Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Dracaenone, a Novel Type of Homoisoflavone: Natural Source, Biological Activity and Chemical Synthesis

Author(s): Mei-Mei Li, Jun Lu* and Yun Deng*

Volume 26, Issue 9, 2022

Published on: 09 June, 2022

Page: [887 - 897] Pages: 11

DOI: 10.2174/1385272826666220510151029

Price: $65

conference banner
Abstract

The discovery and synthesis of natural products, especially those possessing novel scaffolds, are crucial to the development of new drugs. Dracaenones are part of homoisoflavone natural products, owning a complex spiro-bridged polycyclic structure bearing benzylic quaternary carbon centers, and some of them reveal considerable biological activity. There have been continuous studies on these compounds due to the rare structure and important biological properties. However, a systematic summary and analysis for dracaenone is lacking. This review aims to generally summarize the natural source, synthetic strategies and biological activities of dracaenones, moreover, the limitations, challenges, and future prospects were discussed, wishing to provide references for the follow-up study of compounds with similar skeleton.

Keywords: Dracaenone, natural products, spiro-bridged scaffold, natural source, synthesis, biological activities.

« Previous
Graphical Abstract

[1]
Cragg, G.M.; Newman, D.J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta, 2013, 1830(6), 3670-3695.
[http://dx.doi.org/10.1016/j.bbagen.2013.02.008] [PMID: 23428572]
[2]
Butler, M.S. Natural products to drugs: Natural product-derived compounds in clinical trials. Nat. Prod. Rep., 2008, 25(3), 475-516.
[http://dx.doi.org/10.1039/b514294f] [PMID: 18497896]
[3]
Molinski, T.F.; Dalisay, D.S.; Lievens, S.L.; Saludes, J.P. Drug development from marine natural products. Nat. Rev. Drug Discov., 2009, 8(1), 69-85.
[http://dx.doi.org/10.1038/nrd2487] [PMID: 19096380]
[4]
Meksuriyen, D.; Cordell, G.A.; Ruangrungsi, N.; Tantivatana, P. Traditional medicinal plants of Thailand, IX. 10-Hydroxy-11-methoxydracaenone and 7,10-dihydroxy-11-methoxydracaenone from Dracaena loureiri. J. Nat. Prod., 1987, 50(6), 1118-1125.
[http://dx.doi.org/10.1021/np50054a018] [PMID: 3127545]
[5]
Ding, X.; Zhu, J.; Wang, H.; Chen, H.; Mei, W. Dragon’s blood from dracaena cambodiana in china: Applied history and induction techniques toward formation mechanism. Forests, 2020, 11(4), 372.
[http://dx.doi.org/10.3390/f11040372]
[6]
Sun, J.; Liu, J.N.; Fan, B.; Chen, X.N.; Pang, D.R.; Zheng, J.; Zhang, Q.; Zhao, Y.F.; Xiao, W.; Tu, P.F.; Song, Y.L.; Li, J. Phenolic constituents, pharmacological activities, quality control, and me-tabolism of Dracaena species: A review. J. Ethnopharmacol., 2019, 244, 112138.
[http://dx.doi.org/10.1016/j.jep.2019.112138] [PMID: 31390529]
[7]
Liu, B.; Lian, H. Integrative analysis to uncover the molecular mechanisms of caesalpinia sappan L. for anti-cancer activity. Nat. Prod. Commun, 2021, 16(1), 1934578X211039922.
[http://dx.doi.org/10.1177/1934578X211039922]
[8]
Raj, C.D.; Dhinesh, M.G.; Lavanya, R.; Brindha, P. Studies on antiproliferative and antioxidant ef-ficacy of caesalpinia sappan l. heartwood. Asian J. Chem., 2014, 26(12), 3683-3686.
[http://dx.doi.org/10.14233/ajchem.2014.17054]
[9]
Shimokawa, T.; Kinjo, J.; Yamahara, J.; Yamasaki, M.; Nohara, T. Two novel aromatic compounds from Caesalpinia Sappan L. Chem. Pharm. Bull. (Tokyo), 1985, 33(8), 3545-3547.
[http://dx.doi.org/10.1248/cpb.33.3545]
[10]
Lin, L.G.; Xie, H.; Li, H.L.; Tong, L.J.; Tang, C.P.; Ke, C.Q.; Liu, Q.F.; Lin, L.P.; Geng, M.Y.; Jiang, H.; Zhao, W.M.; Ding, J.; Ye, Y. Naturally occurring homoisoflavonoids function as potent protein tyrosine kinase inhibitors by c-Src-based high-throughput screening. J. Med. Chem., 2008, 51(15), 4419-4429.
[http://dx.doi.org/10.1021/jm701501x] [PMID: 18610999]
[11]
Pang, D.R.; Pan, B.; Sun, J.; Sun, H.; Yao, H.N.; Song, Y.L.; Zhao, Y.F.; Tu, P.F.; Huang, W.Z.; Zheng, J.; Li, J. Homoisoflavonoid derivatives from the red resin of Dracaena cochinchinensis. Fitoterapia, 2018, 131, 105-111.
[http://dx.doi.org/10.1016/j.fitote.2018.10.017] [PMID: 30339923]
[12]
Li, N.; Ma, Z.; Li, M.; Xing, Y.; Hou, Y. Natural potential therapeutic agents of neurodegenerative diseases from the traditional herbal medicine Chinese dragon’s blood. J. Ethnopharmacol., 2014, 152(3), 508-521.
[http://dx.doi.org/10.1016/j.jep.2014.01.032] [PMID: 24509154]
[13]
Wani, M.C.; Taylor, H.L.; Wall, M.E.; Coggon, P.; McPhail, A.T. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc., 1971, 93(9), 2325-2327.
[http://dx.doi.org/10.1021/ja00738a045] [PMID: 5553076]
[14]
Tu, Y.Y. Chemical studies on qinghaosu (artemisinine). China Cooperative Research Group on qinghaosu and its derivatives as antimalarials. J. Tradit. Chin. Med., 1982, 2(1), 3-8.
[PMID: 6765845]
[15]
Xiao, Q.; Ren, W.W.; Chen, Z.X.; Sun, T.W.; Li, Y.; Ye, Q.D.; Gong, J.X.; Meng, F.K.; You, L.; Liu, Y.F.; Zhao, M.Z.; Xu, L.M.; Shan, Z.H.; Shi, Y.; Tang, Y.F.; Chen, J.H.; Yang, Z. Diastereose-lective total synthesis of (±)-schindilactone A. Angew. Chem. Int. Ed. Engl., 2011, 50(32), 7373-7377.
[http://dx.doi.org/10.1002/anie.201103088] [PMID: 21739547]
[16]
Woodward, R.B.; Doering, W.E. The total synthesis of quinine. J. Am. Chem. Soc., 1944, 66(5), 849.
[17]
Vaníčková, L.; Pompeiano, A.; Maděra, P.; Massad, T.J.; Vahalík, P. Terpenoid profiles of resin in the genus Dracaena are species specific. Phytochemistry, 2020, 170, 112197.
[http://dx.doi.org/10.1016/j.phytochem.2019.112197] [PMID: 31759268]
[18]
Rezgui, A.; Mitaine-Offer, A.C.; Miyamoto, T.; Tanaka, C.; Paululat, T.; Lacaille-Dubois, M.A. New steroidal glycosides from Dracaena marginata, Dracaena fragrans and Allium flavum. Planta Med., 2014, 80(16), 1429-1429.
[http://dx.doi.org/10.1055/s-0034-1394712]
[19]
Himmelreich, U.; Masaoud, M.; Adam, G.; Ripperger, H. Damalachawin, a triflavonoid of a new structural type from dragon blood of Dracaena-Cinnabari. Phytochemistry, 1995, 39(4), 949-951.
[http://dx.doi.org/10.1016/0031-9422(95)00044-8]
[20]
Dai, H.; Wang, H.; Liu, J.; Wu, J.; Mei, W. Two new biflavonoids from the stem of Dracaena cam-bodiana. Chem. Nat. Compd., 2012, 48(3), 376-378.
[http://dx.doi.org/10.1007/s10600-012-0256-7]
[21]
Luo, Y.; Shen, H.Y.; Zuo, W.J.; Wang, H.; Mei, W.L.; Dai, H.F. A new steroidal saponin from dragon’s blood of Dracaena cambodiana. J. Asian Nat. Prod. Res., 2015, 17(4), 409-414.
[http://dx.doi.org/10.1080/10286020.2014.967229] [PMID: 25523446]
[22]
Nguyen, M.; Awale, S.; Tezuka, Y.; Le Tran, Q.; Kadota, S. Neosappanone A, a xanthine oxidase (XO) inhibitory dimeric methanodibenzoxocinone with a new carbon skeleton from Caesa-lpinia sappan. Tetrahedron Lett., 2004, 45(46), 8519-8522.
[http://dx.doi.org/10.1016/j.tetlet.2004.09.107]
[23]
Chu, M.J.; Wang, Y.Z.; Itagaki, K.; Ma, H.X.; Xin, P.; Zhou, X.G.; Chen, G.Y.; Li, S.; Sun, S.Q. Identification of active compounds from Caesalpinia sappan L. extracts suppressing IL-6 production in RAW 264.7 cells by PLS. J. Ethnopharmacol., 2013, 148(1), 37-44.
[http://dx.doi.org/10.1016/j.jep.2013.03.050] [PMID: 23567033]
[24]
Tewtrakul, S.; Chaniad, P.; Pianwanit, S.; Karalai, C.; Ponglimanont, C.; Yodsaoue, O. Anti-HIV-1 integrase activity and molecular docking study of compounds from caesalpinia sappan L. Phytother. Res., 2015, 29(5), 724-729.
[http://dx.doi.org/10.1002/ptr.5307] [PMID: 25676492]
[25]
Jeong, I.Y.; Jin, C.H.; Park, Y.D.; Lee, H.J.; Choi, D.S.; Byun, M.W.; Ji, K.Y. Anti-inflammatory activity of an ethanol extract of caesalpinia sappan L. in LPS-induced RAW 264.7 Cells. Prev. Nutr. Food Sci., 2008, 13(4), 253-258.
[http://dx.doi.org/10.3746/jfn.2008.13.4.253]
[26]
Zeng, K.W.; Yu, Q.; Song, F.J.; Liao, L.X.; Zhao, M.B.; Dong, X.; Jiang, Y.; Tu, P.F. Deoxysap-panone B, a homoisoflavone from the Chinese medicinal plant Caesalpinia sappan L., protects neu-rons from microglia-mediated inflammatory injuries via inhibition of IκB B kinase (IKK)-NF-κB and p38/ERK MAPK pathways. Eur. J. Pharmacol., 2015, 748, 18-29.
[http://dx.doi.org/10.1016/j.ejphar.2014.12.013] [PMID: 25530267]
[27]
Wang, Z.; Tu, P.; Hou, H. Advances in study on chemical constituents and pharmacological activi-ties in plants of Dracaena Vand. ex L. Chin. Tradit. Herbal Drugs, 2004, (2), 221-228.
[28]
Lin, A.P.; Tu, P.; Zheng, J. Pharmacognostic studies on Sanguis lignum Dracaenae cochinchinensis. Zhongguo Zhongyao Zazhi, 1994, 19(11), 648-650, 701.
[PMID: 7893382]
[29]
Zhang, Y.; He, D. Research progress of the dracaena. J. Green Sci. Technol., 2012, (4), 137-140.
[30]
Zhu, Y.; Zhang, P.; Yu, H.; Li, J.; Wang, M.W.; Zhao, W. Anti-Helicobacter pylori and thrombin inhibitory components from Chinese dragon’s blood, Dracaena cochinchinensis. J. Nat. Prod., 2007, 70(10), 1570-1577.
[http://dx.doi.org/10.1021/np070260v] [PMID: 17883259]
[31]
Heng, Q.; Chen, J.; Zhang, Y.; Yang, C. The chemical constituents and pharmaceutical activities of dragon’s blood, a famous traditional medicinal herb. Nat. Prod. Res. Dev., 2005, 17(6), 84-95.
[32]
Yokosuka, A.; Mimaki, Y.; Sashida, Y. Steroidal saponins from Dracaena surculosa. J. Nat. Prod., 2000, 63(9), 1239-1243.
[http://dx.doi.org/10.1021/np000145j] [PMID: 11000027]
[33]
González, A.G.; León, F.; Sánchez-Pinto, L.; Padrón, J.I.; Bermejo, J. Phenolic compounds of Drag-on’s blood from Dracaena draco. J. Nat. Prod., 2000, 63(9), 1297-1299.
[http://dx.doi.org/10.1021/np000085h] [PMID: 11000044]
[34]
Mimaki, Y.; Kuroda, M.; Takaashi, Y.; Sashida, Y. Concinnasteoside A, a new bisdesmosidic cho-lestane glycoside from the stems of dracaena concinna. J. Nat. Prod., 1997, 60(11), 1203-1206.
[http://dx.doi.org/10.1021/np9703095]
[35]
Chen, H.Q.; Zuo, W.J.; Wang, H.; Shen, H.Y.; Luo, Y.; Dai, H.F.; Mei, W.L. Two new antimicrobial flavanes from dragon’s blood of Dracaena cambodiana. J. Asian Nat. Prod. Res., 2012, 14(5), 436-440.
[http://dx.doi.org/10.1080/10286020.2012.668534] [PMID: 22435715]
[36]
Xu, M.; Zhang, Y.J.; Li, X.C.; Jacob, M.R.; Yang, C.R. Steroidal saponins from fresh stems of Dra-caena angustifolia. J. Nat. Prod., 2010, 73(9), 1524-1528.
[http://dx.doi.org/10.1021/np100351p] [PMID: 20718450]
[37]
Zhang, L.; Wang, X.; Huang, X.; Wu, R.; Zhang, Y.; Shou, D. Advance of the chemical components and pharmacological effects of draconis sanguis and resina draconis. Chin. J. Mod. Appl. Pharm., 2019, 36(20), 2605-2611.
[38]
Mimaki, Y.; Kuroda, M.; Takaashi, Y.; Sashida, Y. Steroidal saponins from the stems of Dracaena concinna. Phytochemistry, 1998, 47(7), 1351-1356.
[http://dx.doi.org/10.1016/S0031-9422(97)00717-6]
[39]
Huang, H.C.; Lin, M.K.; Hwang, S.Y.; Hwang, T.L.; Kuo, Y.H.; Chang, C.I.; Ou, C.Y.; Kuo, Y.H. Two anti-inflammatory steroidal saponins from Dracaena angustifolia Roxb. Molecules, 2013, 18(8), 8752-8763.
[http://dx.doi.org/10.3390/molecules18088752] [PMID: 23887717]
[40]
Yokosuka, A.; Sekiguchi, A.; Mimaki, Y. Chemical constituents of the leaves of Dracaena thali-oides. Nat. Prod. Commun., 2013, 8(3), 315-318.
[http://dx.doi.org/10.1177/1934578X1300800309] [PMID: 23678799]
[41]
Xu, Z. Research status of the chemical constituents of Dragon’s blood. J. North Pharm., 2015, 12(1), 105-106.
[42]
Cai, X.T.; Xu, Z.F. Study on plant resources of dragon’s blood resin in China. Acta. Bot. Yunnan, 1979, 1, 1-9.
[43]
Lang, G.Z.; Li, C.J.; Gaohu, T.Y.; Li, C.; Ma, J.; Yang, J.Z.; Zhou, T.T.; Yuan, Y.H.; Ye, F.; Wei, J.H.; Zhang, D.M. Bioactive flavonoid dimers from Chinese dragon’s blood, the red resin of Dra-caena cochinchinensis. Bioorg. Chem., 2020, 97, 103659.
[http://dx.doi.org/10.1016/j.bioorg.2020.103659] [PMID: 32078940]
[44]
Tran, Q.L.; Tezuka, Y.; Banskota, A.H.; Tran, Q.K.; Saiki, I.; Kadota, S. New spirostanol steroids and steroidal saponins from roots and rhizomes of Dracaena angustifolia and their antiproliferative activity. J. Nat. Prod., 2001, 64(9), 1127-1132.
[http://dx.doi.org/10.1021/np0100385] [PMID: 11575942]
[45]
Nchiozem-Ngnitedem, V.A.; Omosa, L.K.; Bedane, K.G.; Derese, S.; Brieger, L.; Strohmann, C.; Spiteller, M. Anti-inflammatory steroidal sapogenins and a conjugated chalcone-stilbene from Dra-caena usambarensis Engl. Fitoterapia, 2020, 146, 104717.
[http://dx.doi.org/10.1016/j.fitote.2020.104717] [PMID: 32877711]
[46]
Pang, D.R.; Zou, Q.Y.; Zhu, Z.X.; Wang, X.Y.; Pei, Y.J.; Huo, H.X.; Zhao, Y.F.; Tu, P.F.; Zheng, J.; Li, J. Trimeric chalchonoids from the total phenolic extract of Chinese dragon’s blood (the red resin of Dracaena cochinchinensis). Fitoterapia, 2021, 154, 105029.
[http://dx.doi.org/10.1016/j.fitote.2021.105029] [PMID: 34506872]
[47]
Yokosuka, A.; Mimaki, Y.; Sashida, Y. Four new 3,5-cyclosteroidal saponins from Dracaena surcu-losa. Chem. Pharm. Bull. (Tokyo), 2002, 50(7), 992-995.
[http://dx.doi.org/10.1248/cpb.50.992] [PMID: 12130864]
[48]
Al-Fatimi, M. β-Caryophyllene: A single volatile component of n-hexane extract of Dracaena cinnabari resin. Molecules, 2020, 25(21), 4939.
[http://dx.doi.org/10.3390/molecules25214939] [PMID: 33114517]
[49]
Hu, L.; Wang, F.F.; Wang, X.H.; Yang, Q.S.; Xiong, Y.; Liu, W.X. Phytoconstituents from the leaves of Dracaena cochinchinensis (Lour.). S. C. Chen. Biochem. Syst. Ecol., 2015, 63, 1-5.
[http://dx.doi.org/10.1016/j.bse.2015.09.012]
[50]
Zheng, Q.A.; Zhang, Y.J.; Yang, C.R. A new meta-homoisoflavane from the fresh stems of dracae-na cochinchinensis. J. Asian Nat. Prod. Res., 2006, 8(6), 571-577.
[http://dx.doi.org/10.1080/1028602042000204126] [PMID: 16931435]
[51]
Zhao, B. Nitric oxide in neurodegenerative diseases. Front. Biosci., 2005, 10(1), 454-461.
[http://dx.doi.org/10.2741/1541] [PMID: 15574382]
[52]
Ignarro, L.J. Nitric Oxide: A Unique Endogenous Signaling Molecule in Vascular Biology (Nobel Lecture). Angew. Chem. Int. Ed. Engl., 1999, 38(13-14), 1882-1892.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19990712)38:13/14<1882:AID-ANIE1882>3.0.CO;2-V] [PMID: 34182699]
[53]
Riccio, D.A.; Schoenfisch, M.H. Nitric oxide release: Part I. Macromolecular scaffolds. Chem. Soc. Rev., 2012, 41(10), 3731-3741.
[http://dx.doi.org/10.1039/c2cs15272j] [PMID: 22362355]
[54]
Walford, G.; Loscalzo, J. Nitric oxide in vascular biology. J. Thromb. Haemost., 2003, 1(10), 2112-2118.
[http://dx.doi.org/10.1046/j.1538-7836.2003.00345.x] [PMID: 14521592]
[55]
Smith, B.C.; Fernhoff, N.B.; Marletta, M.A. Mechanism and kinetics of inducible nitric oxide syn-thase auto-S-nitrosation and inactivation. Biochemistry, 2012, 51(5), 1028-1040.
[http://dx.doi.org/10.1021/bi201818c] [PMID: 22242685]
[56]
Oh, E.T.; Park, H.J. Implications of NQO1 in cancer therapy. BMB Rep., 2015, 48(11), 609-617.
[http://dx.doi.org/10.5483/BMBRep.2015.48.11.190] [PMID: 26424559]
[57]
Zhang, K.; Chen, D.; Ma, K.; Wu, X.; Hao, H.; Jiang, S. NAD(P)H:Quinone Oxidoreductase 1 (NQO1) as a Therapeutic and Diagnostic Target in Cancer. J. Med. Chem., 2018, 61(16), 6983-7003.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00124] [PMID: 29712428]
[58]
Ernster, L.; Navazio, F.; Löw, H.; Siekevitz, P.; Ernster, L.; Diczfalusy, E. Soluble diaphorase in an-imal tissues. Acta Chem. Scand., 1958, 12, 595.
[http://dx.doi.org/10.3891/acta.chem.scand.12-0595]
[59]
Hajirahimkhan, A.; Simmler, C.; Dong, H.; Lantvit, D.D.; Li, G.; Chen, S.N. Nikolić; D.; Pauli, G.F.; van Breemen, R.B.; Dietz, B.M.; Bolton, J.L. Induction of NAD(P)H:quinone oxidoreductase 1 (NQO1) by glycyrrhiza species Used for women’s health: differential effects of the michael accep-tors isoliquiritigenin and licochalcone A. Chem. Res. Toxicol., 2015, 28(11), 2130-2141.
[http://dx.doi.org/10.1021/acs.chemrestox.5b00310] [PMID: 26473469]
[60]
Dietz, B.M.; Kang, Y.H.; Liu, G.; Eggler, A.L.; Yao, P.; Chadwick, L.R.; Pauli, G.F.; Farnsworth, N.R.; Mesecar, A.D.; van Breemen, R.B.; Bolton, J.L. Xanthohumol isolated from Humulus lupulus Inhibits menadione-induced DNA damage through induction of quinone reductase. Chem. Res. Toxicol., 2005, 18(8), 1296-1305.
[http://dx.doi.org/10.1021/tx050058x] [PMID: 16097803]
[61]
Zhang, L.; Zhang, G.; Xu, S.; Song, Y. Recent advances of quinones as a privileged structure in drug discovery. Eur. J. Med. Chem., 2021, 223, 113632.
[http://dx.doi.org/10.1016/j.ejmech.2021.113632] [PMID: 34153576]
[62]
Cornblatt, B.S.; Ye, L.; Dinkova-Kostova, A.T.; Erb, M.; Fahey, J.W.; Singh, N.K.; Chen, M.A.; Stierer, T.; Garrett-Mayer, E.; Argani, P.; Davidson, N.E.; Talalay, P.; Kensler, T.W.; Visvanathan, K. Preclinical and clinical evaluation of sulforaphane for chemo-prevention in the breast. Carcinogenesis, 2007, 28, 1485-1490.
[http://dx.doi.org/10.1093/carcin/bgm049] [PMID: 17347138]
[63]
Kensler, T.W. Chemoprevention by inducers of carcinogen detoxication enzymes. Environ. Health Perspect., 1997, 105(Suppl. 4), 965-970.
[PMID: 9255588]
[64]
Cuendet, M.; Oteham, C.P.; Moon, R.C.; Pezzuto, J.M. Quinone reductase induction as a biomarker for cancer chemoprevention. J. Nat. Prod., 2006, 69(3), 460-463.
[http://dx.doi.org/10.1021/np050362q] [PMID: 16562858]
[65]
Liu, G.; Eggler, A.L.; Dietz, B.M.; Mesecar, A.D.; Bolton, J.L.; Pezzuto, J.M.; van Breemen, R.B. Screening method for the discovery of potential cancer chemoprevention agents based on mass spec-trometric detection of alkylated Keap1. Anal. Chem., 2005, 77(19), 6407-6414.
[http://dx.doi.org/10.1021/ac050892r] [PMID: 16194107]
[66]
Russo, M.; Spagnuolo, C.; Russo, G.L. Skalicka-Woźniak, K.; Daglia, M.; Sobarzo-Sánchez, E.; Nabavi, S.F.; Nabavi, S.M. Nrf2 targeting by sulforaphane: A potential therapy for cancer treatment. Crit. Rev. Food Sci. Nutr., 2018, 58(8), 1391-1405.
[http://dx.doi.org/10.1080/10408398.2016.1259983] [PMID: 28001083]
[67]
Tanaka, Y.; Aleksunes, L.M.; Cui, Y.J.; Klaassen, C.D. ANIT-induced intrahepatic cholestasis alters hepatobiliary transporter expression via Nrf2-dependent and independent signaling. Toxicol. Sci., 2009, 108(2), 247-257.
[http://dx.doi.org/10.1093/toxsci/kfp020] [PMID: 19181614]
[68]
Zhou, Y.D.; Kim, Y.P.; Li, X.C.; Baerson, S.R.; Agarwal, A.K.; Hodges, T.W.; Ferreira, D.; Nagle, D.G. Hypoxia-inducible factor-1 activation by (-)-epicatechin gallate: Potential adverse effects of cancer chemoprevention with high-dose green tea extracts. J. Nat. Prod., 2004, 67(12), 2063-2069.
[http://dx.doi.org/10.1021/np040140c] [PMID: 15620252]
[69]
Chang, L.C.; Song, L.L.; Park, E.J.; Luyengi, L.; Lee, K.J.; Farnsworth, N.R.; Pezzuto, J.M.; King-horn, A.D. Bioactive constituents of Thuja occidentalis. J. Nat. Prod., 2000, 63(9), 1235-1238.
[http://dx.doi.org/10.1021/np0001575] [PMID: 11000026]
[70]
Hatten, M.E.; Roussel, M.F. Development and cancer of the cerebellum. Trends Neurosci., 2011, 34(3), 134-142.
[http://dx.doi.org/10.1016/j.tins.2011.01.002] [PMID: 21315459]
[71]
Law, A.; Gauthier, S.; Quirion, R. Say NO to Alzheimer’s disease: The putative links between nitric oxide and dementia of the Alzheimer’s type. Brain Res. Brain Res. Rev., 2001, 35(1), 73-96.
[http://dx.doi.org/10.1016/S0165-0173(00)00051-5] [PMID: 11245887]
[72]
Georgieva, K.; Popova, M.; Dimitrova, L.; Trusheva, B.; Thanh, L.N.; Phuong, D.T.L.; Lien, N.T.P.; Najdenski, H.; Bankova, V. Phytochemical analysis of Vietnamese propolis produced by the sting-less bee Lisotrigona cacciae. PLoS One, 2019, 14(4), e0216074.
[http://dx.doi.org/10.1371/journal.pone.0216074] [PMID: 31017965]
[73]
Huangfu, H.; Yu, H.; Sun, J. Research progress on chemical constituents and pharmacological ac-tions of caesalpinia sappan L. J. Hubei Univ. Chin. Med., 2018, 20, 109-113.
[74]
Seo, H.W.; No, H.; Cheon, H.J.; Kim, J.K. Sappanchalcone, a flavonoid isolated from Caesalpinia sappan L., induces caspase-dependent and AIF-dependent apoptosis in human colon cancer cells. Chem. Biol. Interact., 2020, 327, 109185.
[http://dx.doi.org/10.1016/j.cbi.2020.109185] [PMID: 32590072]
[75]
Tewtrakul, S.; Tungcharoen, P.; Sudsai, T.; Karalai, C.; Ponglimanont, C.; Yodsaoue, O. Anti-inflammatory and wound healing effects of caesalpinia sappan L. Phytother. Res., 2015, 29(6), 850-856.
[http://dx.doi.org/10.1002/ptr.5321] [PMID: 25760294]
[76]
Bae, I.K.; Min, H.Y.; Han, A.R.; Seo, E.K.; Lee, S.K. Suppression of lipopolysaccharide-induced expression of inducible nitric oxide synthase by brazilin in RAW 264.7 macrophage cells. Eur. J. Pharmacol., 2005, 513(3), 237-242.
[http://dx.doi.org/10.1016/j.ejphar.2005.03.011] [PMID: 15862806]
[77]
Kim, B.S.; Chung, T.W.; Choi, H.J.; Bae, S.J.; Cho, H.R.; Lee, S.O.; Choi, J.H.; Joo, J.K.; Ha, K.T. Caesalpinia sappan induces apoptotic cell death in ectopic endometrial 12Z cells through suppress-ing pyruvate dehydrogenase kinase 1 expression. Exp. Ther. Med., 2021, 21(4), 357.
[http://dx.doi.org/10.3892/etm.2021.9788] [PMID: 33732330]
[78]
Hwang, H.S.; Shim, J.H. Brazilin and Caesalpinia sappan L. extract protect epidermal keratinocytes from oxidative stress by inducing the expression of GPX7. Chin. J. Nat. Med., 2018, 16(3), 203-209.
[http://dx.doi.org/10.1016/S1875-5364(18)30048-7] [PMID: 29576056]
[79]
Cuong, T.D.; Hung, T.M.; Kim, J.C.; Kim, E.H.; Woo, M.H.; Choi, J.S.; Lee, J.H.; Min, B.S. Phenol-ic compounds from Caesalpinia sappan heartwood and their anti-inflammatory activity. J. Nat. Prod., 2012, 75(12), 2069-2075.
[http://dx.doi.org/10.1021/np3003673] [PMID: 23234407]
[80]
Min, B.S.; Cuong, T.D.; Hung, T.M.; Min, B.K.; Shin, B.S.; Woo, M.H. Compounds from the heartwood of Caesalpinia sappan and their anti-inflammatory activity. Bioorg. Med. Chem. Lett., 2012, 22(24), 7436-7439.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.055] [PMID: 23127886]
[81]
Namikoshi, M.; Saitoh, T. Homoisoflavonoids and related compounds. IV. absolute configurations of homoisoflavonoids from caesalpinia sappan L. Chem. Pharm. Bull. (Tokyo), 1987, 35(9), 3597-3602.
[http://dx.doi.org/10.1248/cpb.35.3597]
[82]
Zhang, J.; Abdel-Mageed, W.M.; Liu, M.; Huang, P.; He, W.; Li, L.; Song, F.; Dai, H.; Liu, X.; Liang, J.; Zhang, L. Caesanines A-D, new cassane diterpenes with unprecedented N bridge from Caesalpinia sappan. Org. Lett., 2013, 15(18), 4726-4729.
[http://dx.doi.org/10.1021/ol402058z] [PMID: 24004304]
[83]
Lai, W.C.; Wang, H.C.; Chen, G.Y.; Yang, J.C.; Korinek, M.; Hsieh, C.J.; Nozaki, H.; Hayashi, K.; Wu, C.C.; Wu, Y.C.; Chang, F.R. Using the pER8:GUS reporter system to screen for phytoestro-gens from Caesalpinia sappan. J. Nat. Prod., 2011, 74(8), 1698-1706.
[http://dx.doi.org/10.1021/np100920q] [PMID: 21800859]
[84]
Namikoshi, M.; Nakata, H.; Yamada, H.; Nagai, M.; Saitoh, T. Homoisoflavonoids and related com-pounds. II. Isolation and absolute configurations of 3, 4-dihydroxylated homoiso-flavans and brazi-lins from caesalpinia sappan L. Chem. Pharm. Bull. (Tokyo), 1987, 35(7), 2761-2773.
[http://dx.doi.org/10.1248/cpb.35.2761]
[85]
Das, B.; Thirupathi, P.; Ravikanth, B.; Aravind Kumar, R.; Sarma, A.V.; Basha, S.J. Isolation, synthesis, and bioactivity of homoisoflavonoids from Caesalpinia pulcherrima. Chem. Pharm. Bull. (Tokyo), 2009, 57(10), 1139- 1141.
[http://dx.doi.org/10.1248/cpb.57.1139] [PMID: 19801876]
[86]
Wang, Z.; Sun, J.B.; Qu, W.; Guan, F.Q.; Li, L.Z.; Liang, J.Y. Caesappin A and B, two novel pro-tosappanins from Caesalpinia sappan L. Fitoterapia, 2014, 92, 280-284.
[http://dx.doi.org/10.1016/j.fitote.2013.12.004] [PMID: 24334102]
[87]
Yang, B.; Ke, C.; He, Z.; Yang, Y.; Ye, Y. Brazilide A, a novel lactone with an unprecedented skel-eton from Caesalpinia sappan. Tetrahedron Lett., 2002, 43(9), 1731-1733.
[http://dx.doi.org/10.1016/S0040-4039(02)00109-0]
[88]
Miyahara, K.; Kawasaki, T.; Kinjo, J.; Shimokawa, T.; Yamahara, J.; Yamasaki, M.; Harano, K.; No-hara, T. The X-ray analysis of caesalpin J from sappan lignum. Chem. Pharm. Bull. (Tokyo), 1986, 34(10), 4166-4169.
[http://dx.doi.org/10.1248/cpb.34.4166] [PMID: 3829150]
[89]
Niu, Y.; Wang, S.; Li, C.; Wang, J.; Liu, Z.; Kang, W. Effective compounds from caesalpinia sappan L. on the tyrosinase in vitro and in vivo. Nat. Prod. Commun., 2020, 15(4), 1-8.
[http://dx.doi.org/10.1177/1934578X20920055]
[90]
Baselga, J. Targeting tyrosine kinases in cancer: The second wave. Science, 2006, 312(5777), 1175-1178.
[http://dx.doi.org/10.1126/science.1125951] [PMID: 16728632]
[91]
Lin, L.G.; Xie, H.; Wang, Y.T.; Ding, J.; Ye, Y. Chemical constituents from the heartwood of Hae-matoxylon campechianum as protein tyrosine kinase inhibitors. Chem. Biodivers., 2014, 11(5), 776-783.
[http://dx.doi.org/10.1002/cbdv.201300183] [PMID: 24827687]
[92]
Zhao, M.B.; Li, J.; Shi, S.P.; Cai, C.Q.; Tu, P.F.; Tang, L.; Zeng, K.W.; Jiang, Y. Two new phenolic compounds from the heartwood of Caesalpinia sappan L. Molecules, 2013, 19(1), 1-8.
[http://dx.doi.org/10.3390/molecules19010001] [PMID: 24451242]
[93]
Rochette, L.; Lorin, J.; Zeller, M.; Guilland, J.C.; Lorgis, L.; Cottin, Y.; Vergely, C. Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: Possible therapeutic targets? Pharmacol. Ther., 2013, 140(3), 239-257.
[http://dx.doi.org/10.1016/j.pharmthera.2013.07.004] [PMID: 23859953]
[94]
Horwitz, S.B. How to make taxol from scratch. Nature, 1994, 367(6464), 593-594.
[http://dx.doi.org/10.1038/367593a0] [PMID: 7906393]
[95]
Büschleb, M.; Dorich, S.; Hanessian, S.; Tao, D.; Schenthal, K.B.; Overman, L.E. Synthetic strate-gies toward natural products containing contiguous stereogenic quaternary carbon atoms. Angew. Chem. Int. Ed. Engl., 2016, 55(13), 4156-4186.
[http://dx.doi.org/10.1002/anie.201507549] [PMID: 26836448]
[96]
Blasko, G.; Cordell, G.A. Biomimetic total synthesis of Dracanone derivatives. Heterocycles, 1988, 27(2), 445-452.
[http://dx.doi.org/10.3987/COM-87-4390]
[97]
Blasko, G.; Cordell, G.A. Total synthesis of (±)-11-O-methyl-Caesalpin J and its C-13 epimer. Tetrahedron, 1989, 45(20), 6361-6366.
[http://dx.doi.org/10.1016/S0040-4020(01)89513-2]
[98]
Li, M.M.; Wu, Y.; Liu, B. Synthesis and configuration of natural dracaenones. Org. Lett., 2019, 21(2), 575-578.
[http://dx.doi.org/10.1021/acs.orglett.8b03965] [PMID: 30623655]
[99]
Nagaraju, K.; Ma, D. Oxidative coupling strategies for the synthesis of indole alkaloids. Chem. Soc. Rev., 2018, 47(21), 8018-8029.
[http://dx.doi.org/10.1039/C8CS00305J] [PMID: 30221274]
[100]
Hamamoto, H.; Shiozaki, Y.; Hata, K.; Tohma, H.; Kita, Y. A novel and concise synthesis of spiro-dienone alkaloids using hypervalent iodine(III) reagents. Chem. Pharm. Bull. (Tokyo), 2004, 52(10), 1231-1234.
[http://dx.doi.org/10.1248/cpb.52.1231] [PMID: 15467242]
[101]
Schwartz, M.A.; Holton, R.A.; Scott, S.W. Intramolecular oxidative phenol coupling. A new meth-od. J. Am. Chem. Soc., 1969, 91(10), 2800.
[http://dx.doi.org/10.1021/ja01038a073]
[102]
Morimoto, K.; Sakamoto, K.; Ohshika, T.; Dohi, T.; Kita, Y. Organo-Iodine(III)-catalyzed oxidative phenol-arene and phenol-phenol cross-coupling reaction. Angew. Chem. Int. Ed. Engl., 2016, 55(11), 3652-3656.
[http://dx.doi.org/10.1002/anie.201511007] [PMID: 26879796]
[103]
Tang, W.; Mu, X.; Yu, H.; Peng, H.; Xiong, W.; Wu, T. Expedite construction of various bridged polycyclic skeletons by palladium-catalyzed dearomatization. Angew. Chem., 2020, 132(21), 8220-8224.
[http://dx.doi.org/10.1002/ange.202000953]
[104]
Gilmartin, P.H.; Kozlowski, M.C. Vanadium-catalyzed oxidative intramolecular coupling of tethered phenols: Formation of phenol-dienone products. Org. Lett., 2020, 22(8), 2914-2919.
[http://dx.doi.org/10.1021/acs.orglett.0c00577] [PMID: 32227903]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy