Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Anticancer Potential of Thymoquinone: A Novel Bioactive Natural Compound from Nigella sativa L.

Author(s): Prince Ahad Mir, Roohi Mohi-ud-din, Nazia Banday, Mudasir Maqbool, Syed Naeim Raza, Saeema Farooq, Suhaib Afzal and Reyaz Hassan Mir*

Volume 22, Issue 20, 2022

Published on: 04 August, 2022

Page: [3401 - 3415] Pages: 15

DOI: 10.2174/1871520622666220511233314

Price: $65

Abstract

Cancer involves the uncontrolled division of cells resulting in abnormal cell growth due to various gene mutations and is considered the second major cause of death. Due to drug resistance to current anticancer drugs, cancer incidence is rising, and seeking effective treatment is a major concern. Natural products are prospective to yield unique molecules, as nature is a leading source of various drug molecules due to plenty of pharmacologically active molecules. Thymoquinone, a bioactive constituent obtained from Nigella sativa L., has drawn considerable attention among researchers in recent years due to its anticancer potential involving various molecular targets, including initiation of apoptosis initiation, arrest of cell cycle and generation of ROS, besides targeting multiple kinases such as tyrosine kinase, MAPK, and Janus kinase. The current review summarizes the thymoquinone chemistry, sources and anticancer potential involving various molecular targets.

Keywords: Nigella sativa, thymoquinone, plant products, anticancer therapeutics, apoptosis, Janus kinase.

[1]
Kinghorn, A.D.; Chin, Y.W.; Swanson, S.M. Discovery of natural product anticancer agents from biodiverse organisms. Curr. Opin. Drug Discov. Devel., 2009, 12(2), 189-196.
[PMID: 19333864]
[2]
Mohi-Ud-Din, R.; Mir, R.H.; Wani, T.U.; Shah, A.J.; Banday, N.; Pottoo, F.H. Berberine in the treatment of neurodegenerative diseases and nanotechnology enabled targeted delivery. Comb. Chem. High Throughput Screen., 2022, 25(4), 616-633.
[http://dx.doi.org/10.2174/1386207324666210804122539] [PMID: 34348611]
[3]
Shah, A.J.; Mir, R.H.; Mohi-Ud-Din, R.; Pottoo, F.H.; Masoodi, M.H.; Bhat, Z.A. Depression: An insight into heterocyclic and cyclic hy-drocarbon compounds inspired from natural sources. Curr. Neuropharmacol., 2021, 19(11), 2020-2037.
[http://dx.doi.org/10.2174/1570159X19666210426115234] [PMID: 33902421]
[4]
Mir, R.H.; Sawhney, G.; Verma, R.; Ahmad, B.; Kumar, P.; Ranjana, S.; Bhagat, A.; Madishetti, S.; Ahmed, Z.; Jachak, S.M.; Choi, S. Ore-ganum Vulgare: In vitro assessment of cytotoxicity, Molecular docking studies, Antioxidant, and evaluation of anti-inflammatory activity in LPS stimulated RAW 264.7 cells. Med. Chem., 2020.
[PMID: 32885758]
[5]
Park, S.H.; Kim, M.; Lee, S.; Jung, W.; Kim, B. Therapeutic potential of natural products in treatment of cervical cancer: a review. Nutrients, 2021, 13(1), 154.
[http://dx.doi.org/10.3390/nu13010154] [PMID: 33466408]
[6]
Ertl, P Schuffenhauer, A cheminformatics analysis of natural products: lessons from nature inspiring the design of new drugs. Natural compounds as drugs, 2008, 217-235.
[http://dx.doi.org/10.1007/978-3-7643-8595-8_4]
[7]
Hassan, R.; Mohi-Ud-Din, R.; Dar, M.O.; Shah, A.J.; Mir, P.A.; Shaikh, M.; Pottoo, F.H. Bioactive heterocyclic compounds as potential therapeutics in the treatment of gliomas: A review. Anticancer. Agents Med. Chem., 2022, 22(3), 551-565.
[http://dx.doi.org/10.2174/1871520621666210901112954] [PMID: 34488596]
[8]
Mohi-Ud-Din, R.; Mir, R.H.; Shah, A.J.; Sabreen, S.; Wani, T.U.; Masoodi, M.H.; Akkol, E.K.; Bhat, Z.A.; Khan, H. Plant-derived natural compounds for the treatment of amyotrophic lateral sclerosis: An update. Curr. Neuropharmacol., 2022, 20(1), 179-193.
[http://dx.doi.org/10.2174/1570159X19666210428120514] [PMID: 33913406]
[9]
Ahmad, G.; Hassan, R.; Dhiman, N.; Ali, A. Anti-inflammatory assessment of 3-Acetylmyricadiol in LPS-Stimulated Raw 264.7 Macro-phages. Comb. Chem. High Throughput Screen., 2022, 26(1), 204-210.
[http://dx.doi.org/10.2174/1386207324666210319122650]
[10]
Mir, R.H.; Bhat, M.F.; Sawhney, G.; Kumar, P.; Andrabi, N.I.; Shaikh, M.; Mohi-Ud-Din, R.; Masoodi, M.H. Prunella vulgaris L: Critical pharmacological, expository traditional uses and extensive phytochemistry: A review. Curr. Drug Discov. Technol., 2022, 19(1), e140122191102.
[PMID: 33538676]
[11]
Hassan Mir, R.; Godavari, G.; Siddiqui, N.A.; Ahmad, B.; Mothana, R.A.; Ullah, R.; Almarfadi, O.M.; Jachak, S.M.; Masoodi, M.H. De-sign, synthesis, molecular modelling, and biological evaluation of oleanolic acid-arylidene derivatives as potential anti-inflammatory agents. Drug Des. Devel. Ther., 2021, 15, 385-397.
[http://dx.doi.org/10.2147/DDDT.S291784] [PMID: 33574657]
[12]
Mohi-Ud-Din, R.; Mir, R.H.; Mir, P.A.; Farooq, S.; Raza, S.N.; Raja, W.Y.; Masoodi, M.H.; Singh, I.P.; Bhat, Z.A. Ethnomedicinal uses, phytochemistry and pharmacological aspects of the genus Berberis linn: a comprehensive review. Comb. Chem. High Throughput Screen., 2021, 24(5), 624-644.
[http://dx.doi.org/10.2174/1386207323999201102141206] [PMID: 33143603]
[13]
Mir, R.H.; Shah, A.J.; Mohi-Ud-Din, R.; Pottoo, F.H.; Dar, M.A.; Jachak, S.M.; Masoodi, M.H. Natural anti-inflammatory compounds as drug candidates in alzheimer’s disease. Curr. Med. Chem., 2021, 28(23), 4799-4825.
[http://dx.doi.org/10.2174/0929867327666200730213215] [PMID: 32744957]
[14]
Cragg, G.M.; Newman, D.J. Plants as a source of anti-cancer agents. J. Ethnopharmacol., 2005, 100(1-2), 72-79.
[http://dx.doi.org/10.1016/j.jep.2005.05.011] [PMID: 16009521]
[15]
Hassan, R.; Masoodi, M.H. Saussurea lappa: A comprehensive review on its pharmacological activity and phytochemistry. Curr. Tradit. Med., 2020, 6(1), 13-23.
[http://dx.doi.org/10.2174/2215083805666190626144909]
[16]
Kim, C.; Kim, B. Anti-cancer natural products and their bioactive compounds inducing ER stress-mediated apoptosis: A review. Nutrients, 2018, 10(8), 1021.
[http://dx.doi.org/10.3390/nu10081021] [PMID: 30081573]
[17]
Mitra, S.; Dash, R. Natural products for the management and prevention of breast cancer. Evid. Based Complement. Alternat. Med., 2018, 2018, 8324696.
[http://dx.doi.org/10.1155/2018/8324696] [PMID: 29681985]
[18]
Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discov., 2021, 20(3), 200-216.
[http://dx.doi.org/10.1038/s41573-020-00114-z] [PMID: 33510482]
[19]
Hwang, C.K.; Kim, H.S.; Hong, Y.S.; Kim, Y.H.; Hong, S.K.; Kim, S.J.; Lee, J.J. Expression of Streptomyces peucetius genes for doxorubi-cin resistance and aklavinone 11-hydroxylase in Streptomyces galilaeus ATCC 31133 and production of a hybrid aclacinomycin. Antimicrob. Agents Chemother., 1995, 39(7), 1616-1620.
[http://dx.doi.org/10.1128/AAC.39.7.1616] [PMID: 7492117]
[20]
Nobili, S.; Lippi, D.; Witort, E.; Donnini, M.; Bausi, L.; Mini, E.; Capaccioli, S. Natural compounds for cancer treatment and prevention. Pharmacol. Res., 2009, 59(6), 365-378.
[http://dx.doi.org/10.1016/j.phrs.2009.01.017] [PMID: 19429468]
[21]
Mir, R.H. Mohi-ud-din R, Wani TU, Dar MO, Shah AJ, Lone B, Pooja C, Masoodi MH. Indole: A privileged heterocyclic moiety in the management of cancer. Curr. Org. Chem., 2021, 25(6), 724-736.
[http://dx.doi.org/10.2174/1385272825666210208142108]
[22]
Greco, G.; Catanzaro, E.; Fimognari, C. Natural products as inducers of non-canonical cell death: a weapon against cancer. Cancers (Basel), 2021, 13(2), 304.
[http://dx.doi.org/10.3390/cancers13020304] [PMID: 33467668]
[23]
Mir, R.H.; Masoodi, M.H. Anti-inflammatory plant polyphenolics and cellular action mechanisms. Curr. Bioact. Compd., 2020, 16(6), 809-817.
[http://dx.doi.org/10.2174/1573407215666190419205317]
[24]
Dholwani, K.K.; Saluja, A.K.; Gupta, A.R.; Shah, D.R. A review on plant-derived natural products and their analogs with anti-tumor activi-ty. Indian J. Pharmacol., 2008, 40(2), 49-58.
[http://dx.doi.org/10.4103/0253-7613.41038] [PMID: 21279166]
[25]
Iqbal, J.; Abbasi, B.A.; Mahmood, T.; Kanwal, S.; Ali, B.; Shah, S.A.; Khalil, A.T. Plant-derived anticancer agents: A green anticancer approach. Asian Pac. J. Trop. Biomed., 2017, 7(12), 1129-1150.
[http://dx.doi.org/10.1016/j.apjtb.2017.10.016]
[26]
Seca, A.M.L.; Pinto, D.C.G.A. Plant secondary metabolites as anticancer agents: successes in clinical trials and therapeutic application. Int. J. Mol. Sci., 2018, 19(1), 263.
[http://dx.doi.org/10.3390/ijms19010263] [PMID: 29337925]
[27]
Buyel, J.F. Plants as sources of natural and recombinant anti-cancer agents. Biotechnol. Adv., 2018, 36(2), 506-520.
[http://dx.doi.org/10.1016/j.biotechadv.2018.02.002] [PMID: 29408560]
[28]
Ijaz, S.; Akhtar, N.; Khan, M.S.; Hameed, A.; Irfan, M.; Arshad, M.A.; Ali, S.; Asrar, M. Plant derived anticancer agents: A green approach towards skin cancers. Biomed. Pharmacother., 2018, 103, 1643-1651.
[http://dx.doi.org/10.1016/j.biopha.2018.04.113] [PMID: 29864953]
[29]
Changxing, L.; Galani, S.; Hassan, F.U.; Rashid, Z.; Naveed, M.; Fang, D.; Ashraf, A.; Qi, W.; Arif, A.; Saeed, M.; Chishti, A.A.; Jianhua, L. Biotechnological approaches to the production of plant-derived promising anticancer agents: An update and overview. Biomed. Pharmacother., 2020, 132, 110918.
[http://dx.doi.org/10.1016/j.biopha.2020.110918] [PMID: 33254434]
[30]
Wall, M.E.; Wani, M.C. Camptothecin and taxol: from discovery to clinic. J. Ethnopharmacol., 1996, 51(1-3), 239-253.
[http://dx.doi.org/10.1016/0378-8741(95)01367-9] [PMID: 9213622]
[31]
Amna, T.; Puri, S.C.; Verma, V.; Sharma, J.P.; Khajuria, R.K.; Musarrat, J.; Spiteller, M.; Qazi, G.N. Bioreactor studies on the endophytic fungus Entrophospora infrequens for the production of an anticancer alkaloid camptothecin. Can. J. Microbiol., 2006, 52(3), 189-196.
[http://dx.doi.org/10.1139/w05-122] [PMID: 16604115]
[32]
Li, Y.C.; Tao, W.Y.; Cheng, L. Paclitaxel production using co-culture of taxus suspension cells and paclitaxel-producing endophytic fungi in a co-bioreactor. Appl. Microbiol. Biotechnol., 2009, 83(2), 233-239.
[http://dx.doi.org/10.1007/s00253-009-1856-4] [PMID: 19172266]
[33]
Stierle, A.; Strobel, G.; Stierle, D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science, 1993, 260(5105), 214-216.
[http://dx.doi.org/10.1126/science.8097061] [PMID: 8097061]
[34]
Li, J.Y.; Strobel, G.; Sidhu, R.; Hess, W.M.; Ford, E.J. Endophytic taxol-producing fungi from bald cypress, Taxodium distichum. Microbiology, 1996, 142(Pt 8), 2223-2226.
[http://dx.doi.org/10.1099/13500872-142-8-2223] [PMID: 8760934]
[35]
Wang, J.; Li, G.; Lu, H.; Zheng, Z.; Huang, Y.; Su, W. Taxol from Tubercularia sp. strain TF5, an endophytic fungus of Taxus mairei. FEMS Microbiol. Lett., 2000, 193(2), 249-253.
[http://dx.doi.org/10.1111/j.1574-6968.2000.tb09432.x] [PMID: 11111032]
[36]
Baloglu, E.; Kingston, D.G. The taxane diterpenoids. J. Nat. Prod., 1999, 62(10), 1448-1472.
[http://dx.doi.org/10.1021/np990176i] [PMID: 10543916]
[37]
Deorukhkar, A.; Krishnan, S.; Sethi, G.; Aggarwal, B.B. Back to basics: how natural products can provide the basis for new therapeutics. Expert Opin. Investig. Drugs, 2007, 16(11), 1753-1773.
[http://dx.doi.org/10.1517/13543784.16.11.1753] [PMID: 17970636]
[38]
Lee, H.J.; Lee, H.J.; Magesh, V.; Nam, D.; Lee, E.O.; Ahn, K.S.; Jung, M.H.; Ahn, K.S.; Kim, D.K.; Kim, J.Y.; Kim, S.H. Shikonin, acetyl-shikonin, and isobutyroylshikonin inhibit VEGF-induced angiogenesis and suppress tumor growth in lewis lung carcinoma-bearing mice. Yakugaku Zasshi, 2008, 128(11), 1681-1688.
[http://dx.doi.org/10.1248/yakushi.128.1681] [PMID: 18981704]
[39]
Khalifa, S.A.M.; Elias, N.; Farag, M.A.; Chen, L.; Saeed, A.; Hegazy, M.F.; Moustafa, M.S.; Abd El-Wahed, A.; Al-Mousawi, S.M.; Musharraf, S.G.; Chang, F.R.; Iwasaki, A.; Suenaga, K.; Alajlani, M.; Göransson, U.; El-Seedi, H.R. Marine natural products: A source of novel anticancer drugs. Mar. Drugs, 2019, 17(9), 491.
[http://dx.doi.org/10.3390/md17090491] [PMID: 31443597]
[40]
Tan, G.; Gyllenhaal, C.; Soejarto, D.D. Biodiversity as a source of anticancer drugs. Curr. Drug Targets, 2006, 7(3), 265-277.
[http://dx.doi.org/10.2174/138945006776054942] [PMID: 16515527]
[41]
Jensen, P.R.; Mincer, T.J.; Williams, P.G.; Fenical, W. Marine actinomycete diversity and natural product discovery. Antonie van Leeuwenhoek, 2005, 87(1), 43-48.
[http://dx.doi.org/10.1007/s10482-004-6540-1] [PMID: 15726290]
[42]
Singh, R.P.; Gangadharappa, H.V.; Mruthunjaya, K. Cuminum cyminum-A popular spice: An updated review. Pharmacogn. J., 2017, 9(3)
[http://dx.doi.org/10.5530/pj.2017.3.51]
[43]
Hossain, M.S.; Sharfaraz, A.; Dutta, A.; Ahsan, A.; Masud, M.A.; Ahmed, I.A.; Goh, B.H.; Urbi, Z.; Sarker, M.M.R.; Ming, L.C. A review of ethnobotany, phytochemistry, antimicrobial pharmacology and toxicology of Nigella sativa L. Biomed. Pharmacother., 2021, 143, 112182.
[http://dx.doi.org/10.1016/j.biopha.2021.112182] [PMID: 34649338]
[44]
Majeed, A.; Muhammad, Z.; Ahmad, H.; Hayat, S.S.; Inayat, N.; Siyyar, S. Nigella sativa L.: Uses in traditional and contemporary medi-cines–An overview. Acta Ecol. Sin., 2021, 41(4), 253-258.
[http://dx.doi.org/10.1016/j.chnaes.2020.02.001]
[45]
Ansary, J.; Giampieri, F.; Forbes-Hernandez, T.Y.; Regolo, L.; Quinzi, D.; Gracia Villar, S.; Garcia Villena, E.; Tutusaus Pifarre, K. Alva-rez-Suarez, J.M.; Battino, M.; Cianciosi, D. Nutritional value and preventive role of Nigella sativa L. and its main component thymoqui-none in cancer: an evidenced-based review of preclinical and clinical studies. Molecules, 2021, 26(8), 2108.
[http://dx.doi.org/10.3390/molecules26082108] [PMID: 33916916]
[46]
Ahmad, M.F.; Ahmad, F.A.; Ashraf, S.A.; Saad, H.H.; Wahab, S.; Khan, M.I.; Ali, M.; Mohan, S.; Hakeem, K.R.; Athar, M.T. An updated knowledge of black seed (Nigella sativa Linn.): Review of phytochemical constituents and pharmacological properties. J. Herb. Med., 2021, 25, 100404.
[http://dx.doi.org/10.1016/j.hermed.2020.100404] [PMID: 32983848]
[47]
Khan, S.; Ali, M.; Albratty, M.M.; Najmi, A.Y.; Azeem, U.; Khan, S.A. Rather, MA Nigella sativa: From chemistry to medicine. In: Black Seeds (Nigella Sativa); Elsevier, 2022; pp. 29-62.
[48]
Ramadan, M.F. Introduction to black cumin (Nigella sativa): Chemistry, technology, functionality and applications. In: Black cumin (Ni-gella sativa) seeds: Chemistry, Technology, Functionality, and Applications; Springer: Cham, 2021; pp. 1-7.
[http://dx.doi.org/10.1007/978-3-030-48798-0]
[49]
Yimer, E.M.; Tuem, K.B.; Karim, A.; Ur-Rehman, N.; Anwar, F. Nigella sativa L.(black cumin): a promising natural remedy for wide range of illnesses. Evid. Based Complement. Alternat. Med., 2019, 2019, 1528635.
[http://dx.doi.org/10.1155/2019/1528635] [PMID: 31214267]
[50]
Mehraj, T.; Elkanayati, R.M.; Farooq, I.; Mir, T.M. A review of Nigella sativa and its active principles as anticancer agents. Black Seeds. Nigella Sativa, 2022, 91-118.
[http://dx.doi.org/10.1016/B978-0-12-824462-3.00012-3]
[51]
Babar, Z.U.; Jaswir, I.; Maifiah, M.H.; Ismail, S.; Raus, R.A.; Tareq, A.M.; Ahfter, F.; Faraque, A.; Reza, A.A.; Sayeed, M.A.; Hossain, M.M. The thrombolytic and cytotoxic effects of Nigella sativa (L.) seeds: the prophetic medicine. Int. J. Halal Res., 2020, 2(2), 70-77.
[http://dx.doi.org/10.18517/ijhr.2.2.70-77.2020]
[52]
Majdalawieh, A.F.; Fayyad, M.W.; Nasrallah, G.K. Anti-cancer properties and mechanisms of action of thymoquinone, the major active ingredient of Nigella sativa. Crit. Rev. Food Sci. Nutr., 2017, 57(18), 3911-3928.
[http://dx.doi.org/10.1080/10408398.2016.1277971] [PMID: 28140613]
[53]
Mashayekhi-Sardoo, H.; Rezaee, R.; Karimi, G. An overview of in vivo toxicological profile of thymoquinone. Toxin Rev., 2018.
[54]
Karandrea, S.; Yin, H.; Liang, X.; Slitt, A.L.; Heart, E.A. Thymoquinone ameliorates diabetic phenotype in diet-induced obesity mice via activation of SIRT-1-dependent pathways. PLoS One, 2017, 12(9), e0185374.
[http://dx.doi.org/10.1371/journal.pone.0185374] [PMID: 28950020]
[55]
Hou, Q.; Liu, L.; Dong, Y.; Wu, J.; Du, L.; Dong, H.; Li, D. Effects of thymoquinone on radiation enteritis in mice. Sci. Rep., 2018, 8(1), 15122.
[http://dx.doi.org/10.1038/s41598-018-33214-3] [PMID: 30310156]
[56]
Imran, M.; Rauf, A.; Khan, I.A.; Shahbaz, M.; Qaisrani, T.B.; Fatmawati, S.; Abu-Izneid, T.; Imran, A.; Rahman, K.U.; Gondal, T.A. Thy-moquinone: A novel strategy to combat cancer: A review. Biomed. Pharmacother., 2018, 106, 390-402.
[http://dx.doi.org/10.1016/j.biopha.2018.06.159] [PMID: 29966985]
[57]
Taborsky, J.; Kunt, M.; Kloucek, P.; Lachman, J.; Zeleny, V.; Kokoska, L. Identification of potential sources of thymoquinone and related compounds in Asteraceae, Cupressaceae, Lamiaceae, and Ranunculaceae families. Cent. Eur. J. Chem., 2012, 10(6), 1899-1906.
[58]
Beg, S.; Swain, S.; Rizwan, M.; Irfanuddin, M.; Malini, D.S. Bioavailability enhancement strategies: basics, formulation approaches and regulatory considerations. Curr. Drug Deliv., 2011, 8(6), 691-702.
[http://dx.doi.org/10.2174/156720111797635504] [PMID: 21864253]
[59]
Raza, S.N.; Khan, N.A. HPMC-eudragit-based gastro-retentive hydrodynamically balanced system-suitable for sparingly soluble and freely soluble drugs: An in vitro study. J. Pharm. Innov., 2018, 13(4), 353-366.
[http://dx.doi.org/10.1007/s12247-018-9330-4]
[60]
Raza, S.; Khan, N. Gastric retention—an innovative approach to increase bioavailability. Int. J. Biol. Pharm. Allied Sci., 2014, 3, 113-133.
[61]
Ahmad, A.; Mishra, R.K.; Vyawahare, A.; Kumar, A.; Rehman, M.U.; Qamar, W.; Khan, A.Q.; Khan, R. Thymoquinone (2-Isoprpyl-5-methyl-1, 4-benzoquinone) as a chemopreventive/anticancer agent: Chemistry and biological effects. Saudi Pharm. J., 2019, 27(8), 1113-1126.
[http://dx.doi.org/10.1016/j.jsps.2019.09.008] [PMID: 31885471]
[62]
Tubesha, Z.; Imam, M.U.; Mahmud, R.; Ismail, M. Study on the potential toxicity of a thymoquinone-rich fraction nanoemulsion in Spra-gue Dawley rats. Molecules, 2013, 18(7), 7460-7472.
[http://dx.doi.org/10.3390/molecules18077460] [PMID: 23803717]
[63]
Abukhader, M.M. The effect of route of administration in thymoquinone toxicity in male and female rats. Indian J. Pharm. Sci., 2012, 74(3), 195-200.
[http://dx.doi.org/10.4103/0250-474X.106060] [PMID: 23440704]
[64]
Abdelwahab, S.I.; Sheikh, B.Y.; Taha, M.M.; How, C.W.; Abdullah, R.; Yagoub, U.; El-Sunousi, R.; Eid, E.E. Thymoquinone-loaded nanostructured lipid carriers: preparation, gastroprotection, in vitro toxicity, and pharmacokinetic properties after extravascular admin-istration. Int. J. Nanomedicine, 2013, 8, 2163-2172.
[http://dx.doi.org/10.2147/IJN.S44108] [PMID: 23818776]
[65]
Filley, A.C.; Henriquez, M.; Dey, M. CART immunotherapy: development, success, and translation to malignant gliomas and other solid tumors. Front. Oncol., 2018, 8, 453.
[http://dx.doi.org/10.3389/fonc.2018.00453] [PMID: 30386740]
[66]
Das, D.N.; Panda, P.K.; Naik, P.P.; Mukhopadhyay, S.; Sinha, N.; Bhutia, S.K. Phytotherapeutic approach: a new hope for polycyclic aro-matic hydrocarbons induced cellular disorders, autophagic and apoptotic cell death. Toxicol. Mech. Methods, 2017, 27(1), 1-17.
[http://dx.doi.org/10.1080/15376516.2016.1268228] [PMID: 27919191]
[67]
Leber, M.F.; Efferth, T. Molecular principles of cancer invasion and metastasis (review). Int. J. Oncol., 2009, 34(4), 881-895.
[PMID: 19287945]
[68]
Mahmoud, Y.K.; Abdelrazek, H.M.A. Cancer: Thymoquinone antioxidant/pro-oxidant effect as potential anticancer remedy. Biomed. Pharmacother., 2019, 115, 108783.
[http://dx.doi.org/10.1016/j.biopha.2019.108783] [PMID: 31060003]
[69]
Stewart, B.W.; Bray, F.; Forman, D.; Ohgaki, H.; Straif, K.; Ullrich, A.; Wild, C.P. Cancer prevention as part of precision medicine: ‘plenty to be done’. Carcinogenesis, 2016, 37(1), 2-9.
[http://dx.doi.org/10.1093/carcin/bgv166] [PMID: 26590901]
[70]
Greenwell, M.; Rahman, P.K. Medicinal plants: their use in anticancer treatment. Int. J. Pharm. Sci. Res., 2015, 6(10), 4103-4112.
[PMID: 26594645]
[71]
Padmaharish, V.; Lakshmi, T. Anticancer activities of medicinal plants–an update. J. Pharm. Sci. Res., 2017, 9(4), 432.
[72]
Feng, L.M.; Wang, X.F.; Huang, Q.X. Thymoquinone induces cytotoxicity and reprogramming of EMT in gastric cancer cells by targeting PI3K/Akt/mTOR pathway. J. Biosci., 2017, 42(4), 547-554.
[http://dx.doi.org/10.1007/s12038-017-9708-3] [PMID: 29229873]
[73]
Zhang, L.; Bai, Y.; Yang, Y. Thymoquinone chemosensitizes colon cancer cells through inhibition of NF-κB. Oncol. Lett., 2016, 12(4), 2840-2845.
[http://dx.doi.org/10.3892/ol.2016.4971] [PMID: 27698868]
[74]
Kou, B.; Liu, W.; Zhao, W.; Duan, P.; Yang, Y.; Yi, Q.; Guo, F.; Li, J.; Zhou, J.; Kou, Q. Thymoquinone inhibits epithelial-mesenchymal transition in prostate cancer cells by negatively regulating the TGF-β/Smad2/3 signaling pathway. Oncol. Rep., 2017, 38(6), 3592-3598.
[http://dx.doi.org/10.3892/or.2017.6012] [PMID: 29039572]
[75]
Ray, P.D.; Huang, B.W.; Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal., 2012, 24(5), 981-990.
[http://dx.doi.org/10.1016/j.cellsig.2012.01.008] [PMID: 22286106]
[76]
Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J., 2012, 5(1), 9-19.
[http://dx.doi.org/10.1097/WOX.0b013e3182439613] [PMID: 23268465]
[77]
Hagen, T.M. Oxidative stress, redox imbalance, and the aging process. Antioxid. Redox Signal., 2003, 5(5), 503-506.
[http://dx.doi.org/10.1089/152308603770310149] [PMID: 14580304]
[78]
Wright, E., Jr; Scism-Bacon, J.L.; Glass, L.C. Oxidative stress in type 2 diabetes: the role of fasting and postprandial glycaemia. Int. J. Clin. Pract., 2006, 60(3), 308-314.
[http://dx.doi.org/10.1111/j.1368-5031.2006.00825.x] [PMID: 16494646]
[79]
Singh, U.; Jialal, I. Oxidative stress and atherosclerosis. Pathophysiology, 2006, 13(3), 129-142.
[http://dx.doi.org/10.1016/j.pathophys.2006.05.002] [PMID: 16757157]
[80]
Di Virgilio, F. New pathways for reactive oxygen species generation in inflammation and potential novel pharmacological targets. Curr. Pharm. Des., 2004, 10(14), 1647-1652.
[http://dx.doi.org/10.2174/1381612043384727] [PMID: 15134562]
[81]
Weinberg, F.; Chandel, N.S. Reactive oxygen species-dependent signaling regulates cancer. Cell. Mol. Life Sci., 2009, 66(23), 3663-3673.
[http://dx.doi.org/10.1007/s00018-009-0099-y] [PMID: 19629388]
[82]
Reddy, L.H.; Couvreur, P. Squalene: A natural triterpene for use in disease management and therapy. Adv. Drug Deliv. Rev., 2009, 61(15), 1412-1426.
[http://dx.doi.org/10.1016/j.addr.2009.09.005] [PMID: 19804806]
[83]
Zhao, C.R.; Gao, Z.H.; Qu, X.J. Nrf2-ARE signaling pathway and natural products for cancer chemoprevention. Cancer Epidemiol., 2010, 34(5), 523-533.
[http://dx.doi.org/10.1016/j.canep.2010.06.012] [PMID: 20638930]
[84]
Seo, S.M.; Kim, J.; Kang, J.; Koh, S.H.; Ahn, Y.J.; Kang, K.S.; Park, I.K. Fumigant toxicity and acetylcholinesterase inhibitory activity of 4 Asteraceae plant essential oils and their constituents against Japanese termite (Reticulitermes speratus Kolbe). Pestic. Biochem. Physiol., 2014, 113, 55-61.
[http://dx.doi.org/10.1016/j.pestbp.2014.06.001] [PMID: 25052527]
[85]
Kassab, R.B.; El-Hennamy, R.E. The role of thymoquinone as a potent antioxidant in ameliorating the neurotoxic effect of sodium arse-nate in female rat. Egypt. J. Basic Appl. Sci., 2017, 4(3), 160-167.
[http://dx.doi.org/10.1016/j.ejbas.2017.07.002]
[86]
Mahmoud, Y.K.; Saleh, S.Y.; El Ghannam, A.E.; Ibrahim, I.A. Biochemical efficacy of Nigella sativa oil and metformin on induced dia-betic male rats. Am. J. Anim. Vet. Sci., 2014, 9(4), 277-284.
[http://dx.doi.org/10.3844/ajavsp.2014.277.284]
[87]
Mosbah, R.; Djerrou, Z.; Mantovani, A. Protective effect of Nigella sativa oil against acetamiprid induced reproductive toxicity in male rats. Drug Chem. Toxicol., 2018, 41(2), 206-212.
[http://dx.doi.org/10.1080/01480545.2017.1337127] [PMID: 28669218]
[88]
Nili-Ahmadabadi, A.; Tavakoli, F.; Hasanzadeh, G.; Rahimi, H.; Sabzevari, O. Protective effect of pretreatment with thymoquinone against Aflatoxin B(1) induced liver toxicity in mice. Daru, 2011, 19(4), 282-287.
[PMID: 22615670]
[89]
Atta, M.S.; Almadaly, E.A.; El-Far, A.H.; Saleh, R.M.; Assar, D.H.; Al Jaouni, S.K.; Mousa, S.A. Thymoquinone defeats diabetes-induced testicular damage in rats targeting antioxidant, inflammatory and aromatase expression. Int. J. Mol. Sci., 2017, 18(5), 919.
[http://dx.doi.org/10.3390/ijms18050919] [PMID: 28448463]
[90]
Nagi, M.N.; Almakki, H.A. Thymoquinone supplementation induces quinone reductase and glutathione transferase in mice liver: possible role in protection against chemical carcinogenesis and toxicity. Phytother. Res., 2009, 23(9), 1295-1298.
[http://dx.doi.org/10.1002/ptr.2766] [PMID: 19277968]
[91]
Staniek, K.; Gille, L. Is thymoquinone an antioxidant? BMC Pharmacol., 2010, 10(1), 1-1.
[http://dx.doi.org/10.1186/1471-2210-10-S1-A9]
[92]
Sayed-Ahmed, M.M.; Aleisa, A.M.; Al-Rejaie, S.S.; Al-Yahya, A.A.; Al-Shabanah, O.A.; Hafez, M.M.; Nagi, M.N. Thymoquinone attenu-ates diethylnitrosamine induction of hepatic carcinogenesis through antioxidant signaling. Oxid. Med. Cell. Longev., 2010, 3(4), 254-261.
[http://dx.doi.org/10.4161/oxim.3.4.12714] [PMID: 20972371]
[93]
Armutcu, F.; Akyol, S.; Akyol, O. The interaction of glutathione and thymoquinone and their antioxidant properties. Electron. J. Gen. Med., 2018, 15(4) Article No: em59
[http://dx.doi.org/10.29333/ejgm/89493]
[94]
Kundu, J.; Kim, D.H.; Kundu, J.K.; Chun, K.S. Thymoquinone induces heme oxygenase-1 expression in HaCaT cells via Nrf2/ARE acti-vation: Akt and AMPKα as upstream targets. Food Chem. Toxicol., 2014, 65, 18-26.
[http://dx.doi.org/10.1016/j.fct.2013.12.015] [PMID: 24355171]
[95]
Martinovich, G.G.; Martinovich, I.V.; Vcherashniaya, A.V.; Shadyro, O.I.; Cherenkevich, S.N. Thymoquinone, a biologically active com-ponent of Nigella sativa, induces mitochondrial production of reactive oxygen species and programmed death of tumor cells. Biophysics (Oxf.), 2016, 61(6), 963-970.
[http://dx.doi.org/10.1134/S0006350916060154]
[96]
Yu, S.M.; Kim, S.J. The thymoquinone-induced production of reactive oxygen species promotes dedifferentiation through the ERK path-way and inflammation through the p38 and PI3K pathways in rabbit articular chondrocytes. Int. J. Mol. Med., 2015, 35(2), 325-332.
[http://dx.doi.org/10.3892/ijmm.2014.2014] [PMID: 25435376]
[97]
Baig, S.; Seevasant, I.; Mohamad, J.; Mukheem, A.; Huri, H.Z.; Kamarul, T. Potential of apoptotic pathway-targeted cancer therapeutic research: Where do we stand? Cell Death Dis., 2016, 7(1), e2058.
[http://dx.doi.org/10.1038/cddis.2015.275] [PMID: 26775709]
[98]
Gupta, A.; Ahmad, A.; Dar, A.I.; Khan, R. Synthetic lethality: from research to precision cancer nanomedicine. Curr. Cancer Drug Targets, 2018, 18(4), 337-346.
[http://dx.doi.org/10.2174/1568009617666170630141931] [PMID: 28669337]
[99]
Chen, Y.; Wang, B.; Zhao, H. Thymoquinone reduces spinal cord injury by inhibiting inflammatory response, oxidative stress and apop-tosis via PPAR-γ and PI3K/Akt pathways. Exp. Ther. Med., 2018, 15(6), 4987-4994.
[http://dx.doi.org/10.3892/etm.2018.6072] [PMID: 29904397]
[100]
Gali-Muhtasib, H.; Diab-Assaf, M.; Boltze, C.; Al-Hmaira, J.; Hartig, R.; Roessner, A.; Schneider-Stock, R. Thymoquinone extracted from black seed triggers apoptotic cell death in human colorectal cancer cells via a p53-dependent mechanism. Int. J. Oncol., 2004, 25(4), 857-866.
[PMID: 15375533]
[101]
Gupta, A.; Ahmad, A.; Singh, H.; Kaur, S. K M, N.; Ansari, M.M.; Jayamurugan, G.; Khan, R. KM N, Ansari MM, Jayamurugan G, Khan R. Nanocarrier composed of magnetite core coated with three polymeric shells mediates LCS-1 delivery for synthetic lethal therapy of BLM-defective colorectal cancer cells. Biomacromolecules, 2018, 19(3), 803-815.
[http://dx.doi.org/10.1021/acs.biomac.7b01607] [PMID: 29451980]
[102]
Ke, X.; Zhao, Y.; Lu, X.; Wang, Z.; Liu, Y.; Ren, M.; Lu, G.; Zhang, D.; Sun, Z.; Xu, Z.; Song, J.H.; Cheng, Y.; Meltzer, S.J.; He, S. TQ inhibits hepatocellular carcinoma growth in vitro and in vivovia repression of Notch signaling. Oncotarget, 2015, 6(32), 32610-32621.
[http://dx.doi.org/10.18632/oncotarget.5362] [PMID: 26416455]
[103]
Peng, L.; Liu, A.; Shen, Y.; Xu, H.Z.; Yang, S.Z.; Ying, X.Z.; Liao, W.; Liu, H.X.; Lin, Z.Q.; Chen, Q.Y.; Cheng, S.W.; Shen, W.D. Anti-tumor and anti-angiogenesis effects of thymoquinone on osteosarcoma through the NF-κB pathway. Oncol. Rep., 2013, 29(2), 571-578.
[http://dx.doi.org/10.3892/or.2012.2165] [PMID: 23232982]
[104]
Dirican, A.; Erten, C.; Atmaca, H.; Bozkurt, E.; Kucukzeybek, Y.; Varol, U.; Oktay Tarhan, M.; Karaca, B.; Uslu, R. Enhanced cytotoxicity and apoptosis by thymoquinone in combination with zoledronic acid in hormone- and drug-resistant prostate cancer cell lines. J. BUON, 2014, 19(4), 1055-1061.
[PMID: 25536616]
[105]
Bashmail, H.A.; Alamoudi, A.A.; Noorwali, A.; Hegazy, G.A. AJabnoor G, Choudhry H, Al-Abd AM. Thymoquinone synergizes gemcita-bine anti-breast cancer activity via modulating its apoptotic and autophagic activities. Sci. Rep., 2018, 8(1), 1-1.
[http://dx.doi.org/10.1038/s41598-018-30046-z] [PMID: 29311619]
[106]
Alhosin, M.; Abusnina, A.; Achour, M.; Sharif, T.; Muller, C.; Peluso, J.; Chataigneau, T.; Lugnier, C.; Schini-Kerth, V.B.; Bronner, C.; Fuhrmann, G. Induction of apoptosis by thymoquinone in lymphoblastic leukemia Jurkat cells is mediated by a p73-dependent pathway which targets the epigenetic integrator UHRF1. Biochem. Pharmacol., 2010, 79(9), 1251-1260.
[http://dx.doi.org/10.1016/j.bcp.2009.12.015] [PMID: 20026309]
[107]
Torres, M.P.; Ponnusamy, M.P.; Chakraborty, S.; Smith, L.M.; Das, S.; Arafat, H.A.; Batra, S.K. Effects of thymoquinone in the expres-sion of mucin 4 in pancreatic cancer cells: implications for the development of novel cancer therapies. Mol. Cancer Ther., 2010, 9(5), 1419-1431.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0075] [PMID: 20423995]
[108]
Ahn, K.S.; Aggarwal, B.B. Transcription factor NF-kappaB: a sensor for smoke and stress signals. Ann. N. Y. Acad. Sci., 2005, 1056(1), 218-233.
[http://dx.doi.org/10.1196/annals.1352.026] [PMID: 16387690]
[109]
Chehl, N.; Chipitsyna, G.; Gong, Q.; Yeo, C.J.; Arafat, H.A. Anti-inflammatory effects of the Nigella sativa seed extract, thymoquinone, in pancreatic cancer cells. HPB (Oxford), 2009, 11(5), 373-381.
[http://dx.doi.org/10.1111/j.1477-2574.2009.00059.x] [PMID: 19768141]
[110]
Sethi, G.; Ahn, K.S.; Aggarwal, B.B. Targeting nuclear factor-κ B activation pathway by thymoquinone: role in suppression of antiapoptot-ic gene products and enhancement of apoptosis. Mol. Cancer Res., 2008, 6(6), 1059-1070.
[http://dx.doi.org/10.1158/1541-7786.MCR-07-2088] [PMID: 18567808]
[111]
Mohamed, A.; Afridi, D.M.; Garani, O.; Tucci, M. Thymoquinone inhibits the activation of NF-kappaB in the brain and spinal cord of experimental autoimmune encephalomyelitis. Biomed. Sci. Instrum., 2005, 41, 388-393.
[PMID: 15850137]
[112]
Vaillancourt, F.; Silva, P.; Shi, Q.; Fahmi, H.; Fernandes, J.C.; Benderdour, M. Elucidation of molecular mechanisms underlying the pro-tective effects of thymoquinone against rheumatoid arthritis. J. Cell. Biochem., 2011, 112(1), 107-117.
[http://dx.doi.org/10.1002/jcb.22884] [PMID: 20872780]
[113]
Li, F.; Rajendran, P.; Sethi, G. Thymoquinone inhibits proliferation, induces apoptosis and chemosensitizes human multiple myeloma cells through suppression of signal transducer and activator of transcription 3 activation pathway. Br. J. Pharmacol., 2010, 161(3), 541-554.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00874.x] [PMID: 20880395]
[114]
Germano, G.; Allavena, P.; Mantovani, A. Cytokines as a key component of cancer-related inflammation. Cytokine, 2008, 43(3), 374-379.
[http://dx.doi.org/10.1016/j.cyto.2008.07.014] [PMID: 18701317]
[115]
El Mezayen, R.; El Gazzar, M.; Nicolls, M.R.; Marecki, J.C.; Dreskin, S.C.; Nomiyama, H. Effect of thymoquinone on cyclooxygenase expression and prostaglandin production in a mouse model of allergic airway inflammation. Immunol. Lett., 2006, 106(1), 72-81.
[http://dx.doi.org/10.1016/j.imlet.2006.04.012] [PMID: 16762422]
[116]
El Gazzar, M.A. Thymoquinone suppressses in vitro production of IL-5 and IL-13 by mast cells in response to lipopolysaccharide stimu-lation. Inflamm. Res., 2007, 56(8), 345-351.
[http://dx.doi.org/10.1007/s00011-007-7051-0] [PMID: 17687519]
[117]
Mansour, M.; Tornhamre, S. Inhibition of 5-lipoxygenase and leukotriene C4 synthase in human blood cells by thymoquinone. J. Enzyme Inhib. Med. Chem., 2004, 19(5), 431-436.
[http://dx.doi.org/10.1080/14756360400002072] [PMID: 15648658]
[118]
Tekeoglu, I.; Dogan, A.; Ediz, L.; Budancamanak, M.; Demirel, A. Effects of thymoquinone (volatile oil of black cumin) on rheumatoid arthritis in rat models. Phytother. Res., 2007, 21(9), 895-897.
[http://dx.doi.org/10.1002/ptr.2143] [PMID: 17562570]
[119]
Subramanian, J.; Govindan, R. Lung cancer in never smokers: a review. J. Clin. Oncol., 2007, 25(5), 561-570.
[http://dx.doi.org/10.1200/JCO.2006.06.8015] [PMID: 17290066]
[120]
Nithya, G.A.; Mani, R.E.; Sakthisekaran, D.H. Oral administration of thymoquinone attenuates benzo (a) pyrene induced lung carcinogen-esis in male Swiss albino mice. Int. J. Pharm. Pharm. Sci., 2014, 6(7), 260-263.
[121]
El-Mahdy, M.A.; Zhu, Q.; Wang, Q.E.; Wani, G.; Wani, A.A. Thymoquinone induces apoptosis through activation of caspase-8 and mito-chondrial events in p53-null myeloblastic leukemia HL-60 cells. Int. J. Cancer, 2005, 117(3), 409-417.
[http://dx.doi.org/10.1002/ijc.21205] [PMID: 15906362]
[122]
Yang, J.; Kuang, X.R.; Lv, P.T.; Yan, X.X. Thymoquinone inhibits proliferation and invasion of human nonsmall-cell lung cancer cells via ERK pathway. Tumour Biol., 2015, 36(1), 259-269.
[http://dx.doi.org/10.1007/s13277-014-2628-z] [PMID: 25238880]
[123]
Ulasli, S.S.; Celik, S.; Gunay, E.; Ozdemir, M.; Hazman, O.; Ozyurek, A.; Koyuncu, T.; Unlu, M. Anticancer effects of thymoquinone, caffeic acid phenethyl ester and resveratrol on A549 non-small cell lung cancer cells exposed to benzo(a)pyrene. Asian Pac. J. Cancer Prev., 2013, 14(10), 6159-6164.
[http://dx.doi.org/10.7314/APJCP.2013.14.10.6159] [PMID: 24289642]
[124]
Lang, M.; Borgmann, M.; Oberhuber, G.; Evstatiev, R.; Jimenez, K.; Dammann, K.W.; Jambrich, M.; Khare, V.; Campregher, C.; Ristl, R.; Gasche, C. Thymoquinone attenuates tumor growth in ApcMin mice by interference with Wnt-signaling. Mol. Cancer, 2013, 12(1), 41.
[http://dx.doi.org/10.1186/1476-4598-12-41] [PMID: 23668310]
[125]
Hsu, H.H.; Chen, M.C.; Day, C.H.; Lin, Y.M.; Li, S.Y.; Tu, C.C.; Padma, V.V.; Shih, H.N.; Kuo, W.W.; Huang, C.Y. Thymoquinone sup-presses migration of LoVo human colon cancer cells by reducing prostaglandin E2 induced COX-2 activation. World J. Gastroenterol., 2017, 23(7), 1171-1179.
[http://dx.doi.org/10.3748/wjg.v23.i7.1171] [PMID: 28275297]
[126]
Fröhlich, T.; Ndreshkjana, B.; Muenzner, J.K.; Reiter, C.; Hofmeister, E.; Mederer, S.; Fatfat, M.; El-Baba, C.; Gali-Muhtasib, H.; Schnei-der-Stock, R.; Tsogoeva, S.B. Synthesis of novel hybrids of thymoquinone and artemisinin with high activity and selectivity against colon cancer. ChemMedChem, 2017, 12(3), 226-234.
[http://dx.doi.org/10.1002/cmdc.201600594] [PMID: 27973725]
[127]
Kuipers, E.J.; Grady, W.M.; Lieberman, D.; Seufferlein, T.; Sung, J.J. Boelens, PG Colorectal cancer. Nat. Rev. Dis. Primers, 2015, 1, 15065.
[http://dx.doi.org/10.1038/nrdp.2015.65] [PMID: 27189416]
[128]
Chen, M.C.; Lee, N.H.; Hsu, H.H.; Ho, T.J.; Tu, C.C.; Chen, R.J.; Lin, Y.M.; Viswanadha, V.P.; Kuo, W.W.; Huang, C.Y. Inhibition of NF-κB and metastasis in irinotecan (CPT-11)-resistant LoVo colon cancer cells by thymoquinone via JNK and p38. Environ. Toxicol., 2017, 32(2), 669-678.
[http://dx.doi.org/10.1002/tox.22268] [PMID: 27060453]
[129]
Kortüm, B.; Campregher, C.; Lang, M.; Khare, V.; Pinter, M.; Evstatiev, R.; Schmid, G.; Mittlböck, M.; Scharl, T.; Kucherlapati, M.H.; Edelmann, W.; Gasche, C. Mesalazine and thymoquinone attenuate intestinal tumour development in Msh2(loxP/loxP) Villin-Cre mice. Gut, 2015, 64(12), 1905-1912.
[http://dx.doi.org/10.1136/gutjnl-2014-307663] [PMID: 25429050]
[130]
Kundu, J.; Choi, B.Y.; Jeong, C.H.; Kundu, J.K.; Chun, K.S. Thymoquinone induces apoptosis in human colon cancer HCT116 cells through inactivation of STAT3 by blocking JAK2- and Src mediated phosphorylation of EGF receptor tyrosine kinase. Oncol. Rep., 2014, 32(2), 821-828.
[http://dx.doi.org/10.3892/or.2014.3223] [PMID: 24890449]
[131]
Yi, T.; Cho, S.G.; Yi, Z.; Pang, X.; Rodriguez, M.; Wang, Y.; Sethi, G.; Aggarwal, B.B.; Liu, M. Thymoquinone inhibits tumor angiogenesis and tumor growth through suppressing AKT and extracellular signal-regulated kinase signaling pathways. Mol. Cancer Ther., 2008, 7(7), 1789-1796.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0124] [PMID: 18644991]
[132]
Banerjee, S.; Padhye, S.; Azmi, A.; Wang, Z.; Philip, P.A.; Kucuk, O.; Sarkar, F.H.; Mohammad, R.M. Review on molecular and therapeu-tic potential of thymoquinone in cancer. Nutr. Cancer, 2010, 62(7), 938-946.
[http://dx.doi.org/10.1080/01635581.2010.509832] [PMID: 20924969]
[133]
Kolli-Bouhafs, K.; Boukhari, A.; Abusnina, A.; Velot, E.; Gies, J.P.; Lugnier, C.; Rondé, P. Thymoquinone reduces migration and invasion of human glioblastoma cells associated with FAK, MMP-2 and MMP-9 down-regulation. Invest. New Drugs, 2012, 30(6), 2121-2131.
[http://dx.doi.org/10.1007/s10637-011-9777-3] [PMID: 22170088]
[134]
Yu, S.; Khor, T.O.; Cheung, K.L.; Li, W.; Wu, T.Y.; Huang, Y.; Foster, B.A.; Kan, Y.W.; Kong, A.N. Nrf2 expression is regulated by epi-genetic mechanisms in prostate cancer of TRAMP mice. PLoS One, 2010, 5(1), e8579.
[http://dx.doi.org/10.1371/journal.pone.0008579] [PMID: 20062804]
[135]
Phua, C.Y.H.; Teoh, Z.L.; Goh, B.H.; Yap, W.H.; Tang, Y.Q. Triangulating the pharmacological properties of thymoquinone in regulating reactive oxygen species, inflammation, and cancer: Therapeutic applications and mechanistic pathways. Life Sci., 2021, 287, 120120.
[http://dx.doi.org/10.1016/j.lfs.2021.120120] [PMID: 34762903]
[136]
Kaseb, A.O.; Chinnakannu, K.; Chen, D.; Sivanandam, A.; Tejwani, S.; Menon, M.; Dou, Q.P.; Reddy, G.P. Androgen receptor and E2F-1 targeted thymoquinone therapy for hormone-refractory prostate cancer. Cancer Res., 2007, 67(16), 7782-7788.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1483] [PMID: 17699783]
[137]
Dirican, A.; Atmaca, H.; Bozkurt, E.; Erten, C.; Karaca, B.; Uslu, R. Novel combination of docetaxel and thymoquinone induces synergis-tic cytotoxicity and apoptosis in DU-145 human prostate cancer cells by modulating PI3K-AKT pathway. Clin. Transl. Oncol., 2015, 17(2), 145-151.
[http://dx.doi.org/10.1007/s12094-014-1206-6] [PMID: 25060568]
[138]
Woo, C.C.; Loo, S.Y.; Gee, V.; Yap, C.W.; Sethi, G.; Kumar, A.P.; Tan, K.H. Anticancer activity of thymoquinone in breast cancer cells: possible involvement of PPAR-γ pathway. Biochem. Pharmacol., 2011, 82(5), 464-475.
[http://dx.doi.org/10.1016/j.bcp.2011.05.030] [PMID: 21679698]
[139]
Woo, C.C.; Hsu, A.; Kumar, A.P.; Sethi, G.; Tan, K.H. Thymoquinone inhibits tumor growth and induces apoptosis in a breast cancer xenograft mouse model: the role of p38 MAPK and ROS. PLoS One, 2013, 8(10), e75356.
[http://dx.doi.org/10.1371/journal.pone.0075356] [PMID: 24098377]
[140]
Talib, W.H. Regressions of breast carcinoma syngraft following treatment with piperine in combination with thymoquinone. Sci. Pharm., 2017, 85(3), 27.
[http://dx.doi.org/10.3390/scipharm85030027] [PMID: 28671634]
[141]
Barkat, M.A. Harshita; Ahmad, J.; Khan, M.A.; Beg, S.; Ahmad, F.J. Insights into the targeting potential of thymoquinone for therapeutic intervention against triple-negative breast cancer. Curr. Drug Targets, 2018, 19(1), 70-80.
[http://dx.doi.org/10.2174/1389450118666170612095959] [PMID: 28606050]
[142]
Alobaedi, O.H.; Talib, W.H.; Basheti, I.A. Antitumor effect of thymoquinone combined with resveratrol on mice transplanted with breast cancer. Asian Pac. J. Trop. Med., 2017, 10(4), 400-408.
[http://dx.doi.org/10.1016/j.apjtm.2017.03.026] [PMID: 28552110]
[143]
Khan, M.A.; Tania, M.; Wei, C.; Mei, Z.; Fu, S.; Cheng, J.; Xu, J.; Fu, J. Thymoquinone inhibits cancer metastasis by downregulating TWIST1 expression to reduce epithelial to mesenchymal transition. Oncotarget, 2015, 6(23), 19580-19591.
[http://dx.doi.org/10.18632/oncotarget.3973] [PMID: 26023736]
[144]
Dehghani, H.; Hashemi, M.; Entezari, M.; Mohsenifar, A. The comparison of anticancer activity of thymoquinone and nanothymoquinone on human breast adenocarcinoma. Iran. J. Pharm. Res., 2015, 14(2), 539-546.
[PMID: 25901162]
[145]
Motaghed, M.; Al-Hassan, F.M.; Hamid, S.S. Cellular responses with thymoquinone treatment in human breast cancer cell line MCF-7. Pharmacognosy Res., 2013, 5(3), 200-206.
[http://dx.doi.org/10.4103/0974-8490.112428] [PMID: 23900121]
[146]
Arafa, S.A.; Zhu, Q.; Shah, Z.I.; Wani, G.; Barakat, B.M.; Racoma, I.; El-Mahdy, M.A.; Wani, A.A. Thymoquinone up-regulates PTEN expression and induces apoptosis in doxorubicin-resistant human breast cancer cells. Mutat. Res., 2011, 706(1-2), 28-35.
[http://dx.doi.org/10.1016/j.mrfmmm.2010.10.007] [PMID: 21040738]
[147]
Alhmied, F.; Alammar, A.; Alsultan, B.; Alshehri, M.; Pottoo, F.H. Molecular mechanisms of thymoquinone as anticancer agent. Comb. Chem. High Throughput Screen., 2021, 24(10), 1644-1653.
[http://dx.doi.org/10.2174/1386207323999201027225305] [PMID: 33115388]
[148]
Gali-Muhtasib, H.U.; Abou Kheir, W.G.; Kheir, L.A.; Darwiche, N.; Crooks, P.A. Molecular pathway for thymoquinone-induced cell-cycle arrest and apoptosis in neoplastic keratinocytes. Anticancer Drugs, 2004, 15(4), 389-399.
[http://dx.doi.org/10.1097/00001813-200404000-00012] [PMID: 15057144]
[149]
Kundu, J.; Chun, K.S.; Aruoma, O.I.; Kundu, J.K. Mechanistic perspectives on cancer chemoprevention/chemotherapeutic effects of thy-moquinone. Mutat. Res. Fundam. Mol. Mech. Mutagen., 2014, 768, 22-34.
[http://dx.doi.org/10.1016/j.mrfmmm.2014.05.003] [PMID: 25847385]
[150]
Velho-Pereira, R.; Kumar, A.; Pandey, B.N.; Jagtap, A.G.; Mishra, K.P. Radiosensitization in human breast carcinoma cells by thymoqui-none: role of cell cycle and apoptosis. Cell Biol. Int., 2011, 35(10), 1025-1029.
[http://dx.doi.org/10.1042/CBI20100701] [PMID: 21557727]
[151]
Asaduzzaman Khan, M.; Tania, M.; Fu, S.; Fu, J. Thymoquinone, as an anticancer molecule: from basic research to clinical investigation. Oncotarget, 2017, 8(31), 51907-51919.
[http://dx.doi.org/10.18632/oncotarget.17206] [PMID: 28881699]
[152]
Rahmani, AH; Alzohairy, MA; Khan, MA; Aly, SM Therapeutic implications of black seed and its constituent thymoquinone in the pre-vention of cancer through inactivation and activation of molecular pathways. Evid. Based Complementary Altern. Medicine, 2014, 2014
[http://dx.doi.org/10.1155/2014/724658]
[153]
Mostofa, A.G.M.; Hossain, M.K.; Basak, D.; Bin Sayeed, M.S. Thymoquinone as a potential adjuvant therapy for cancer treatment: evi-dence from preclinical studies. Front. Pharmacol., 2017, 8, 295.
[http://dx.doi.org/10.3389/fphar.2017.00295] [PMID: 28659794]
[154]
Cecarini, V.; Quassinti, L.; Di Blasio, A.; Bonfili, L.; Bramucci, M.; Lupidi, G.; Cuccioloni, M.; Mozzicafreddo, M.; Angeletti, M.; Eleuteri, A.M. Effects of thymoquinone on isolated and cellular proteasomes. FEBS J., 2010, 277(9), 2128-2141.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07629.x] [PMID: 20412058]
[155]
Thummuri, D.; Jeengar, M.K.; Shrivastava, S.; Nemani, H.; Ramavat, R.N.; Chaudhari, P.; Naidu, V.G. Thymoquinone prevents RANKL-induced osteoclastogenesis activation and osteolysis in an in vivo model of inflammation by suppressing NF-KB and MAPK signalling. Pharmacol. Res., 2015, 99, 63-73.
[http://dx.doi.org/10.1016/j.phrs.2015.05.006] [PMID: 26022736]
[156]
Roepke, M.; Diestel, A.; Bajbouj, K.; Walluscheck, D.; Schonfeld, P.; Roessner, A.; Schneider-Stock, R.; Gali-Muhtasib, H. Lack of p53 augments thymoquinone-induced apoptosis and caspase activation in human osteosarcoma cells. Cancer Biol. Ther., 2007, 6(2), 160-169.
[http://dx.doi.org/10.4161/cbt.6.2.3575] [PMID: 17218778]
[157]
Badary, O.A.; Gamal El-Din, A.M. Inhibitory effects of thymoquinone against 20-methylcholanthrene-induced fibrosarcoma tumorigene-sis. Cancer Detect. Prev., 2001, 25(4), 362-368.
[PMID: 11531013]
[158]
Duarte-Franco, E.; Franco, E.L. Cancer of the uterine cervix. BMC Womens Health, 2004, 4(1)(Suppl. 1), S13.
[http://dx.doi.org/10.1186/1472-6874-4-S1-S13] [PMID: 15345076]
[159]
Al-Maghrabi, J.A. The role of human papillomavirus infection in prostate cancer. Saudi Med. J., 2007, 28(3), 326-333.
[PMID: 17334454]
[160]
Schiffman, M.; Castle, P.E.; Jeronimo, J.; Rodriguez, A.C.; Wacholder, S. Human papillomavirus and cervical cancer. Lancet, 2007, 370(9590), 890-907.
[http://dx.doi.org/10.1016/S0140-6736(07)61416-0] [PMID: 17826171]
[161]
Ichwan, S.J.; Al-Ani, I.M.; Bilal, H.G.; Suriyah, W.H.; Taher, M.; Ikeda, M.A. Apoptotic activities of thymoquinone, an active ingredient of black seed (Nigella sativa), in cervical cancer cell lines. Chin. J. Physiol., 2014, 57(5), 249-255.
[http://dx.doi.org/10.4077/CJP.2014.BAB190] [PMID: 25241984]
[162]
Ledgerwood, E.C.; Morison, I.M. Targeting the apoptosome for cancer therapy. Clin. Cancer Res., 2009, 15(2), 420-424.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1172] [PMID: 19147745]
[163]
Enari, M.; Sakahira, H.; Yokoyama, H.; Okawa, K.; Iwamatsu, A.; Nagata, S. A caspase-activated DNase that degrades DNA during apop-tosis, and its inhibitor ICAD. Nature, 1998, 391(6662), 43-50.
[http://dx.doi.org/10.1038/34112] [PMID: 9422506]
[164]
Hasan, TN; Shafi, G; Syed, NA; Alfawaz, MA; Alsaif, MA; Munshi, A; Lei, KY; Alshatwi, AA Methanolic extract of Nigella sativa seed inhibits SiHa human cervical cancer cell proliferation through apoptosis. Nat. Prod. Commun., 2013, 8(2), 1934578X1300800221.
[http://dx.doi.org/10.1177/1934578X1300800221]
[165]
Al-Malki, A.L.; Sayed, A.A. Thymoquinone attenuates cisplatin-induced hepatotoxicity via nuclear factor kappa-β. BMC Complement. Altern. Med., 2014, 14(1), 282.
[http://dx.doi.org/10.1186/1472-6882-14-282] [PMID: 25088145]
[166]
Suddek, G.M. Protective role of thymoquinone against liver damage induced by tamoxifen in female rats. Can. J. Physiol. Pharmacol., 2014, 92(8), 640-644.
[http://dx.doi.org/10.1139/cjpp-2014-0148] [PMID: 24941454]
[167]
Ashour, A.E.; Abd-Allah, A.R.; Korashy, H.M.; Attia, S.M.; Alzahrani, A.Z.; Saquib, Q.; Bakheet, S.A.; Abdel-Hamied, H.E.; Jamal, S.; Rishi, A.K. Thymoquinone suppression of the human hepatocellular carcinoma cell growth involves inhibition of IL-8 expression, elevat-ed levels of TRAIL receptors, oxidative stress and apoptosis. Mol. Cell. Biochem., 2014, 389(1-2), 85-98.
[http://dx.doi.org/10.1007/s11010-013-1930-1] [PMID: 24399465]
[168]
Lupidi, G.; Camaioni, E.; Khalifé, H.; Avenali, L.; Damiani, E.; Tanfani, F.; Scirè, A. Characterization of thymoquinone binding to human α1-acid glycoprotein. J. Pharm. Sci., 2012, 101(7), 2564-2573.
[http://dx.doi.org/10.1002/jps.23138] [PMID: 22467430]
[169]
ElKhoely, A.; Hafez, H.F.; Ashmawy, A.M.; Badary, O.; Abdelaziz, A.; Mostafa, A.; Shouman, S.A. Chemopreventive and therapeutic potentials of thymoquinone in HepG2 cells: mechanistic perspectives. J. Nat. Med., 2015, 69(3), 313-323.
[http://dx.doi.org/10.1007/s11418-015-0895-7] [PMID: 25796541]
[170]
Tekbas, A.; Huebner, J.; Settmacher, U.; Dahmen, U. Plants and Surgery: The protective effects of thymoquinone on hepatic injury-A systematic review of in vivo studies. Int. J. Mol. Sci., 2018, 19(4), 1085.
[http://dx.doi.org/10.3390/ijms19041085] [PMID: 29621129]
[171]
Zhu, W.Q.; Wang, J.; Guo, X.F.; Liu, Z.; Dong, W.G. Thymoquinone inhibits proliferation in gastric cancer via the STAT3 pathway in vivo and in vitro. World J. Gastroenterol., 2016, 22(16), 4149-4159.
[http://dx.doi.org/10.3748/wjg.v22.i16.4149] [PMID: 27122665]
[172]
Relles, D; Chipitsyna, GI; Gong, Q; Yeo, CJ; Arafat, HA Thymoquinone promotes pancreatic cancer cell death and reduction of tumor size through combined inhibition of histone deacetylation and induction of histone acetylation. Adv. Prev. Med., 2016, 2016
[http://dx.doi.org/10.1155/2016/1407840]
[173]
Salim, E.I.; Fukushima, S. Chemopreventive potential of volatile oil from black cumin (Nigella sativa L.) seeds against rat colon carcino-genesis. Nutr. Cancer, 2003, 45(2), 195-202.
[http://dx.doi.org/10.1207/S15327914NC4502_09] [PMID: 12881014]
[174]
Mu, H.Q.; Yang, S.; Wang, Y.J.; Chen, Y.H. Role of NF-κB in the anti-tumor effect of thymoquinone on bladder cancer. Zhonghua Yi Xue Za Zhi, 2012, 92(6), 392-396.
[PMID: 22490899]
[175]
Muralidharan-Chari, V.; Kim, J.; Abuawad, A.; Naeem, M.; Cui, H.; Mousa, S.A. Thymoquinone modulates blood coagulation in vitro via its effects on inflammatory and coagulation pathways. Int. J. Mol. Sci., 2016, 17(4), 474.
[http://dx.doi.org/10.3390/ijms17040474] [PMID: 27043539]
[176]
Ramos, M.C.; Genilloud, O.; Reyes, F.; Vicente, F. Drug discovery from natural products for pancreatic cancer; Adv. Pancreatic Cancer, IntechOpen, 2018, pp. 135-175.
[http://dx.doi.org/10.5772/intechopen.76399]
[177]
Wu, Z.H.; Chen, Z.; Shen, Y.; Huang, L.L.; Jiang, P. Anti-metastasis effect of thymoquinone on human pancreatic cancer. Yao Xue Xue Bao, 2011, 46(8), 910-914.
[PMID: 22007514]
[178]
Banerjee, S.; Azmi, A.; Bao, B.; Sarkar, F.H. Attenuation of multifocal cell survival signaling by bioactive phytochemicals in the preven-tion and therapy of cancer. In: Cancer Chemoprevention and Treatment by Diet Therapy; Springer: Dordrecht, 2013; pp. 269-310.
[179]
Norwood, A.A.; Tucci, M.; Benghuzzi, H. A comparison of 5-fluorouracil and natural chemotherapeutic agents, EGCG and thymoquinone, delivered by sustained drug delivery on colon cancer cells. Biomed. Sci. Instrum., 2007, 43, 272-277.
[PMID: 17487093]
[180]
Lei, X.; Lv, X.; Liu, M.; Yang, Z.; Ji, M.; Guo, X.; Dong, W. Thymoquinone inhibits growth and augments 5-fluorouracil-induced apopto-sis in gastric cancer cells both in vitro and in vivo. Biochem. Biophys. Res. Commun., 2012, 417(2), 864-868.
[http://dx.doi.org/10.1016/j.bbrc.2011.12.063] [PMID: 22206670]
[181]
Williams, S.; Tucci, M.A.; Benghuzzi, H.A. The effect of combination treatments of epigallocatechin-3-gallate, thymoquinone, and 5-Fluorouracil on fadu nasopharyngeal carcinoma cells. Biomed. Sci. Instrum., 2014, 50, 361-366.
[PMID: 25405445]
[182]
Harpole, J.L.; Tucci, M.; Benghuzzi, H. Pathophysiological effects of thymoquinone and epigallocatechin-3-gallate on SK-OV-3 ovarian cancer like cell line. Biomed. Sci. Instrum., 2015, 51, 31-39.
[PMID: 25996696]
[183]
Kensara, O.A.; El-Shemi, A.G.; Mohamed, A.M.; Refaat, B.; Idris, S.; Ahmad, J. Thymoquinone subdues tumor growth and potentiates the chemopreventive effect of 5-fluorouracil on the early stages of colorectal carcinogenesis in rats. Drug Des. Devel. Ther., 2016, 10, 2239-2253.
[http://dx.doi.org/10.2147/DDDT.S109721] [PMID: 27468227]
[184]
Effenberger-Neidnicht, K.; Schobert, R. Combinatorial effects of thymoquinone on the anti-cancer activity of doxorubicin. Cancer Chemother. Pharmacol., 2011, 67(4), 867-874.
[http://dx.doi.org/10.1007/s00280-010-1386-x] [PMID: 20582416]
[185]
Abdel Salam, N.M.; Abd-Rabou, A.A.; Sharada, H.M.; El Samea, G.G.A.; Abdalla, M.S. Combination therapy of trail and thymoquinone induce breast cancer cell cytotoxicity-mediated apoptosis and cell cycle arrest. Asian Pacific Journal of Cancer Prevention: APJCP., 2021, 22(5), 1513-1521.
[http://dx.doi.org/10.31557/APJCP.2021.22.5.1513] [PMID: 34048180]
[186]
Jafri, S.H.; Glass, J.; Shi, R.; Zhang, S.; Prince, M.; Kleiner-Hancock, H. Thymoquinone and cisplatin as a therapeutic combination in lung cancer: in vitro and in vivo. J. Exp. Clin. Cancer Res., 2010, 29(1), 87.
[http://dx.doi.org/10.1186/1756-9966-29-87] [PMID: 20594324]
[187]
Ng, W.K.; Yazan, L.S.; Ismail, M. Thymoquinone from Nigella sativa was more potent than cisplatin in eliminating of SiHa cells via apop-tosis with down-regulation of Bcl-2 protein. Toxicol. In Vitro, 2011, 25(7), 1392-1398.
[http://dx.doi.org/10.1016/j.tiv.2011.04.030] [PMID: 21609759]
[188]
Wilson, A.J.; Saskowski, J.; Barham, W.; Yull, F.; Khabele, D. Thymoquinone enhances cisplatin-response through direct tumor effects in a syngeneic mouse model of ovarian cancer. J. Ovarian Res., 2015, 8(1), 46.
[http://dx.doi.org/10.1186/s13048-015-0177-8] [PMID: 26215403]
[189]
Siveen, K.S.; Mustafa, N.; Li, F.; Kannaiyan, R.; Ahn, K.S.; Kumar, A.P.; Chng, W.J.; Sethi, G. Thymoquinone overcomes chemo-resistance and enhances the anticancer effects of bortezomib through abrogation of NF-κB regulated gene products in multiple myeloma xenograft mouse model. Oncotarget, 2014, 5(3), 634-648.
[http://dx.doi.org/10.18632/oncotarget.1596] [PMID: 24504138]
[190]
Singh, S.K.; Apata, T.; Gordetsky, J.B.; Singh, R. Docetaxel combined with thymoquinone induces apoptosis in prostate cancer cells via inhibition of the PI3K/AKT signaling pathway. Cancers (Basel), 2019, 11(9), 1390.
[http://dx.doi.org/10.3390/cancers11091390] [PMID: 31540423]
[191]
Mu, G.G.; Zhang, L.L.; Li, H.Y.; Liao, Y.; Yu, H.G. Thymoquinone pretreatment overcomes the insensitivity and potentiates the antitumor effect of gemcitabine through abrogation of Notch1, PI3K/Akt/mTOR regulated signaling pathways in pancreatic cancer. Dig. Dis. Sci., 2015, 60(4), 1067-1080.
[http://dx.doi.org/10.1007/s10620-014-3394-x] [PMID: 25344906]
[192]
Jehan, S.; Huang, J.; Farooq, U.; Basheer, I.; Zhou, W. Combinatorial effect of thymoquinone with chemo agents for tumor therapy. Phytomedicine, 2022, 98, 153936.
[http://dx.doi.org/10.1016/j.phymed.2022.153936] [PMID: 35114449]
[193]
Ganji-Harsini, S.; Khazaei, M.; Rashidi, Z.; Ghanbari, A. Thymoquinone could increase the efficacy of tamoxifen induced apoptosis in human breast cancer cells: An in vitro study. Cell J., 2016, 18(2), 245-254.
[PMID: 27540530]
[194]
Şakalar, Ç.; İzgi, K.; İskender, B.; Sezen, S.; Aksu, H.; Çakır, M.; Kurt, B.; Turan, A.; Canatan, H. The combination of thymoquinone and paclitaxel shows anti-tumor activity through the interplay with apoptosis network in triple-negative breast cancer. Tumour Biol., 2016, 37(4), 4467-4477.
[http://dx.doi.org/10.1007/s13277-015-4307-0] [PMID: 26500095]
[195]
Pazhouhi, M.; Sariri, R.; Rabzia, A.; Khazaei, M. Thymoquinone synergistically potentiates temozolomide cytotoxicity through the inhibi-tion of autophagy in U87MG cell line. Iran. J. Basic Med. Sci., 2016, 19(8), 890-898.
[PMID: 27746872]
[196]
Mohamed, A.M.; Refaat, B.A.; El-Shemi, A.G.; Kensara, O.A.; Ahmad, J.; Idris, S. Thymoquinone potentiates chemoprotective effect of Vitamin D3 against colon cancer: a pre-clinical finding. Am. J. Transl. Res., 2017, 9(2), 774-790.
[PMID: 28337306]
[197]
Imani, S.; Wei, C.; Cheng, J.; Khan, M.A.; Fu, S.; Yang, L.; Tania, M.; Zhang, X.; Xiao, X.; Zhang, X.; Fu, J. MicroRNA-34a targets epithe-lial to mesenchymal transition-inducing transcription factors (EMT-TFs) and inhibits breast cancer cell migration and invasion. Oncotarget, 2017, 8(13), 21362-21379.
[http://dx.doi.org/10.18632/oncotarget.15214] [PMID: 28423483]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy