Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Study on the Mechanism of Sanqi in the Treatment of Disseminated Intravascular Coagulation-Based on Network Pharmacology and Molecular Docking Technology

Author(s): Xin Yao*, XiuJun Zhang, ShaoJun Ma, Chen Zheng, YongFei Guo, Wei Lu and Kui Ye

Volume 20, Issue 7, 2023

Published on: 15 August, 2022

Page: [881 - 893] Pages: 13

DOI: 10.2174/1570180819666220512110520

Price: $65

Abstract

Objective: This study used network pharmacology and molecular docking technology to explore the molecular mechanism of Panax notoginseng in the treatment of disseminated intravascular coagulation.

Methods: The main active components and targets of Panax notoginseng were screened by the TCMSP database, and DIC-related targets were obtained from the GeneCards database. PPI network was constructed by String and Cytoscape, GO gene analysis and KEGG pathway enrichment analysis were performed by DAVID, and molecular docking was performed by AutoDock software.

Results: Eight active compounds and 51 potential therapeutic targets of Sanqi were screened. The key targets include VEGF, MAPK3, EGFR, STAT3 and so on. Beta-sitosterol, Stigmasterol, quercetin, DFV, and Diop were identified aspotential candidate ingredients. There are 95 KEGG enrichment pathways. The metabolic pathways involving a large number of genes mainly include the PI3K-Akt signaling pathway, Rap1 signaling pathway, VEGF signaling pathway and TNF signaling pathway.

Conclusion: This study revealed the multi-component, multi-target and multi-channel action characteristics of Sanqi in the treatment of DIC and predicted the possible pharmacodynamic substances, key targets and action pathways, which provided a theoretical basis for its new drug development and mechanism of action.

Keywords: Sanqi, disseminated intravascular coagulation, network pharmacology, molecular docking, panax notoginseng, pharmacodynamic.

[1]
Bick, R.L. Disseminated intravascular coagulation current concepts of etiology, pathophysiology, diagnosis, and treatment. Hematol. Oncol. Clin. North Am., 2003, 17(1), 149-176.
[http://dx.doi.org/10.1016/S0889-8588(02)00102-8] [PMID: 12627667]
[2]
Levi, M.; Sivapalaratnam, S. Disseminated intravascular coagulation: an update on pathogenesis and diagnosis. Expert Rev. Hematol., 2018, 11(8), 663-672.
[http://dx.doi.org/10.1080/17474086.2018.1500173] [PMID: 29999440]
[3]
Levi, M. Pathogenesis and diagnosis of disseminated intravascular coagulation. Int. J. Lab. Hematol., 2018, 40(Suppl. 1), 15-20.
[http://dx.doi.org/10.1111/ijlh.12830] [PMID: 29741245]
[4]
Boral, B.M.; Williams, D.J.; Boral, L.I. Disseminated Intravascular Coagulation. Am. J. Clin. Pathol., 2016, 146(6), 670-680.
[http://dx.doi.org/10.1093/ajcp/aqw195] [PMID: 28013226]
[5]
Rajagopal, R.; Thachil, J.; Monagle, P. Disseminated intravascular coagulation in paediatrics. Arch. Dis. Child., 2017, 102(2), 187-193.
[http://dx.doi.org/10.1136/archdischild-2016-311053] [PMID: 27540263]
[6]
Levi, M. Disseminated Intravascular Coagulation in Cancer: An Update. Semin. Thromb. Hemost., 2019, 45(4), 342-347.
[http://dx.doi.org/10.1055/s-0039-1687890] [PMID: 31041800]
[7]
Wang, Q.; Yang, J.; Lei, Y.; Xiu, C.; Huo, Y.; Shi, H. Effects of extracts from Renshen (Radix Ginseng), Sanqi (Radix Notoginseng), and Chuanxiong (Rhizoma chuanxiong) on F-actin in senescent microvascular endothelial cells. J. Tradit. Chin. Med., 2020, 40(3), 376-385.
[PMID: 32506850]
[8]
Xia, P.G.; Zhang, S.C.; Liang, Z.S.; Qi, Z.H. Research history and overview of chemical constituents of Panax notoginseng. Chin. Tradit. Herbal Drugs, 2014, 45, 2564-2570.
[9]
Li, W.; Li, X.; Du, Q.; Li, F.; Zhu, Y.; Liu, Y.; Ma, J.; Wan, L.; Li, F.; Zhang, S. Effect of tongluojiunao injection made from sanqi (Radix notoginseng) and zhizi (Fructus gardeniae) on brain microvascular endothelial cells and astrocytes in an in vitro ischemic model. J. Tradit. Chin. Med., 2014, 34(6), 725-732.
[http://dx.doi.org/10.1016/S0254-6272(15)30088-1] [PMID: 25618978]
[10]
Qu, J.; Xu, N.; Zhang, J.; Geng, X.; Zhang, R. Panax notoginseng saponins and their applications in nervous system disorders: a narrative review. Ann. Transl. Med., 2020, 8(22), 1525.
[http://dx.doi.org/10.21037/atm-20-6909] [PMID: 33313270]
[11]
Fan, J.; Liu, D.; He, C.; Li, X.; He, F. Inhibiting adhesion events by Panax notoginseng saponins and Ginsenoside Rb1 protecting arteries via activation of Nrf2 and suppression of p38 - VCAM-1 signal pathway. J. Ethnopharmacol., 2016, 192, 423-430.
[http://dx.doi.org/10.1016/j.jep.2016.09.022] [PMID: 27620662]
[12]
Yin, S.J.; Luo, Y.Q.; Zhao, C.P.; Chen, H.; Zhong, Z.F.; Wang, S.; Wang, Y.T.; Yang, F.Q. Antithrombotic effect and action mechanism of Salvia miltiorrhiza and Panax notoginseng herbal pair on the zebrafish. Chin. Med., 2020, 15(1), 35.
[http://dx.doi.org/10.1186/s13020-020-00316-y] [PMID: 32322295]
[13]
White, C.M.; Fan, C.; Chow, M. An evaluation of the hemostatic effect of externally applied notoginseng and notoginseng total saponins. J. Clin. Pharmacol., 2000, 40(10), 1150-1153.
[PMID: 11028254]
[14]
Liu, H.; Wang, J.; Zhou, W.; Wang, Y.; Yang, L. Systems approaches and polypharmacology for drug discovery from herbal medicines: an example using licorice. J. Ethnopharmacol., 2013, 146(3), 773-793.
[http://dx.doi.org/10.1016/j.jep.2013.02.004] [PMID: 23415946]
[15]
Li, S.; Zhang, B. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin. J. Nat. Med., 2013, 11(2), 110-120.
[http://dx.doi.org/10.1016/S1875-5364(13)60037-0] [PMID: 23787177]
[16]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[17]
Vinayak, M.; Maurya, A.K. Quercetin loaded nanoparticles in targeting cancer: Recent Development. Anticancer. Agents Med. Chem., 2019, 19(13), 1560-1576.
[http://dx.doi.org/10.2174/1871520619666190705150214] [PMID: 31284873]
[18]
Carullo, G.; Cappello, A.R.; Frattaruolo, L.; Badolato, M.; Armentano, B.; Aiello, F. Quercetin and derivatives: useful tools in inflammation and pain management. Future Med. Chem., 2017, 9(1), 79-93.
[http://dx.doi.org/10.4155/fmc-2016-0186] [PMID: 27995808]
[19]
Patel, R.V.; Mistry, B.M.; Shinde, S.K.; Syed, R.; Singh, V.; Shin, H.S. Therapeutic potential of quercetin as a cardiovascular agent. Eur. J. Med. Chem., 2018, 155, 889-904.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.053] [PMID: 29966915]
[20]
Choi, J.H.; Kim, K.J.; Kim, S. Comparative effect of quercetin and quercetin-3-O-β-d-glucoside on fibrin polymers, blood clots, and in rodent models. J. Biochem. Mol. Toxicol., 2016, 30(11), 548-558.
[http://dx.doi.org/10.1002/jbt.21822] [PMID: 27271803]
[21]
Riva, A.; Corti, A.; Belcaro, G.; Cesarone, M.R.; Dugall, M.; Vinciguerra, G.; Feragalli, B.; Zuccarini, M.; Eggenhoffner, R.; Giacomelli, L. Interaction study between antiplatelet agents, anticoagulants, diabetic therapy and a novel delivery form of quercetin. Minerva Cardioangiol., 2019, 67(1), 79-83.
[http://dx.doi.org/10.23736/S0026-4725.18.04795-3] [PMID: 30226032]
[22]
Gogoi, D.; Pal, A.; Chattopadhyay, P.; Paul, S.; Deka, R.C.; Mukherjee, A.K. First report of plant-derived β-sitosterol with antithrombotic, in Vivo anticoagulant, and thrombus-preventing activities in a mouse model. J. Nat. Prod., 2018, 81(11), 2521-2530.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00574] [PMID: 30406661]
[23]
Liao, P.C.; Lai, M.H.; Hsu, K.P.; Kuo, Y.H.; Chen, J.; Tsai, M.C.; Li, C.X.; Yin, X.J.; Jeyashoke, N.; Chao, L.K. Identification of β-sitosterol as in Vitro anti-inflammatory constituent in moringa oleifera. J. Agric. Food Chem., 2018, 66(41), 10748-10759.
[http://dx.doi.org/10.1021/acs.jafc.8b04555] [PMID: 30280897]
[24]
Xu, G.; Guan, L.; Sun, J.; Chen, Z.Y. Oxidation of cholesterol and beta-sitosterol and prevention by natural antioxidants. J. Agric. Food Chem., 2009, 57(19), 9284-9292.
[http://dx.doi.org/10.1021/jf902552s] [PMID: 19754120]
[25]
Yuan, C.; Zhang, X.; Long, X.; Jin, J.; Jin, R. Effect of β-sitosterol self-microemulsion and β-sitosterol ester with linoleic acid on lipid-lowering in hyperlipidemic mice. Lipids Health Dis., 2019, 18(1), 157.
[http://dx.doi.org/10.1186/s12944-019-1096-2] [PMID: 31351498]
[26]
Melincovici, C.S. Boşca, A.B.; Şuşman, S.; Mărginean, M.; Mihu, C.; Istrate, M.; Moldovan, I.M.; Roman, A.L.; Mihu, C.M. Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis. Rom. J. Morphol. Embryol., 2018, 59(2), 455-467.
[PMID: 30173249]
[27]
Chen, J.; Zhang, X.; Liu, X.; Zhang, C.; Shang, W.; Xue, J.; Chen, R.; Xing, Y.; Song, D.; Xu, R. Ginsenoside Rg1 promotes cerebral angiogenesis via the PI3K/Akt/mTOR signaling pathway in ischemic mice. Eur. J. Pharmacol., 2019, 856, 172418.
[http://dx.doi.org/10.1016/j.ejphar.2019.172418] [PMID: 31132356]
[28]
Lin, X.P.; Cui, H.J.; Yang, A.L.; Luo, J.K.; Tang, T.; Astragaloside, I.V. Astragaloside IV improves vasodilatation function by regulating the PI3K/Akt/eNOS signaling pathway in rat aorta endothelial cells. J. Vasc. Res., 2018, 55(3), 169-176.
[http://dx.doi.org/10.1159/000489958] [PMID: 29972829]
[29]
Su, C.C.; Chiu, T.L. Tanshinone IIA decreases the protein expression of EGFR, and IGFR blocking the PI3K/Akt/mTOR pathway in gastric carcinoma AGS cells both in vitro and in vivo. Oncol. Rep., 2016, 36(2), 1173-1179.
[http://dx.doi.org/10.3892/or.2016.4857] [PMID: 27277844]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy