Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Mini-Review Article

Mesenchymal Stem Cell-derived Exosomes Affect Macrophage Phenotype: A Cell-free Strategy for the Treatment of Skeletal Muscle Disorders

Author(s): Gang Su, Xiaoting Lei, Zhenyu Wang, Weiqiang Xie, Donghong Wen and Yucheng Wu*

Volume 23, Issue 4, 2023

Published on: 06 July, 2022

Page: [350 - 357] Pages: 8

DOI: 10.2174/1566524022666220511123625

Price: $65

Abstract

The process of tissue damage, repair, and regeneration in the skeletal muscle system involves complex inflammatory processes. Factors released in the inflammatory microenvironment can affect the phenotypic changes of macrophages, thereby changing the inflammatory process, making macrophages an important target for tissue repair treatment. Mesenchymal stem cells exert anti-inflammatory effects by regulating immune cells. In particular, exosomes secreted by mesenchymal stem cells have become a new cell-free treatment strategy due to their low tumorigenicity and immunogenicity. This article focuses on the mechanism of the effect of exosomes derived from mesenchymal stem cells on the phenotype of macrophages after skeletal muscle system injury and explores the possible mechanism of macrophages as potential therapeutic targets after tissue injury.

Keywords: Mesenchymal stem cells, exosomes, macrophages, skeletal muscle disorders, tissue injury, MSC-Exos.

[1]
Tidball JG. Mechanisms of muscle injury, repair, and regeneration. Compr Physiol 2011; 1(4): 2029-62.
[http://dx.doi.org/10.1002/cphy.c100092] [PMID: 23733696]
[2]
Tidball JG. Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol 2005; 288(2): R345-53.
[http://dx.doi.org/10.1152/ajpregu.00454.2004] [PMID: 15637171]
[3]
Wynn TA, Barron L. Macrophages: Master regulators of inflammation and fibrosis. Semin Liver Dis 2010; 30(3): 245-57.
[http://dx.doi.org/10.1055/s-0030-1255354] [PMID: 20665377]
[4]
Uderhardt S, Martins AJ, Tsang JS, Lämmermann T, Germain RN. Resident macrophages cloak tissue microlesions to prevent neutrophil-driven inflammatory damage. Cell 2019; 177(3): 541-555.e17.
[http://dx.doi.org/10.1016/j.cell.2019.02.028] [PMID: 30955887]
[5]
Watanabe S, Alexander M, Misharin AV, Budinger GRS. The role of macrophages in the resolution of inflammation. J Clin Invest 2019; 129(7): 2619-28.
[http://dx.doi.org/10.1172/JCI124615] [PMID: 31107246]
[6]
Davies LC, Jenkins SJ, Allen JE, Taylor PR. Tissue-resident macrophages. Nat Immunol 2013; 14(10): 986-95.
[http://dx.doi.org/10.1038/ni.2705] [PMID: 24048120]
[7]
Benoit M, Desnues B, Mege JL. Macrophage polarization in bacterial infections. J Immunol 2008; 181(6): 3733-9.
[http://dx.doi.org/10.4049/jimmunol.181.6.3733] [PMID: 18768823]
[8]
Viola A, Munari F, Sánchez-Rodríguez R, Scolaro T, Castegna A. The metabolic signature of macrophage responses. Front Immunol 2019; 10: 1462.
[http://dx.doi.org/10.3389/fimmu.2019.01462] [PMID: 31333642]
[9]
Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008; 8(12): 958-69.
[http://dx.doi.org/10.1038/nri2448] [PMID: 19029990]
[10]
Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 2018; 233(9): 6425-40.
[http://dx.doi.org/10.1002/jcp.26429] [PMID: 29319160]
[11]
Fan B, Wei Z, Yao X, et al. Microenvironment imbalance of spinal cord injury. Cell Transplant 2018; 27(6): 853-66.
[http://dx.doi.org/10.1177/0963689718755778] [PMID: 29871522]
[12]
Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states. Br J Pharmacol 2016; 173(4): 649-65.
[http://dx.doi.org/10.1111/bph.13139] [PMID: 25800044]
[13]
Yunna C, Mengru H, Lei W, Weidong C. Macrophage M1/M2 polarization. Eur J Pharmacol 2020; 877: 173090.
[http://dx.doi.org/10.1016/j.ejphar.2020.173090] [PMID: 32234529]
[14]
Martinez FO, Sica A, Mantovani A, Locati M. Macrophage activation and polarization. Front Biosci 2008; 13(13): 453-61.
[http://dx.doi.org/10.2741/2692] [PMID: 17981560]
[15]
Tomlinson JE, Žygelytė E, Grenier JK, Edwards MG, Cheetham J. Temporal changes in macrophage phenotype after peripheral nerve injury. J Neuroinflammation 2018; 15(1): 185.
[http://dx.doi.org/10.1186/s12974-018-1219-0] [PMID: 29907154]
[16]
Liu ZJ, Zhuge Y, Velazquez OC. Trafficking and differentiation of mesenchymal stem cells. J Cell Biochem 2009; 106(6): 984-91.
[http://dx.doi.org/10.1002/jcb.22091] [PMID: 19229871]
[17]
Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol 2008; 8(9): 726-36.
[http://dx.doi.org/10.1038/nri2395] [PMID: 19172693]
[18]
Iyer SS, Rojas M. Anti-inflammatory effects of mesenchymal stem cells: Novel concept for future therapies. Expert Opin Biol Ther 2008; 8(5): 569-81.
[http://dx.doi.org/10.1517/14712598.8.5.569] [PMID: 18407762]
[19]
Xing J, Hou T, Jin H, et al. Inflammatory microenvironment changes the secretory profile of mesenchymal stem cells to recruit mesenchymal stem cells. Cell Physiol Biochem 2014; 33(4): 905-19.
[http://dx.doi.org/10.1159/000358663] [PMID: 24713626]
[20]
Arthur A, Gronthos S. Clinical application of bone marrow mesenchymal stem/stromal cells to repair skeletal tissue. Int J Mol Sci 2020; 21(24): E9759.
[http://dx.doi.org/10.3390/ijms21249759] [PMID: 33371306]
[21]
Fatima F, Ekstrom K, Nazarenko I, et al. Non-coding RNAs in mesenchymal stem cell-derived extracellular vesicles: Deciphering regulatory roles in stem cell potency, inflammatory resolve, and tissue regeneration. Front Genet 2017; 8: 161.
[http://dx.doi.org/10.3389/fgene.2017.00161] [PMID: 29123544]
[22]
Ratajczak MZ, Kucia M, Jadczyk T, et al. Pivotal role of paracrine effects in stem cell therapies in regenerative medicine: Can we translate stem cell-secreted paracrine factors and microvesicles into better therapeutic strategies? Leukemia 2012; 26(6): 1166-73.
[http://dx.doi.org/10.1038/leu.2011.389] [PMID: 22182853]
[23]
Mendt M, Rezvani K, Shpall E. Mesenchymal stem cell-derived exosomes for clinical use. Bone Marrow Transplant 2019; 54(S2) (Suppl. 2): 789-92.
[http://dx.doi.org/10.1038/s41409-019-0616-z] [PMID: 31431712]
[24]
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science 2020; 367(6478): eaau6977.
[http://dx.doi.org/10.1126/science.aau6977] [PMID: 32029601]
[25]
Théry C, Witwer KW, Aikawa E, et al. Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): A position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018; 7(1): 1535750.
[http://dx.doi.org/10.1080/20013078.2018.1535750] [PMID: 30637094]
[26]
van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 2018; 19(4): 213-28.
[http://dx.doi.org/10.1038/nrm.2017.125] [PMID: 29339798]
[27]
Pathan M, Fonseka P, Chitti SV, et al. Vesiclepedia 2019: A compendium of RNA, proteins, lipids and metabolites in extracellular vesicles. Nucleic Acids Res 2019; 47(D1): D516-9.
[http://dx.doi.org/10.1093/nar/gky1029] [PMID: 30395310]
[28]
Mathieu M, Martin-Jaular L, Lavieu G, Théry C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol 2019; 21(1): 9-17.
[http://dx.doi.org/10.1038/s41556-018-0250-9] [PMID: 30602770]
[29]
Kahlert C, Kalluri R. Exosomes in tumor microenvironment influence cancer progression and metastasis. J Mol Med 2013; 91(4): 431-7.
[http://dx.doi.org/10.1007/s00109-013-1020-6] [PMID: 23519402]
[30]
Varderidou-Minasian S, Lorenowicz MJ. Mesenchymal stromal/stem cell-derived extracellular vesicles in tissue repair: Challenges and opportunities. Theranostics 2020; 10(13): 5979-97.
[http://dx.doi.org/10.7150/thno.40122] [PMID: 32483432]
[31]
Liu WZ, Ma ZJ, Li JR, Kang XW. Mesenchymal stem cell-derived exosomes: Therapeutic opportunities and challenges for spinal cord injury. Stem Cell Res Ther 2021; 12(1): 102.
[http://dx.doi.org/10.1186/s13287-021-02153-8] [PMID: 33536064]
[32]
Zhao AG, Shah K, Cromer B, Sumer H. Mesenchymal stem cell-derived extracellular vesicles and their therapeutic potential. Stem Cells Int 2020; 2020: 8825771.
[http://dx.doi.org/10.1155/2020/8825771] [PMID: 32908543]
[33]
Chen CC, Liu L, Ma F, et al. Elucidation of exosome migration across the blood-brain barrier model in vitro. Cell Mol Bioeng 2016; 9(4): 509-29.
[http://dx.doi.org/10.1007/s12195-016-0458-3] [PMID: 28392840]
[34]
Wu P, Zhang B, Shi H, Qian H, Xu W. MSC-exosome: A novel cell-free therapy for cutaneous regeneration. Cytotherapy 2018; 20(3): 291-301.
[http://dx.doi.org/10.1016/j.jcyt.2017.11.002] [PMID: 29434006]
[35]
Gomzikova MO, James V, Rizvanov AA. Therapeutic application of mesenchymal stem cells derived extracellular vesicles for immunomodulation. Front Immunol 2019; 10: 2663.
[http://dx.doi.org/10.3389/fimmu.2019.02663] [PMID: 31849929]
[36]
Liew FF, Chew BC, Ooi J. Wound healing properties of exosomes - a review and modelling of combinatorial analysis strategies. Curr Mol Med 2022; 22(2): 165-91.
[http://dx.doi.org/10.2174/1566524021666210405131238] [PMID: 33820518]
[37]
Malliaropoulos N, Ghrairi M, Zerguini Y, Padhiar N. Soft tissue injuries are still a challenge in musculoskeletal sports and exercise medicine. Br J Sports Med 2016; 50(24): 1487.
[http://dx.doi.org/10.1136/bjsports-2016-097171] [PMID: 27899377]
[38]
Bosurgi L, Manfredi AA, Rovere-Querini P. Macrophages in injured skeletal muscle: A perpetuum mobile causing and limiting fibrosis, prompting or restricting resolution and regeneration. Front Immunol 2011; 2: 62.
[http://dx.doi.org/10.3389/fimmu.2011.00062] [PMID: 22566851]
[39]
Chamberlain CS, Clements AEB, Kink JA, et al. Extracellular vesicle-educated macrophages promote early achilles tendon healing. Stem Cells 2019; 37(5): 652-62.
[http://dx.doi.org/10.1002/stem.2988] [PMID: 30720911]
[40]
Nakamura Y, Miyaki S, Ishitobi H, et al. Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration. FEBS Lett 2015; 589(11): 1257-65.
[http://dx.doi.org/10.1016/j.febslet.2015.03.031] [PMID: 25862500]
[41]
Luo Z, Lin J, Sun Y, Wang C, Chen J. Bone marrow stromal cell-derived exosomes promote muscle healing following contusion through macrophage polarization. Stem Cells Dev 2021; 30(3): 135-48.
[http://dx.doi.org/10.1089/scd.2020.0167] [PMID: 33323007]
[42]
Huang Y, He B, Wang L, et al. Bone marrow mesenchymal stem cell-derived exosomes promote rotator cuff tendon-bone healing by promoting angiogenesis and regulating M1 macrophages in rats. Stem Cell Res Ther 2020; 11(1): 496.
[http://dx.doi.org/10.1186/s13287-020-02005-x] [PMID: 33239091]
[43]
Chamberlain CS, Kink JA, Wildenauer LA, et al. Exosome-educated macrophages and exosomes differentially improve ligament healing. Stem Cells 2021; 39(1): 55-61.
[http://dx.doi.org/10.1002/stem.3291] [PMID: 33141458]
[44]
Wang C, Zhang Y, Zhang G, Yu W, He Y. Adipose stem cell-derived exosomes ameliorate chronic rotator cuff tendinopathy by regulating macrophage polarization: From a mouse model to a study in human tissue. Am J Sports Med 2021; 49(9): 2321-31.
[http://dx.doi.org/10.1177/03635465211020010] [PMID: 34259608]
[45]
Wang X, Ao J, Lu H, et al. Osteoimmune modulation and guided osteogenesis promoted by barrier membranes incorporated with S-nitrosoglutathione (GSNO) and mesenchymal stem cell-derived exosomes. Int J Nanomedicine 2020; 15: 3483-96.
[http://dx.doi.org/10.2147/IJN.S248741] [PMID: 32523344]
[46]
Shi Y, Kang X, Wang Y, et al. Exosomes derived from Bone Marrow Stromal Cells (BMSCs) enhance tendon-bone healing by regulating macrophage polarization. Med Sci Monit 2020; 26: e923328.
[http://dx.doi.org/10.12659/MSM.923328] [PMID: 32369458]
[47]
Blázquez R, Sánchez-Margallo FM, Álvarez V, Usón A, Marinaro F, Casado JG. Fibrin glue mesh fixation combined with mesenchymal stem cells or exosomes modulates the inflammatory reaction in a murine model of incisional hernia. Acta Biomater 2018; 71: 318-29.
[http://dx.doi.org/10.1016/j.actbio.2018.02.014] [PMID: 29462710]
[48]
Hu S, Li Z, Shen D, et al. Exosome-eluting stents for vascular healing after ischaemic injury. Nat Biomed Eng 2021; 5(10): 1174-88.
[http://dx.doi.org/10.1038/s41551-021-00705-0] [PMID: 33820981]
[49]
He Y, Li Z, Alexander PG, et al. Pathogenesis of osteoarthritis: Risk factors, regulatory pathways in chondrocytes, and experimental models. Biology (Basel) 2020; 9(8): E194.
[http://dx.doi.org/10.3390/biology9080194] [PMID: 32751156]
[50]
Adatia A, Rainsford KD, Kean WF. Osteoarthritis of the knee and hip. Part I: Aetiology and pathogenesis as a basis for pharmacotherapy. J Pharm Pharmacol 2012; 64(5): 617-25.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01458.x] [PMID: 22471357]
[51]
Zhao X, Zhao Y, Sun X, Xing Y, Wang X, Yang Q. Immunomodulation of MSCs and MSC-Derived Extracellular Vesicles in Osteoarthritis. Front Bioeng Biotechnol 2020; 8: 575057.
[http://dx.doi.org/10.3389/fbioe.2020.575057] [PMID: 33251195]
[52]
Zhang J, Rong Y, Luo C, Cui W. Bone marrow mesenchymal stem cell-derived exosomes prevent osteoarthritis by regulating synovial macrophage polarization. Aging 2020; 12(24): 25138-52.
[http://dx.doi.org/10.18632/aging.104110] [PMID: 33350983]
[53]
Zhang S, Chuah SJ, Lai RC, Hui JHP, Lim SK, Toh WS. MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials 2018; 156: 16-27.
[http://dx.doi.org/10.1016/j.biomaterials.2017.11.028] [PMID: 29182933]
[54]
Cosenza S, Ruiz M, Toupet K, Jorgensen C, Noël D. Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis. Sci Rep 2017; 7(1): 16214.
[http://dx.doi.org/10.1038/s41598-017-15376-8] [PMID: 29176667]
[55]
Chen P, Zheng L, Wang Y, et al. Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration. Theranostics 2019; 9(9): 2439-59.
[http://dx.doi.org/10.7150/thno.31017] [PMID: 31131046]
[56]
Wang R, Xu B. TGF-β1-modified MSC-derived exosomal miR-135b attenuates cartilage injury via promoting M2 synovial macrophage polarization by targeting MAPK6. Cell Tissue Res 2021; 384(1): 113-27.
[http://dx.doi.org/10.1007/s00441-020-03319-1] [PMID: 33404840]
[57]
Wang T, He C. Pro-inflammatory cytokines: The link between obesity and osteoarthritis. Cytokine Growth Factor Rev 2018; 44: 38-50.
[http://dx.doi.org/10.1016/j.cytogfr.2018.10.002] [PMID: 30340925]
[58]
Zhao C, Chen JY, Peng WM, Yuan B, Bi Q, Xu YJ. Exosomes from adipose derived stem cells promote chondrogenesis and suppress inflammation by upregulating miR 145 and miR 221. Mol Med Rep 2020; 21(4): 1881-9.
[http://dx.doi.org/10.3892/mmr.2020.10982] [PMID: 32319611]
[59]
Donnelly EM, Lamanna J, Boulis NM. Stem cell therapy for the spinal cord. Stem Cell Res Ther 2012; 3(4): 24.
[http://dx.doi.org/10.1186/scrt115] [PMID: 22776143]
[60]
Sun G, Li G, Li D, et al. hucMSC derived exosomes promote functional recovery in spinal cord injury mice via attenuating inflammation. Mater Sci Eng C 2018; 89: 194-204.
[http://dx.doi.org/10.1016/j.msec.2018.04.006] [PMID: 29752089]
[61]
Lankford KL, Arroyo EJ, Nazimek K, Bryniarski K, Askenase PW, Kocsis JD. Intravenously delivered mesenchymal stem cell-derived exosomes target M2-type macrophages in the injured spinal cord. PLoS One 2018; 13(1): e0190358.
[http://dx.doi.org/10.1371/journal.pone.0190358] [PMID: 29293592]
[62]
Chang Q, Hao Y, Wang Y, Zhou Y, Zhuo H, Zhao G. Bone marrow mesenchymal stem cell-derived exosomal microRNA-125a promotes M2 macrophage polarization in spinal cord injury by downregulating IRF5. Brain Res Bull 2021; 170: 199-210.
[http://dx.doi.org/10.1016/j.brainresbull.2021.02.015] [PMID: 33609602]
[63]
Wiklander OP, Nordin JZ, O’Loughlin A, et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J Extracell Vesicles 2015; 4(1): 26316.
[http://dx.doi.org/10.3402/jev.v4.26316] [PMID: 25899407]
[64]
Lee JR, Kyung JW, Kumar H, et al. Targeted delivery of mesenchymal stem cell-derived nanovesicles for spinal cord injury treatment. Int J Mol Sci 2020; 21(11): E4185.
[http://dx.doi.org/10.3390/ijms21114185] [PMID: 32545361]
[65]
Bijlsma AY, Meskers CG, Westendorp RG, Maier AB. Chronology of age-related disease definitions: Osteoporosis and sarcopenia. Ageing Res Rev 2012; 11(2): 320-4.
[http://dx.doi.org/10.1016/j.arr.2012.01.001] [PMID: 22306229]
[66]
Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: Now and the future. Lancet 2011; 377(9773): 1276-87.
[http://dx.doi.org/10.1016/S0140-6736(10)62349-5] [PMID: 21450337]
[67]
Li Y, Jin D, Xie W, et al. Mesenchymal stem cells-derived exosomes: A possible therapeutic strategy for Osteoporosis. Curr Stem Cell Res Ther 2018; 13(5): 362-8.
[http://dx.doi.org/10.2174/1574888X13666180403163456] [PMID: 29623851]
[68]
Liu M, Sun Y, Zhang Q. Emerging role of extracellular vesicles in bone remodeling. J Dent Res 2018; 97(8): 859-68.
[http://dx.doi.org/10.1177/0022034518764411] [PMID: 29566346]
[69]
Hu Y, Xu R, Chen CY, et al. Extracellular vesicles from human umbilical cord blood ameliorate bone loss in senile osteoporotic mice. Metabolism 2019; 95: 93-101.
[http://dx.doi.org/10.1016/j.metabol.2019.01.009] [PMID: 30668962]
[70]
Zhang L, Wang Q, Su H, Cheng J. Exosomes from adipose derived mesenchymal stem cells alleviate diabetic osteoporosis in rats through suppressing NLRP3 inflammasome activation in osteoclasts. J Biosci Bioeng 2021; 131(6): 671-8.
[http://dx.doi.org/10.1016/j.jbiosc.2021.02.007] [PMID: 33849774]
[71]
Xu R, Shen X, Si Y, et al. MicroRNA-31a-5p from aging BMSCs links bone formation and resorption in the aged bone marrow microenvironment. Aging Cell 2018; 17(4): e12794.
[http://dx.doi.org/10.1111/acel.12794] [PMID: 29896785]
[72]
Taheri B, Soleimani M, Fekri Aval S, Esmaeili E, Bazi Z, Zarghami N. Induced pluripotent stem cell-derived extracellular vesicles: A novel approach for cell-free regenerative medicine. J Cell Physiol 2019; 234(6): 8455-64.
[http://dx.doi.org/10.1002/jcp.27775] [PMID: 30478831]
[73]
Qiao K, Chen Q, Cao Y, et al. Diagnostic and therapeutic role of extracellular vesicles in articular cartilage lesions and degenerative joint diseases. Front Bioeng Biotechnol 2021; 9: 698614.
[http://dx.doi.org/10.3389/fbioe.2021.698614] [PMID: 34422779]
[74]
Pashoutan Sarvar D, Shamsasenjan K, Akbarzadehlaleh P. Mesenchymal stem cell-derived exosomes: New opportunity in cell-free therapy. Adv Pharm Bull 2016; 6(3): 293-9.
[http://dx.doi.org/10.15171/apb.2016.041] [PMID: 27766213]
[75]
Phinney DG, Pittenger MF. Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells 2017; 35(4): 851-8.
[http://dx.doi.org/10.1002/stem.2575] [PMID: 28294454]
[76]
Ekström K, Omar O, Granéli C, Wang X, Vazirisani F, Thomsen P. Monocyte exosomes stimulate the osteogenic gene expression of mesenchymal stem cells. PLoS One 2013; 8(9): e75227.
[http://dx.doi.org/10.1371/journal.pone.0075227] [PMID: 24058665]
[77]
Xiong Y, Chen L, Yan C, et al. M2 Macrophagy-derived exosomal miRNA-5106 induces bone mesenchymal stem cells towards osteoblastic fate by targeting salt-inducible kinase 2 and 3. J Nanobiotechnology 2020; 18(1): 66.
[http://dx.doi.org/10.1186/s12951-020-00622-5] [PMID: 32345321]
[78]
Luo ZW, Li FX, Liu YW, et al. Aptamer-functionalized exosomes from bone marrow stromal cells target bone to promote bone regeneration. Nanoscale 2019; 11(43): 20884-92.
[http://dx.doi.org/10.1039/C9NR02791B] [PMID: 31660556]
[79]
Gebraad A, Kornilov R, Kaur S, et al. Monocyte-derived extracellular vesicles stimulate cytokine secretion and gene expression of matrix metalloproteinases by mesenchymal stem/stromal cells. FEBS J 2018; 285(12): 2337-59.
[http://dx.doi.org/10.1111/febs.14485] [PMID: 29732732]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy