Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Recent Advances in [5+2] Cycloadditions

Author(s): Nissy Ann Harry* and Ujwaldev Sankuviruthiyil Mohanan

Volume 26, Issue 8, 2022

Published on: 09 June, 2022

Page: [735 - 744] Pages: 10

DOI: 10.2174/1385272826666220510152025

Price: $65

conference banner
Abstract

The existence of a seven-membered cyclic core in several natural products and biomolecules vitalized the research on its synthesis. [5+2] cycloaddition has become a promising strategy for the construction of seven-membered ring systems by the formation of carboncarbon bonds in a single step, with strong regioselectivity and stereoselectivity. This review mainly focuses on recent developments in the area of [5+2] cycloaddition since 2019. Total synthesis of natural products involving [5+2] cycloaddition as a key step leading to the heptacyclic core has also been discussed. Synthesis of fused and bridged ring systems via the reactions involving inter and intramolecular [5+2] cycloadditions like oxidopyrylium-mediated [5+2] cycloadditions, [5+2] cycloadditions of vinyl cyclopropanes (VCPs), vinyl phenols, etc. is explained in the review with the latest examples. This review provides a useful guide for researchers exploring this powerful strategy to create more elegant heptacycles in their future research.

Keywords: [5+2] Cycloaddition, vinyl cyclopropanes, heptacycles, oxidopyrylium, vinyl phenols, enantioselectivity, diastereoselectivity.

Next »
Graphical Abstract

[1]
Min, L.; Hu, Y-J.; Fan, J-H.; Zhang, W.; Li, C-C. Synthetic applications of type II intramolecular cycloadditions. Chem. Soc. Rev., 2020, 49(19), 7015-7043.
[http://dx.doi.org/10.1039/D0CS00365D] [PMID: 32869796]
[2]
Zhang, T.; Zhang, Y.; Das, S. Deal; Photoredox catalysis for the cycloaddition reactions. ChemCatChem, 2020, 12(24), 6173-6185.
[http://dx.doi.org/10.1002/cctc.202001195]
[3]
Ylijoki, K.E.O.; Stryker, J.M. [5 + 2] cycloaddition reactions in organic and natural product synthesis. Chem. Rev., 2013, 113(3), 2244-2266.
[http://dx.doi.org/10.1021/cr300087g] [PMID: 23153111]
[4]
Pellissier, H. Recent developments in the [5+2] cycloaddition. Adv. Synth. Catal., 2018, 360, 1551-1583.
[http://dx.doi.org/10.1002/adsc.201701379]
[5]
Liu, Y.; Wang, X.; Chen, S.; Fu, S.; Liu, B. Iron-catalyzed intramolecular perezone-type [5 + 2] cycloaddition: Access to tricyclo[6.3.1.01,6]dodecane. Org. Lett., 2018, 20(10), 2934-2938.
[http://dx.doi.org/10.1021/acs.orglett.8b00989] [PMID: 29733604]
[6]
Lu, Y.; Tantillo, D.J. Comparison of (5 + 2). Cycloadditions Involving Oxidopyrylium and Oxidopyridinium Ions: Relative Reactivities. J. Org. Chem., 2021, 86(13), 8652-8659.
[http://dx.doi.org/10.1021/acs.joc.1c00396] [PMID: 34111355]
[7]
Bejcek, L.P.; Murelli, R.P. Oxidopyrylium [5+2] cycloaddition chemistry: Historical perspective and recent advances (2008–2018). Tetrahedron, 2018, 74(21), 2501-2521.
[http://dx.doi.org/10.1016/j.tet.2018.04.006] [PMID: 30455508]
[8]
Shintani, R.; Nakatsu, H.; Takatsu, K.; Hayashi, T. Rhodium-catalyzed asymmetric [5+2] cycloaddition of alkyne-vinylcyclopropanes. Chemistry, 2009, 15(35), 8692-8694.
[http://dx.doi.org/10.1002/chem.200901463] [PMID: 19637169]
[9]
Zhao, H-W.; Ding, W-Q.; Wang, L-R.; Guo, J-M.; Song, X-Q.; Wu, H-H.; Tang, Z.; Fan, X-Z.; Bi, X-F. Formal [5+2] Cycloaddition of Vinyloxiranes with Oxazol-5-(4H)-ones: A Facile Approach for Construction of Seven-Membered Lactones. Eur. J. Org. Chem., 2020, 2020(34), 5557-5562.
[http://dx.doi.org/10.1002/ejoc.202000914]
[10]
Kanno, E.; Yamanoi, K.; Koya, S.; Azumaya, I.; Masu, H.; Yamasaki, R.; Saito, S. [5 + 2] Cycloaddition reaction of 2-vinylaziridines and sulfonyl isocyanates. Synthesis of seven-membered cyclic ureas. J. Org. Chem., 2012, 77(5), 2142-2148.
[http://dx.doi.org/10.1021/jo201959a] [PMID: 22292462]
[11]
Xu, X.; Liu, P.; Shu, X.Z.; Tang, W.; Houk, K.N. Rh-catalyzed (5+2) cycloadditions of 3-acyloxy-1,4-enynes and alkynes: Computational study of mechanism, reactivity, and regioselectivity. J. Am. Chem. Soc., 2013, 135(25), 9271-9274.
[http://dx.doi.org/10.1021/ja4036785] [PMID: 23725341]
[12]
Wang, Y.; Oliveira, J.C.A.; Lin, Z.; Ackermann, L. Electrooxidative rhodium-catalyzed [5+2] annulations via C-H/O-H activations. Angew. Chem. Int. Ed. Engl., 2021, 60(12), 6419-6424.
[http://dx.doi.org/10.1002/anie.202016895] [PMID: 33471952]
[13]
Parker, A.N.; Martin, M.C.; Shenje, R.; France, S. Calcium-catalyzed formal [5 + 2] cycloadditions of alkylidene β-ketoesters with olefins: Chemodivergent synthesis of highly functionalized cyclohepta[b]indole derivatives. Org. Lett., 2019, 21(18), 7268-7273.
[http://dx.doi.org/10.1021/acs.orglett.9b02498] [PMID: 31512880]
[14]
Gao, K.; Zhang, Y-G.; Wang, Z.; Ding, H. Recent development on the [5+2] cycloadditions and their application in natural product synthesis. Chem. Commun. (Camb.), 2019, 55(13), 1859-1878.
[http://dx.doi.org/10.1039/C8CC09077G] [PMID: 30666326]
[15]
Trost, B.M.; Toste, F.D.; Shen, H. Ruthenium-catalyzed intramolecular [5 + 2] cycloadditions. J. Am. Chem. Soc., 2000, 122(10), 2379-2380.
[http://dx.doi.org/10.1021/ja993400z]
[16]
Pellissier, H. Recent developments in the [5+2];cycloaddition. Adv. Synth. Catal., 2011, 353(2-3), 189-218.
[http://dx.doi.org/10.1002/adsc.201000695]
[17]
Min, L.; Liu, X.; Li, C-C. Total synthesis of natural products with bridged bicyclo[m.n.1] ring systems via type II [5 + 2] cycloaddition. Acc. Chem. Res., 2020, 53(3), 703-718.
[http://dx.doi.org/10.1021/acs.accounts.9b00640] [PMID: 32069021]
[18]
Arai, N.; Ohkuma, T. Stereoselective construction of cycloheptene-fused indoline frameworks through photosensitised formal [5+2] cycloaddition. 2022, 88, 153588-153590.
[http://dx.doi.org/10.1016/j.tetlet.2021.153588]
[19]
Bulandr, J.J.; Grabowski, J.P.; Law, C.M.; Shaw, J.L.; Goodell, J.R.; Mitchell, T.A. Investigation of transfer group, tether proximity, and alkene substitution for intramo-lecular silyloxypyrone-based [5 + 2] cycloadditions. J. Org. Chem., 2019, 84(16), 10306-10320.
[http://dx.doi.org/10.1021/acs.joc.9b01479] [PMID: 31322900]
[20]
Rokey, S.N.; Simanis, J.A.; Law, C.M.; Pohani, S.; Behrends, S.W.; Bulandr, J.J.; Ferrence, G.M.; Goodell, J.R.; Mitchell, T.A. Intramolecular asymmetric oxidopyrylium-based [5 + 2] cycloadditions. Tetrahedron Lett., 2020, 61(41), 152377-152381.
[http://dx.doi.org/10.1016/j.tetlet.2020.152377]
[21]
Vil, V.A. Gorlov, E.S.; Bityukov, O.V.; Barsegyan, Y.A.; Romanova, Y.E.; Merkulova, V.M.; Terent’ev, A.O. C;O coupling of malonyl peroxides with enol ethers via [5+2] cycloaddition: Non-rubottom oxidation. Adv. Synth. Catal., 2019, 361(13), 3173-3181.
[http://dx.doi.org/10.1002/adsc.201900271]
[22]
Liu, Z.; Hu, J.; Ding, H. Electrochemical ODI-[5+2] cascade for the syntheses of diversely functionalized bicyclo[3.2.1]octane frameworks. Org. Lett., 2021, 23(17), 6745-6749.
[http://dx.doi.org/10.1021/acs.orglett.1c02321] [PMID: 34402626]
[23]
Ghosh, A.K.; Yadav, M. Highly diastereoselective intramolecular asymmetric oxidopyrylium-olefin [5 + 2] cycloaddition and synthesis of 8-oxabicyclo[3.2.1]oct-3-enone containing ring systems. J. Org. Chem., 2021, 86(12), 8127-8142.
[http://dx.doi.org/10.1021/acs.joc.1c00600] [PMID: 34015224]
[24]
Gao, J.; Rao, P.; Xu, K.; Wang, S.; Wu, Y.; He, C.; Ding, H. Asymmetric synthesis of the tetracyclic core of bufogargarizin C by an intramolecular [5 + 2] cycloaddition. Org. Chem. Front., 2019, 6(1), 22-26.
[http://dx.doi.org/10.1039/C8QO01089G]
[25]
Gao, J.; Rao, P.; Xu, K.; Wang, S.; Wu, Y.; He, C.; Ding, H. Total synthesis of (-)-rhodomollanol A. J. Am. Chem. Soc., 2020, 142(10), 4592-4597.
[http://dx.doi.org/10.1021/jacs.0c00308] [PMID: 32093468]
[26]
(a) Grabowski, J.P.; Ferrence, G.M.; Mitchell, T.A. Efforts toward the total synthesis of (±)-toxicodenane A utilizing an oxidopyrylium-based [5+2] cycloaddition of a silicon-tethered BOC-pyranone. Tetrahedron Lett., 2020, 61(38), 152324-152326.
[http://dx.doi.org/10.1016/j.tetlet.2020.152324]
(b) Nakamura, H.; Kawakami, M.; Tsukano, C.; Takemoto, Y. Concise construction of the ACDE ring system of calyciphylline A-type alkaloids via [5+2] cycloaddition. Chemistry, 2019, 25(37), 8701-8704.
[http://dx.doi.org/10.1002/chem.201901690] [PMID: 31063603]
[27]
Min, L.; Lin, X.; Li, C-C. Asymmetric total synthesis of (-)-vinigrol. J. Am. Chem. Soc., 2019, 141(40), 15773-15778.
[http://dx.doi.org/10.1021/jacs.9b08983] [PMID: 31545036]
[28]
Fan, J-H.; Wang, J-J.; Li, F.; Wang, G.; Guo, Q.; Chung, L.W.; Li, C-C. Asymmetric total synthesis of phomarol. CCS Chem, 2021, 3(12), 348-357.
[http://dx.doi.org/10.31635/ccschem.021.202000721]
[29]
Vepreva, A.; Kantin, G.; Krasavin, M.; Dar’in, D. A general way to spiro-annulated 2-benzoxepines via Rh2(esp)2-catalyzed [5+2] cycloaddition of diazo arylidene succinimides to ketones. Synthesis, 2022, 54 A-K..
[http://dx.doi.org/10.1055/s-0037-1610790]
[30]
Cheng, B.; Zhang, X.; Li, H.; He, Y.; Li, Y.; Sun, H.; Wang, T.; Zhai, H. Synthesis of pyridothiazepines via a 1,5-dipolar cycloaddition reaction between pyridinium 1,4-zwitterionic thiolates and activated allenes. Adv. Synth. Catal., 2020, 362(21), 4668-4672.
[http://dx.doi.org/10.1002/adsc.202000655]
[31]
Zhao, C.; Glazier, D.A.; Yang, D.; Yin, D.; Guzei, I.A.; Aristov, M.M.; Liu, P.; Tang, W. Intermolecular regio- and stereoselective hetero-[5+2] cycloaddition of ox-idopyrylium ylides and cyclic imines. Angew. Chem. Int. Ed. Engl., 2019, 58(3), 887-891.
[http://dx.doi.org/10.1002/anie.201811896] [PMID: 30476368]
[32]
Zhang, R.; Xia, Y.; Dong, G. Intermolecular [5+2] annulation between 1-indanones and internal alkynes by rhodium-catalyzed C-C activation. Angew. Chem. Int. Ed. Engl., 2021, 60(37), 20476-20482.
[http://dx.doi.org/10.1002/anie.202106007] [PMID: 34216095]
[33]
Ahn, H-I.; Park, J-U.; Xuan, Z.; Kim, J.H. Pd-Catalyzed asymmetric [5 + 2] cycloaddition of vinylethylene carbonates and cyclic imines: Access to N-fused 1,3-oxazepines. Org. Biomol. Chem., 2020, 18(48), 9826-9830.
[http://dx.doi.org/10.1039/D0OB02159H] [PMID: 33241830]
[34]
Heo, N.; Jung, I.; Kim, D.K.; Han, S.H.; Lee, K.; Lee, P.H. Sequential 1,3-N- to C- and 1,3-C- to C-migration of sulfonyl groups through the synthesis of 1,4-diazepines from the aza-[5 + 2] cycloaddition of indoloazomethine ylides. Org. Lett., 2020, 22(16), 6562-6567.
[http://dx.doi.org/10.1021/acs.orglett.0c02333] [PMID: 32806199]
[35]
Hu, B.; Zhang, X.; Mo, Y.; Li, J.; Lin, L.; Liu, X.; Feng, X. Catalytic Asymmetric tandem cycloisomerization/[5+2] cycloaddition reaction of N-aryl nitrone alkynes with methyleneindolinones. Org. Lett., 2020, 22(3), 1034-1039.
[http://dx.doi.org/10.1021/acs.orglett.9b04572] [PMID: 31951145]
[36]
Inami, T.; Takahashi, T.; Kurahashi, T.; Matsubara, S. Nickel-Catalyzed [5+2] cycloaddition of 10-electron aromatic benzothiophenes with alkynes to form thermally metastable 12-electron nonaromatic benzothiepines. J. Am. Chem. Soc., 2019, 141(32), 12541-12544.
[http://dx.doi.org/10.1021/jacs.9b07948] [PMID: 31361485]
[37]
Liao, J-Y.; Wu, Q-Y.; Lu, X.; Zou, N.; Pan, C-X.; Liang, C.; Su, G-F.; Mo, D-L. A copper-catalyzed diastereoselective O-transfer reaction of N-vinyl-α,β-unsaturated nitrones with ketenes into γ-lactones through [5 + 2] cycloaddition and N–O bond cleavage. Green Chem., 2019, 21(24), 6567-6573.
[http://dx.doi.org/10.1039/C9GC01811E]
[38]
Garbo, M.; Besnard, C.; Guénée, L.; Mazet, C. Access to optically active 7-membered rings by a 2-step synthetic sequence: Cu-catalyzed stereoselective cyclopropanation of branched 1,3-dienes/Rh-catalyzed stereoconvergent [5 + 2] cycloaddition. ACS Catal., 2020, 10(16), 9604-9611.
[http://dx.doi.org/10.1021/acscatal.0c02956]
[39]
Li, M-M.; Xiong, Q.; Qu, B-L.; Xiao, Y-Q.; Lan, Y.; Lu, L-Q.; Xiao, W-J. Exploitation of the new reactivity of vinylcyclopropanes for palladium-catalyzed, asymmetric [5+2] dipolar cycloadditions. Angew. Chem. Int. Ed., 2020, 59, 17429-17434.
[http://dx.doi.org/10.1002/anie.202006366] [PMID: 32618093]
[40]
Li, C.; Jiang, K.; Ouyang, Q.; Liu, T-Y.; Chen, Y-C. [3 + 1]- and [3 + 2]-cycloadditions of azaoxyallyl cations and sulfur ylides. Org. Lett., 2016, 18(11), 2738-2741.
[http://dx.doi.org/10.1021/acs.orglett.6b01194] [PMID: 27199108]
[41]
Liu, C.; Xu, J.; Wu, G. Au-Catalyzed intermolecular (3 + 2 + 1) and (5 + 2) cycloaddition for the synthesis of 1,4-dioxenes and 4,7-dihydrooxepines. Chem. Commun. (Camb.), 2020, 56(85), 12993-12996.
[http://dx.doi.org/10.1039/D0CC05059H] [PMID: 32996972]
[42]
Zhang, Y.; Chi, Z.; Li, X.; Xie, Z. Highly stereocontrolled total syntheses of cedrane sesquiterpenes via cascade [5+2] cycloaddition/etherification. Chin. J. Chem., 2022, 40(2), 183-189.
[http://dx.doi.org/10.1002/cjoc.202100737]
[43]
Wei, S.; Zheng, L.; Wang, S.R.; Tang, Y. Catalytic diastereoselective [5 + 2] annulation of N-acryloyl indoles with cyclic sulfonyl enamides: Facile access to isoeburna-monine. Org. Lett., 2020, 22(3), 1013-1017.
[http://dx.doi.org/10.1021/acs.orglett.9b04556] [PMID: 31971396]
[44]
Zhang, J.; Jin, Y.; Qiu, F.G. Tandem [5 + 2]/[4 + 2] cycloadditions to construct the [6-7-6] tricyclic skeleton of icetexane diterpenes: Total synthesis of euolutchuol E, przewalskine E and brussonol. Org. Lett., 2020, 22(19), 7415-7418.
[http://dx.doi.org/10.1021/acs.orglett.0c02309] [PMID: 32946247]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy