Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Mentha longifolia ssp. longifolia Essential Oil Components as Novel Carbonic Anhydrase Isoform II and IX Inhibitors: Biological and Molecular Docking Studies

Author(s): Ayça Aktaş Karaçelik* and Gözde Yalçın Özkat

Volume 20, Issue 6, 2023

Published on: 01 August, 2022

Page: [767 - 778] Pages: 12

DOI: 10.2174/1570180819666220510144912

Price: $65

Abstract

Background: Medicinal plant oils are used in the treatment of various human diseases due to their phytochemical components. Recently, enzyme inhibition studies have been increasing in cosmetics, the food industry, and especially pharmaceuticals.

Objective: The main goal of this study is to focus on a specific interaction between the essential oil components of Mentha longifolia ssp. longifolia and carbonic anhydrase (CA) enzyme in vitro and in silico.

Methods: The chemical composition of the essential oil was identified by gas chromatography coupled with mass spectrometry (GC-MS). The CA inhibitory activity of M. longifolia essential oil was investigated by using esterase activity for the first time in this study. Molecular docking was performed separately for two different CA isoforms (CA-II and CA-IX).

Results: Among fourteen components identified, piperitone (27.14%), 2-acetylcyclopentanone (21.05%), p-menthan-3-one (13.90%), menthan (6.60%), and piperitone oxide (6.52%) were defined as the major compounds. The essential oil showed remarkable inhibitory activity against CA with an IC50 value of 0.010 mg/mL. According to the molecular docking analysis, caryophyllene oxide (-6.5 kcal/mol for CAIX isoform, -6.8 kcal/mol for CA-II isoform) and trans-caryophyllene (-6.3 kcal/mol for CA-IX isoform, - 6.7 kcal/mol for CA-II isoform) molecules showed the best inhibitory activity in two different CA isoforms. In this study, it was determined that all molecules are bioavailable by ADMET analyses.

Conclusion: The results of this study are valuable for the development of natural and new CA enzyme inhibitors without side effects in the treatment of diseases, such as glaucoma, obesity, and epilepsy.

Keywords: Carbonic anhydrase inhibition, molecular docking, ADMET, essential oil, Mentha longifolia, inhibitor.

Graphical Abstract

[1]
Viljoen, A.M.; Petkar, S.; van Vuuren, S.F.; Figueiredo, A.C.; Pedro, L.G.; Barroso, J.G. The chemo-geographical variation in essential oil composition and the antimicrobial properties of “wild mint” - Mentha longifolia subsp. polyadena (Lamiaceae) in Southern Africa. J. Essent. Oil Res., 2006, 18(sup. 1), 60-65.
[2]
Abdel-Hameed, E.S.S.; Salman, M.S.; Fadl, M.A.; Elkhateeb, A.; Hassan, M.M. Chemical composition and biological activity of Mentha longifolia L. essential oil growing in Taif, KSA extracted by hydrodistillation, solvent free microwave and microwave hydrodistillation. J. Essent. Oil-Bear. Plants, 2018, 21(1), 1-14.
[http://dx.doi.org/10.1080/0972060X.2018.1454343]
[3]
Karakaya, S.; Bingol, Z.; Koca, M.; Demirci, B.; Gulcin, I.; Baser, K.H.C. Screening of non-alkaloid acetylcholinesterase and carbonic anhydrase isoenzymes inhibitors of Leiotulus dasyanthus (K. Koch) Pimenov & Ostr. (Apiaceae). J. Essent. Oil Res., 2020, 32(3), 227-241.
[http://dx.doi.org/10.1080/10412905.2020.1746415]
[4]
Gulluce, M.; Sahin, F.; Sokmen, M.; Ozer, H.; Daferera, D.; Sokmen, A.; Polissiou, M.; Adiguzel, A.; Ozkan, H. Antimicrobial and antioxidant properties of the essential oils and methanol extract from Mentha longifolia L. ssp. longifolia. Food Chem., 2007, 103(4), 1449-1456.
[http://dx.doi.org/10.1016/j.foodchem.2006.10.061]
[5]
Hajlaoui, H.; Snoussi, M.; Ben Jannet, H.Z.; Mighri, Z.; Bakhrouf, A. Comparison of chemical composition and antimicrobial activities of Mentha longifolia L. ssp. longifolia essential oil from two Tunisian localities (Gabes and Sidi Bouzid). Ann. Microbiol., 2008, 58(3), 513-520.
[http://dx.doi.org/10.1007/BF03175551]
[6]
Mkaddem, M.; Bouajila, J.; Ennajar, M.; Lebrihi, A.; Mathieu, F.; Romdhane, M. Chemical composition and antimicrobial and antioxidant activities of Mentha (longifolia L. and viridis) essential oils. J. Food Sci., 2009, 74(7), M358-M363.
[http://dx.doi.org/10.1111/j.1750-3841.2009.01272.x] [PMID: 19895481]
[7]
Hajlaoui, H.; Ben Abdallah, F.; Mejdi, S.; Emira, N.; Amina, B. Effect of Mentha longifolia L. ssp longifolia essential oil on the morphology of four pathogenic bacteria visualized by atomic force microscopy. Afr. J. Microbiol. Res., 2010, 4(11), 1122-1127.
[8]
Sharopov, F.S.; Vasila, A.S.; William, N.S. Essential oil composition of Mentha longifolia from wild populations growing in Tajikistan. J. Med. Act. Plants, 2012, 1(2), 76-84.
[9]
Jalilzadeh-Amin, G.; Maham, M.; Dalir-Naghadeh, B.; Kheiri, F. Effects of Mentha longifolia essential oil on ruminal and abomasal longitudinal smooth muscle in sheep. J. Essent. Oil Res., 2012, 24(1), 61-69.
[http://dx.doi.org/10.1080/10412905.2012.646019]
[10]
Salman, M.; Abdel-Hameed, E.S.S.; Bazaid, S.A.; Dabi, M.M. Chemical composition for hydrodistillation essential oil of Mentha longifolia by gas chromatography-mass spectrometry from north regions in Kingdom of Saudi Arabia. Der pharma. chem, 2015, 7(4), 34-40.
[11]
Efe, D. Carbonic anhydrase enzyme inhibition and biological activities of Satureja hortensis L. essential oil. Ind. Crops Prod., 2020, 156, 112849.
[http://dx.doi.org/10.1016/j.indcrop.2020.112849]
[12]
Supuran, C.T.; Scozzafava, A. Carbonic anhydrases as targets for medicinal chemistry. Bioorg. Med. Chem., 2007, 15(13), 4336-4350.
[http://dx.doi.org/10.1016/j.bmc.2007.04.020] [PMID: 17475500]
[13]
Supuran, C.T. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat. Rev. Drug Discov., 2008, 7(2), 168-181.
[http://dx.doi.org/10.1038/nrd2467] [PMID: 18167490]
[14]
Supuran, C.T. Carbonic anhydrase inhibitors and activators for novel therapeutic applications. Future Med. Chem., 2011, 3(9), 1165-1180.
[http://dx.doi.org/10.4155/fmc.11.69] [PMID: 21806379]
[15]
Li, F.R.; Fan, Z.F.; Qi, S.J.; Wang, Y.S.; Wang, J.; Liu, Y.; Cheng, M.S. Design, synthesis, molecular docking analysis, and carbonic anhydrase IX inhibitory evaluations of novel N-substituted-β-D-glucosamine derivatives that incorporate benzenesulfonamides. Molecules, 2017, 22(5), 1-15.
[http://dx.doi.org/10.3390/molecules22050785] [PMID: 28498332]
[16]
Meleddu, R.; Distinto, S.; Cottiglia, F.; Angius, R.; Caboni, P.; Angeli, A.; Melis, C.; Deplano, S.; Alcaro, S.; Ortuso, F.; Supuran, C.T.; Maccioni, E. New dihydrothiazole benzensulfonamides: Looking for selectivity toward carbonic anhydrase isoforms I, II, IX, and XII. ACS Med. Chem. Lett., 2020, 11(5), 852-856.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00644] [PMID: 32435395]
[17]
Taslimi, P.; Caglayan, C.; Gulcin, İ. The impact of some natural phenolic compounds on carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase, and α-glycosidase enzymes: An antidiabetic, anticholinergic, and antiepileptic study. J. Biochem. Mol. Toxicol., 2017, 31(12)e21995
[http://dx.doi.org/10.1002/jbt.21995] [PMID: 28902458]
[18]
Supuran, C.T. Coumarin carbonic anhydrase inhibitors from natural sources. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 1462-1470.
[http://dx.doi.org/10.1080/14756366.2020.1788009] [PMID: 32779543]
[19]
Bytyqi-Damoni, A.; Kestane, A.; Taslimi, P.; Tuzun, B.; Zengin, M.; Bilgicli, H.G.; Gulcin, I. Novel carvacrol based new oxypropanolamine derivatives: Design, synthesis, characterization, biological evaluation, and molecular docking studies. J. Mol. Struct., 2020, 1202, 127297.
[http://dx.doi.org/10.1016/j.molstruc.2019.127297]
[20]
Ferreira, A.; Proença, C.; Serralheiro, M.L.M.; Araújo, M.E.M. The in vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from Portugal. J. Ethnopharmacol., 2006, 108(1), 31-37.
[http://dx.doi.org/10.1016/j.jep.2006.04.010] [PMID: 16737790]
[21]
Orhan, I.; Kartal, M.; Kan, Y.; Şener, B. Activity of essential oils and individual components against acetyl- and butyrylcholinesterase. Z. Naturforsch. C J. Biosci., 2008, 63(7-8), 547-553.
[http://dx.doi.org/10.1515/znc-2008-7-813] [PMID: 18810999]
[22]
Barros, A.S.; de Morais, S.M.; Ferreira, P.A.T.; Vieira, Í.G.P.; Craveiro, A.A.; Fontenelle, R.O.S.; Menezes, J.E.S.A.; Silva, F.W.F.; Sousa, H.A. Chemical composition and functional properties of essential oils from Mentha species. Ind. Crops Prod., 2015, 76, 557-564.
[http://dx.doi.org/10.1016/j.indcrop.2015.07.004]
[23]
Ali-Shtayeh, M.S.; Jamous, R.M.; Abu-Zaitoun, S.Y.; Khasati, A.I.; Kalbouneh, S.R. Biological properties and bioactive components of mentha spicata L. essential oil: focus on potential benefits in the treatment of obesity, alzheimer’s disease, dermatophytosis, and drug-resistant infections. Evid. Based Complement. Alternat. Med., 2019, 2019, 3834265.
[http://dx.doi.org/10.1155/2019/3834265] [PMID: 31772594]
[24]
Serseg, T.; Benarous, K.; Yousfi, M. The inhibitory effect of three essential oils on Candida rugosa lipase: in vitro and in silico studies. J. Nat. Prod., 2020, 10(3), 208-215.
[25]
Pavlić, B.; Teslić, N.; Zengin, G.; Đurović, S.; Rakić, D.; Cvetanović, A.; Gunes, A.K.; Zeković, Z. Antioxidant and enzyme-inhibitory activity of peppermint extracts and essential oils obtained by conventional and emerging extraction techniques. Food Chem., 2021, 338, 127724.
[http://dx.doi.org/10.1016/j.foodchem.2020.127724] [PMID: 32795878]
[26]
Verpoorte, J.A.; Mehta, S.; Edsall, J.T. Esterase activities of human carbonic anhydrases B and C. J. Biol. Chem., 1967, 242(18), 4221-4229.
[http://dx.doi.org/10.1016/S0021-9258(18)95800-X] [PMID: 4964830]
[27]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[28]
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 2006, 49(21), 6177-6196.
[http://dx.doi.org/10.1021/jm051256o] [PMID: 17034125]
[29]
Guedes, I.A.; Krempser, E.; Dardenne, E. DockThor-VS: A free docking server for protein-ligand virtual screening using the supercomputer SDumont. 9th Brazilian Symposium on Medicinal Chemistry, 2019, 1, p. 110381.
[30]
Leitans, J.; Kazaks, A.; Balode, A.; Ivanova, J.; Zalubovskis, R.; Supuran, C.T.; Tars, K. Efficient expression and crystallization system of cancer-associated carbonic anhydrase isoform IX. J. Med. Chem., 2015, 58(22), 9004-9009.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01343] [PMID: 26522624]
[31]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[32]
Dassault, Systèmes Discovery Studio Visualizer, 2019.
[33]
Brooks, W.H.; Guida, W.C.; Daniel, K.G. The significance of chirality in drug design and development. Curr. Top. Med. Chem., 2011, 11(7), 760-770.
[http://dx.doi.org/10.2174/156802611795165098] [PMID: 21291399]
[34]
Wang, Y.; Xiao, J.; Suzek, T.O.; Zhang, J.; Wang, J.; Bryant, S.H. PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res., 2009, 37((Web Server issue)), W623-633.
[http://dx.doi.org/10.1093/nar/gkp456] [PMID: 19498078]
[35]
Advanced Chemistry Development Inc. ACD/ChemSketch, 2001.
[36]
Yang, Z.; Lasker, K.; Schneidman-Duhovny, D.; Webb, B.; Huang, C.C.; Pettersen, E.F.; Goddard, T.D.; Meng, E.C.; Sali, A.; Ferrin, T.E. UCSF Chimera, MODELLER, and IMP: an integrated modeling system. J. Struct. Biol., 2012, 179(3), 269-278.
[http://dx.doi.org/10.1016/j.jsb.2011.09.006] [PMID: 21963794]
[37]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[38]
Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed; Allured Publ. Corp.: Carol Stream, IL, 2007.
[39]
Yanmis, D.; Gormez, A.; Bozari, S.; Orhan, F.; Gulluce, M.; Agar, G.; Sahin, F. Determination of chemical composition and antibacterial properties of essential oil of Mentha longifolia ssp. longifolia against phytopathogenic bacteria. Microbes in Applied Research: Current Advances and Challenges. 4th International Conference on Environmental, Industrial and Applied Microbiology (BioMicroWorld), 2012 Malaga, Spain, pp. 531-535.
[40]
Ceker, S.; Agar, G.; Alpsoy, L.; Nardemir, G.; Kizil, H.; Mete, E. Protective role of Mentha longifolia L. ssp. longifolia against Aflatoxin B. J. Essent. Oil-Bear. Plants, 2013, 16(5), 600-607.
[http://dx.doi.org/10.1080/0972060X.2013.854487]
[41]
Anwar, F.; Alkharfy, K.M. Najeeb-ur-Rehman; Adam, E.H.K.; Gilani, A-H. ur-Rehman, N.; Adam, E.H.K.; Gilani, A.U.H. Chemo-geographical variations in the composition of volatiles and the biological attributes of Mentha longifolia (L.) essential oils from Saudi Arabia. Int. J. Pharmacol., 2017, 13(5), 408-424.
[http://dx.doi.org/10.3923/ijp.2017.408.424]
[42]
Costa, G.; Gidaro, M.C.; Vullo, D.; Supuran, C.T.; Alcaro, S. Active components of essential oils as anti-obesity potential drugs investigated by in silico techniques. J. Agric. Food Chem., 2016, 64(26), 5295-5300.
[http://dx.doi.org/10.1021/acs.jafc.6b02004] [PMID: 27268752]
[43]
Ferreira, L.G.; Dos Santos, R.N.; Oliva, G.; Andricopulo, A.D. Molecular docking and structure-based drug design strategies. Molecules, 2015, 20(7), 13384-13421.
[http://dx.doi.org/10.3390/molecules200713384] [PMID: 26205061]
[44]
de Ruyck, J.; Brysbaert, G.; Blossey, R.; Lensink, M.F. Molecular docking as a popular tool in drug design, an in silico travel. Adv. Appl. Bioinform. Chem., 2016, 9, 1-11.
[http://dx.doi.org/10.2147/AABC.S105289] [PMID: 27390530]
[45]
Torres, P.H.M.; Sodero, A.C.R.; Jofily, P.; Silva-Jr, F.P. Key topics in molecular docking for drug design. Int. J. Mol. Sci., 2019, 20(18), 4574.
[http://dx.doi.org/10.3390/ijms20184574] [PMID: 31540192]
[46]
Alminderej, F.; Bakari, S.; Almundarij, T.I.; Snoussi, M.; Aouadi, K.; Kadri, A. Antioxidant activities of a new chemotype of Piper cubeba L. fruit essential oil (methyleugenol/eugenol): In silico molecular docking and ADMET studies. Plants, 2020, 9(11), 1534.
[http://dx.doi.org/10.3390/plants9111534] [PMID: 33182768]
[47]
Ntie-Kang, F.; Lifongo, L.L.; Mbah, J.A.; Owono Owono, L.C.; Megnassan, E.; Mbaze, L.M.; Judson, P.N.; Sippl, W.; Efange, S.M.N. In silico drug metabolism and pharmacokinetic profiles of natural products from medicinal plants in the Congo basin. In Silico Pharmacol., 2013, 1(1), 12.
[http://dx.doi.org/10.1186/2193-9616-1-12] [PMID: 25505657]
[48]
Zahran, E.M.; Abdelmohsen, U.R.; Shalash, M.M.; Salem, M.A.; Khalil, H.E.; Desoukey, S.Y.; Fouad, M.A.; Krischke, M.; Mueller, M.; Kamel, M.S. Local anaesthetic potential, metabolic profiling, molecular docking and in silico ADME studies of Ocimum forskolei, family Lamiaceae. Nat. Prod. Res., 2021, 35(22), 4757-4763.
[http://dx.doi.org/10.1080/14786419.2020.1719489] [PMID: 32000524]
[49]
Supuran, C.T.; Capasso, C. Antibacterial carbonic anhydrase inhibitors: an update on the recent literature. Expert Opin. Ther. Pat., 2020, 30(12), 963-982.
[http://dx.doi.org/10.1080/13543776.2020.1811853] [PMID: 32806966]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy