Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Research Article

Effect of Pulicaria mauritanica on Glucose Metabolism and Glycogen Content in Streptozotocin-Induced Diabetic Rats

Author(s): Amine Azzane, Ayoub Amssayef, Ahmed El-Haidani and Mohamed Eddouks*

Volume 20, Issue 3, 2022

Published on: 26 July, 2022

Page: [197 - 211] Pages: 15

DOI: 10.2174/1871525720666220510204624

Price: $65

Abstract

Aims: The study aimed to assess the antihyperglycemic activity of Pulicaria mauritanica.

Background: Pulicaria mauritanica is a medicinal and aromatic plant used for the treatment of many diseases such as inflammation, diabetes, and intestinal disorders.

Objective: The main goals of this present paper were to confirm the antihyperglycemic capacity of aqueous extract from Pulicaria mauritanica in normoglycemic and diabetic rats over a period of time (7 days of treatment).

Methods: The effect of the aqueous extract of Pulicaria mauritanica from aerial parts (AEPM) on glucose and lipid metabolism was tested using an acute test (single dose during 6 hours) and subchronic assay (repeated oral administration for seven days) at a dose of 60 mg/kg and the serum glucose levels were measured in normoglycemic and streptozotocin(STZ)-induced diabetic rats. In addition, the glycogen content in the liver, extensor digitorum longus (EDL), and soleus was evaluated. The antioxidant activity, phytochemical screening, and quantification of some secondary metabolites of this extract were also performed.

Results: AEPM at a dose of 60 mg/kg reduced the plasma glucose concentrations significantly in STZ-induced diabetic rats after a single oral administration (p<0.05). This lowering effect became more significant during the repeated oral administration in hyperglycemic rats (p<0.0001). Also, the findings showed that this plant exhibited a significant increase in liver and skeletal soleus muscle glycogen content in diabetic rats. AEPM revealed a remarkable antioxidant activity in addition to the presence of polyphenol compounds such as flavonoids, tannins, saponins, sterols, glucides, terpenoids, quinones, anthraquinones, and mucilage.

Conclusion: The study shows that AEPM exhibits antihyperglycemic activity in diabetic rats, and it increases liver and muscle glycogen content.

Keywords: Antihyperglycemic, streptozotocin, Pulicaria mauritanica, glycogen content, medicinal plant, aqueous extract.

Graphical Abstract

[1]
Akkati, S.; Sam, K.G.; Tungha, G. Emergence of promising therapies in diabetes mellitus. J. Clin. Pharmacol., 2011, 51(6), 796-804.
[http://dx.doi.org/10.1177/0091270010376972] [PMID: 20705952]
[2]
Whiting, D.R.; Guariguata, L.; Weil, C.; Shaw, J. IDF diabetes atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res. Clin. Pract., 2011, 94(3), 311-321.
[http://dx.doi.org/10.1016/j.diabres.2011.10.029] [PMID: 22079683]
[3]
Zhao, T.; Mao, G.; Zhang, M.; Li, F.; Zou, Y.; Zhou, Y.; Zheng, W.; Zheng, D.; Yang, L.; Wu, X. Anti-diabetic effects of polysaccharides from ethanol-insoluble residue of Schisandra chinensis (Turcz.) Baill on alloxan-induced diabetic mice. Chem. Res. Chin. Univ., 2013, 29(1), 99-102.
[http://dx.doi.org/10.1007/s40242-012-2218-9]
[4]
Bersot, T.P. Drug therapy for hypercholesterolemia and dyslipidemia. In: Brunton, L.L.; Chabner, B.A.; Knollmann, B.C. Eds. In Goodman & Gilman’s: The Pharmacological Basis of Therapeutics; McGraw Hill: New York, USA, 2015, pp. 971-1002.
[5]
Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. Diabetes Res. Clin. Pract., 2019, 157, 107843.
[http://dx.doi.org/10.1016/j.diabres.2019.107843]
[6]
Rates, S.M.K. Plants as source of drugs. Toxicon, 2001, 39(5), 603-613.
[http://dx.doi.org/10.1016/S0041-0101(00)00154-9] [PMID: 11072038]
[7]
Bammou, M.; Bouhlali, E.; Sellam, K.; Ramchoun, M.; McDonald, A.; Ouzidan, Y.; Ibijbijen, J.; El Rhaffari, L.; Nassiri, L. Investigation on chemical composition, antioxidant and antimicrobial potential of Pulicaria mauritanica essential oil applied by direct addition or vapor contact. Am. J. Essent. Oil. Nat. Prod., 2019, 7(1), 07-13.
[8]
Xu, T.; Gherib, M.; Bekhechi, C.; Atik-Bekkara, F.; Casabianca, H.; Tomi, F.; Casanova, J.; Bighelli, A. Thymyl esters derivatives and a new natural product modhephanone from Pulicaria mauritanica coss. (Asteraceae) root oil. Flavour Fragrance J., 2015, 30(1), 83-90.
[http://dx.doi.org/10.1002/ffj.3223]
[9]
Ouhaddou, H.; Boubaker, H.; Msanda, F.; El Mousadik, A. An ethnobotanical study of medicinal plants of the Agadir Ida Ou Tanane province (Southwest Morocco). J. Appl. Biosci., 2015, 84(1), 7707-7722.
[http://dx.doi.org/10.4314/jab.v84i1.5]
[10]
Ajebli, M.; Eddouks, M. Buxus sempervirens L. improves streptozotocin-induced diabetes mellitus in rats. Cardiovasc. Hematol. Disord. Drug Targets, 2017, 17(2), 142-152.
[http://dx.doi.org/10.2174/1871529X17666170918140817] [PMID: 28925906]
[11]
Ajebli, M.; Eddouks, M. Pharmacological and phytochemical study of Mentha suaveolens EHRH in normal and streptozotocin-induced diabetic rats. Nat. Prod. J., 2018, 8(3), 213-227.
[http://dx.doi.org/10.2174/2210315508666180327120434]
[12]
Bouhlali, E.; Alem, C.; Zegzouti, Y.F. Antioxidant and anti-hemolytic activities of phenolic constituents of six Moroccan date fruit (Phoe-nix dactylifera L.) syrups. Indian J. Biotechnol., 2015, 12(1), 45-52.
[13]
Kim, D.O.; Jeong, S.W.; Lee, C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem., 2003, 81(3), 321-326.
[http://dx.doi.org/10.1016/S0308-8146(02)00423-5]
[14]
Broadhurst, R.B.; Jones, W.T. Analysis of condensed tannins using acidified vanillin. J. Sci. Food Agric., 1978, 29(9), 788-794.
[http://dx.doi.org/10.1002/jsfa.2740290908]
[15]
Vohnout, B.; Vachulová, A.; Blazícek, P.; Dukát, A.; Fodor, G.; Lietava, J. Evaluation of alternative calculation methods for determining LDL cholesterol. Vnitr. Lek., 2008, 54(10), 961-964.
[PMID: 19009762]
[16]
Morris, S. The estimation of glycogen with anthrone reagent. Science, 1948, 107(2775), 254.
[http://dx.doi.org/10.1126/science.107.2775.254] [PMID: 17814729]
[17]
Carroll, N.V.; Longley, R.W.; Roe, J.H. The determination of glycogen in liver and muscle by use of anthrone reagent. J. Biol. Chem., 1956, 220(2), 583-593.
[http://dx.doi.org/10.1016/S0021-9258(18)65284-6] [PMID: 13331917]
[18]
Kavalalı, G.; Tuncel, H.; Göksel, S.; Hatemi, H.H. Hypoglycemic activity of Urtica pilulifera in streptozotocin-diabetic rats. J. Ethnopharmacol., 2003, 84(2-3), 241-245.
[http://dx.doi.org/10.1016/S0378-8741(02)00315-X] [PMID: 12648821]
[19]
Merzouk, H.; Madani, S.; Chabane Sari, D.; Prost, J.; Bouchenak, M.; Belleville, J. Time course of changes in serum glucose, insulin, li-pids and tissue lipase activities in macrosomic offspring of rats with streptozotocin-induced diabetes. Clin. Sci. (Lond.), 2000, 98(1), 21-30.
[http://dx.doi.org/10.1042/CS19990109] [PMID: 10600655]
[20]
Imran, A.; Butt, M.S.; Arshad, M.S.; Arshad, M.U.; Saeed, F.; Sohaib, M.; Munir, R. Exploring the potential of black tea based flavonoids against hyperlipidemia related disorders. Lipids Health Dis., 2018, 17(1), 57.
[http://dx.doi.org/10.1186/s12944-018-0688-6] [PMID: 29592809]
[21]
Bollen, M.; Keppens, S.; Stalmans, W. Specific features of glycogen metabolism in the liver. Biochem. J., 1998, 336(1), 19-31.
[http://dx.doi.org/10.1042/bj3360019] [PMID: 9806880]
[22]
Gannon, M.C.; Nuttall, F.Q. Effect of feeding, fasting, and diabetes on liver glycogen synthase activity, protein, and mRNA in rats. Diabetologia, 1997, 40(7), 758-763.
[http://dx.doi.org/10.1007/s001250050746] [PMID: 9243095]
[23]
Stalmans, W.; Cadefau, J.; Wera, S.; Bollen, M. New insight into the regulation of liver glycogen metabolism by glucose. Biochem. Soc. Trans., 1997, 25(1), 19-25.
[http://dx.doi.org/10.1042/bst0250019] [PMID: 9056835]
[24]
Wang, B.; Shi, Y.; Chen, J.; Shao, Z.; Ni, L.; Lin, Y.; Wu, Y.; Tian, N.; Zhou, Y.; Sun, L.; Wu, A.; Hong, Z.; Wang, X.; Zhang, X. High glucose suppresses autophagy through the AMPK pathway while it induces autophagy via oxidative stress in chondrocytes. Cell Death Dis., 2021, 12(6), 506.
[http://dx.doi.org/10.1038/s41419-021-03791-9] [PMID: 34006821]
[25]
Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev., 2009, 2(5), 270-278.
[http://dx.doi.org/10.4161/oxim.2.5.9498] [PMID: 20716914]
[26]
Ghosh, R.; Sharatchandra, Kh.; Rita, S.; Thokchom, I.S. Hypoglycemic activity of Ficus hispida (bark) in normal and (bark) in normal and (bark) in normal and (bark) in normal and (bark) in normal and diabetic albino ratsdiabetic albino rats diabetic albino rats diabetic albino rats diabetic albino rats. Indian J. Pharmacol., 2004, 36, 222-225.
[27]
Hanhineva, K.; Törrönen, R.; Bondia-Pons, I.; Pekkinen, J.; Kolehmainen, M.; Mykkänen, H.; Poutanen, K. Impact of dietary polyphenols on carbohydrate metabolism. Int. J. Mol. Sci., 2010, 11(4), 1365-1402.
[http://dx.doi.org/10.3390/ijms11041365] [PMID: 20480025]
[28]
Hajiaghaalipour, F.; Khalilpourfarshbafi, M.; Arya, A. Modulation of glucose transporter protein by dietary flavonoids in type 2 diabetes mellitus. Int. J. Biol. Sci., 2015, 11(5), 508-524.
[http://dx.doi.org/10.7150/ijbs.11241] [PMID: 25892959]
[29]
Kooti, W.; Farokhipour, M.; Asadzadeh, Z.; Ashtary-Larky, D.; Asadi-Samani, M. The role of medicinal plants in the treatment of diabetes: A systematic review. Electron. Physician, 2016, 8(1), 1832-1842.
[http://dx.doi.org/10.19082/1832] [PMID: 26955456]
[30]
Hegazy, G.A.; Alnoury, A.M.; Gad, H.G. The role of Acacia Arabica extract as an antidiabetic, antihyperlipidemic, and antioxidant in streptozotocin-induced diabetic rats. Saudi Med. J., 2013, 34(7), 727-733.
[PMID: 23860893]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy