020, 25(11), 2643.
[http://dx.doi.org/10.3390/molecules25112643] [PMID: 32517229]
[3]
da Silva, F.C.; de Souza, M.C.; Frugulhetti, I.I.; Castro, H.C.; Souza, S.L.; de Souza, T.M.; Rodrigues, D.Q.; Souza, A.M.; Abreu, P.A.; Passamani, F.; Rodrigues, C.R.; Ferreira, V.F. Synthesis, HIV-RT inhibitory activity and SAR of 1-benzyl-1H-1,2,3-triazole derivatives of carbohydrates. Eur. J. Med. Chem., 2009, 44(1), 373-383.
[http://dx.doi.org/10.1016/j.ejmech.2008.02.047] [PMID: 18486994]
[4]
Bektaş, H.; Karaali, N.; Şahin, D.; Demirbaş, A.; Karaoglu, Ş.A.; Demirbaş, N. Synthesis and antimicrobial activities of some new 1,2,3-triazole derivatives. Molecules, 2010, 15(4), 2427-2438.
[http://dx.doi.org/10.3390/molecules15042427] [PMID: 20428053]
[5]
Kalavadiya, P.L.; Kapupara, V.H.; Gojiya, D.G.; Bhatt, T.D.; Hadiyal, S.D.; Joshi, D.H. Ultrasonic-assisted synthesis of pyrazolo [3,4-d]pyrimidin-4-ol tethered with 1,2,3-Triazoles and their anticancer activity. Russ. J. Bioorganic Chem., 2020, 46(5), 803-813.
[http://dx.doi.org/10.1134/S1068162020050106]
[6]
Siliveri, S.; Vamaraju, H.B.; Raj, S. Design, synthesis, molecular docking, ADMET studies, and biological evaluation of isoxazoline and pyrazoline incorporating 1,2,3-triazole benzene sulfonamides. Russ. J. Bioorganic Chem., 2019, 45(5), 381-390.
[http://dx.doi.org/10.1134/S1068162019050108]
[7]
Xu, Z.; Zhao, S.J.; Liu, Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. Eur. J. Med. Chem., 2019, 183, 111700-111713.
[http://dx.doi.org/10.1016/j.ejmech.2019.111700] [PMID: 31546197]
[8]
Isik, S.; Kockar, F.; Aydin, M.; Arslan, O.; Guler, O.O.; Innocenti, A.; Scozzafava, A.; Supuran, C.T. Carbonic anhydrase inhibitors: inhibition of the beta-class enzyme from the yeast Saccharomyces cerevisiae with sulfonamides and sulfamates. Bioorg. Med. Chem., 2009, 17(3), 1158-1163.
[http://dx.doi.org/10.1016/j.bmc.2008.12.035] [PMID: 19124253]
[9]
Gawin, R.; De Clercq, E.; Naesens, L.; Koszytkowska-Stawińska, M. Synthesis and antiviral evaluation of acyclic azanucleosides developed from sulfanilamide as a lead structure. Bioorg. Med. Chem., 2008, 16(18), 8379-8389.
[http://dx.doi.org/10.1016/j.bmc.2008.08.041] [PMID: 18778942]
[10]
Bouissane, L.; El Kazzouli, S.; Léonce, S.; Pfeiffer, B.; Rakib, E.M.; Khouili, M.; Guillaumet, G. Synthesis and biological evaluation of N-(7-indazolyl)benzenesulfonamide derivatives as potent cell cycle inhibitors. Bioorg. Med. Chem., 2006, 14(4), 1078-1088.
[http://dx.doi.org/10.1016/j.bmc.2005.09.037] [PMID: 16274996]
[11]
Abbate, F.; Casini, A.; Owa, T.; Scozzafava, A.; Supuran, C.T. Carbonic anhydrase inhibitors: E7070, a sulfonamide anticancer agent, potently inhibits cytosolic isozymes I and II, and transmembrane, tumor-associated isozyme IX. Bioorg. Med. Chem. Lett., 2004, 14(1), 217-223.
[http://dx.doi.org/10.1016/j.bmcl.2003.09.062] [PMID: 14684331]
[12]
Elzahhar, P.A.; Abd El Wahab, S.M.; Elagawany, M.; Daabees, H.; Belal, A.S.F.; El-Yazbi, A.F.; Eid, A.H.; Alaaeddine, R.; Hegazy, R.R.; Allam, R.M.; Helmy, M.W. Bahaa Elgendy; Angeli, A.; El-Hawash, S.A.; Supuran, C.T. Expanding the anticancer potential of 1,2,3-triazoles via simultaneously targeting Cyclooxygenase-2, 15-lipoxygenase and tumor-associated carbonic anhydrases. Eur. J. Med. Chem., 2020, 200(24), 112439.
[http://dx.doi.org/10.1016/j.ejmech.2020.112439] [PMID: 32485532]
[13]
Li, N.; Liu, N.; Tang, S.; Li, D.L.; Zhang, X.J. Synthesis and antiproliferative activity of novel 1,2,3-triazole-sulfonamide hybrids. J. Chem. Res., 2018, 42(1), 50-53.
[http://dx.doi.org/10.3184/174751918X15161933697853]
[14]
Hu, S.; Chen, P.; Gu, P.; Wang, B. A deep learning-based chemical system for QSAR prediction. IEEE J. Biomed. Health Inform., 2020, 24(10), 3020-3028.
[http://dx.doi.org/10.1109/JBHI.2020.2977009] [PMID: 32142459]
[15]
Kpotin, G.A.; Bédé, A.L.; Houngue-Kpota, A.; Anatovi, W.; Kuevi, U.A.; Atohoun, G.S.; Mensah, J.; Gómez-Jeria, J.S.; Badawi, M. Relationship between electronic structures and antiplasmodial activities of xanthone derivatives: a 2D-QSAR approach. Struct. Chem., 2019, 30(6), 2301-2310.
[http://dx.doi.org/10.1007/s11224-019-01333-w]
[16]
Tong, J.B.; Zhang, X.; Luo, D.; Bian, S. Molecular design, molecular docking and ADMET study of cyclic sulfonamide derivatives as SARS-CoV-2 inhibitors. Chin. J. Anal. Chem., 2021, 49(12), 63-73.
[http://dx.doi.org/10.1016/j.cjac.2021.09.006]
[17]
Ou, L.; Han, S.; Ding, W.; Jia, P.; Yang, B.; Medina-Franco, J.L.; Giulianotti, M.A.; Chen, J.Z.; Yu, Y. Parallel synthesis of novel antitumor agents: 1,2,3-triazoles bearing biologically active sulfonamide moiety and their 3D-QSAR. Mol. Divers., 2011, 15(4), 927-946.
[http://dx.doi.org/10.1007/s11030-011-9324-3] [PMID: 21744258]
[18]
Vyas, V.K.; Ghate, M.; Gupta, N. 3D QSAR and HQSAR analysis of protein kinase B (PKB/Akt) inhibitors using various alignment methods. Arab. J. Chem., 2017, 10, S2182-S2195.
[http://dx.doi.org/10.1016/j.arabjc.2013.07.052]
[19]
Kiralj, R.; Ferreira, M. Basic validation procedures for regression models in QSAR and QSPR studies: theory and application. J. Braz. Chem. Soc., 2009, 20(4), 770-787.
[http://dx.doi.org/10.1590/S0103-50532009000400021]
[20]
Tong, J.; Jiang, G.; Li, L.; Li, Y. Molecular virtual screening studies of herbicidal sulfonylurea analogues using molecular docking and Topomer CoMFA research. J. Struct. Chem., 2019, 60(2), 210-218.
[http://dx.doi.org/10.1134/S0022476619020057]
[21]
Al-Rashood, S.T.; Elshahawy, S.S.; El-Qaias, A.M.; El-Behedy, D.S.; Hassanin, A.A.; El-Sayed, S.M.; El-Messery, S.M.; Shaldam, M.A.; Hassan, G.S. New thiazolopyrimidine as anticancer agents: Synthesis, biological evaluation, DNA binding, molecular modeling and ADMET study. Bioorg. Med. Chem. Lett., 2020, 30(23), 127611.
[http://dx.doi.org/10.1016/j.bmcl.2020.127611] [PMID: 33068712]
[22]
Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem., 2015, 58(9), 4066-4072.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00104] [PMID: 25860834]
[23]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy