Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

Diagnosis and Clinical Aspects of Lung Cancer: A Special Emphasis on Drug Targeting to Cancer Cells through Nanoparticles

Author(s): Rajendra Awasthi*, Anurag Kumar Singh, Gaurav Mishra, Anand Maurya, Neerupma Dhiman, Harsha Kharkwal, Bhupesh Sharma, Niraj Kumar Jha, Harish Dureja, Kamal Dua, Terezinha de Jesus Andreoli Pinto and Giriraj T. Kulkarni

Volume 20, Issue 5, 2023

Published on: 15 July, 2022

Page: [499 - 516] Pages: 18

DOI: 10.2174/1570180819666220510133408

Price: $65

Abstract

Lung cancer is a leading cause of cancer-related deaths globally. The availability of successful anticancer agents in the market is limited, and the development process of a new drug molecule is slow and difficult. The currently available commercial formulations are not sufficient to produce the desired therapeutic response within a specific time limit. Therefore, there is an urgent need to develop novel nanocarrier-based therapies to defeat the restrictions of existing therapeutics. Nanoparticles have been investigated as novel formulations but are often inefficient in practical applications. However, several unanswered questions and challenges exist in their clinical development; thus, a better understanding of their influence on cancer biology, stability, and toxicity needs to be gained. This review discusses different types of lung cancers as well as diagnostic approaches to lung cancer. The review also explores the drug targeting mechanisms to cancer cells through nanoparticles and multi-drug resistance-associated challenges in lung cancer therapy. Various nanocarrier systems that are safe and effective for drug delivery in the treatment of lung cancer have been discussed. This communication will be of high relevance to the biological, formulation, and translational scientists working in the field of cancer biology and drug delivery.

Keywords: Drug targeting, multi-drug resistance, non-small cell lung cancer, nanotechnology, small cell lung cancer.

Next »
Graphical Abstract

[1]
Jemal, A.; Siegel, R.; Xu, J.; Ward, E. Cancer statistics, 2010. CA Cancer J. Clin., 2010, 60(5), 277-300.
[http://dx.doi.org/10.3322/caac.20073] [PMID: 20610543]
[2]
Dua, K.; Malyla, V.; Singhvi, G.; Wadhwa, R.; Krishna, R.V.; Shukla, S.D.; Shastri, M.D.; Chellappan, D.K.; Maurya, P.K.; Satija, S.; Mehta, M.; Gulati, M.; Hansbro, N.; Collet, T.; Awasthi, R.; Gupta, G.; Hsu, A.; Hansbro, P.M. Increasing complexity and interactions of oxidative stress in chronic respiratory diseases: An emerging need for novel drug delivery systems. Chem. Biol. Interact., 2019, 299, 168-178.
[http://dx.doi.org/10.1016/j.cbi.2018.12.009] [PMID: 30553721]
[3]
Ettinger, D.S.; Akerley, W.; Bepler, G.; Blum, M.G.; Chang, A.; Cheney, R.T.; Chirieac, L.R.; D’Amico, T.A.; Demmy, T.L.; Ganti, A.K.; Govindan, R.; Grannis, F.W., Jr; Jahan, T.; Jahanzeb, M.; Johnson, D.H.; Kessinger, A.; Komaki, R.; Kong, F.M.; Kris, M.G.; Krug, L.M.; Le, Q.T.; Lennes, I.T.; Martins, R.; O’Malley, J.; Osarogiagbon, R.U.; Otterson, G.A.; Patel, J.D.; Pisters, K.M.; Reckamp, K.; Riely, G.J.; Rohren, E.; Simon, G.R.; Swanson, S.J.; Wood, D.E.; Yang, S.C. Non-small cell lung cancer. J. Natl. Compr. Canc. Netw., 2010, 8(7), 740-801.
[http://dx.doi.org/10.6004/jnccn.2010.0056] [PMID: 20679538]
[4]
Dua, K.; Wadhwa, R.; Singhvi, G.; Rapalli, V.; Shukla, S.D.; Shastri, M.D.; Gupta, G.; Satija, S.; Mehta, M.; Khurana, N.; Awasthi, R.; Maurya, P.K.; Thangavelu, L. S, R.; Tambuwala, M.M.; Collet, T.; Hansbro, P.M.; Chellappan, D.K. The potential of siRNA based drug delivery in respiratory disorders: Recent advances and progress. Drug Dev. Res., 2019, 80(6), 714-730.
[http://dx.doi.org/10.1002/ddr.21571] [PMID: 31691339]
[5]
Denoix, P.F. Enquete permanent dans les centresantercancereux. Bull. Inst. Natl. Hyg., 1946, 1, 70.
[6]
Mountain, C.F. Revisions in the international system for staging lung cancer. Chest, 1997, 111(6), 1710-1717.
[http://dx.doi.org/10.1378/chest.111.6.1710] [PMID: 9187198]
[7]
Aupérin, A.; Arriagada, R.; Pignon, J.P.; Le Péchoux, C.; Gregor, A.; Stephens, R.J.; Kristjansen, P.E.; Johnson, B.E.; Ueoka, H.; Wagner, H.; Aisner, J. Prophylactic cranial irradiation for patients with small-cell lung cancer in complete remission. N. Engl. J. Med., 1999, 341(7), 476-484.
[http://dx.doi.org/10.1056/NEJM199908123410703] [PMID: 10441603]
[8]
Maemondo, M.; Inoue, A.; Kobayashi, K.; Sugawara, S.; Oizumi, S.; Isobe, H.; Gemma, A.; Harada, M.; Yoshizawa, H.; Kinoshita, I.; Fujita, Y.; Okinaga, S.; Hirano, H.; Yoshimori, K.; Harada, T.; Ogura, T.; Ando, M.; Miyazawa, H.; Tanaka, T.; Saijo, Y.; Hagiwara, K.; Morita, S.; Nukiwa, T. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N. Engl. J. Med., 2010, 362(25), 2380-2388.
[http://dx.doi.org/10.1056/NEJMoa0909530] [PMID: 20573926]
[9]
Gridelli, C.; Rossi, A.; Carbone, D.P.; Guarize, J.; Karachaliou, N.; Mok, T.; Petrella, F.; Spaggiari, L.; Rosell, R. Non-small-cell lung cancer. Nat. Rev. Dis. Primers, 2015, 1(1), 15009.
[http://dx.doi.org/10.1038/nrdp.2015.9] [PMID: 27188576]
[10]
Gilad, S.; Lithwick-Yanai, G.; Barshack, I.; Benjamin, S.; Krivitsky, I.; Edmonston, T.B.; Bibbo, M.; Thurm, C.; Horowitz, L.; Huang, Y.; Feinmesser, M.; Hou, J.S.; St Cyr, B.; Burnstein, I.; Gibori, H.; Dromi, N.; Sanden, M.; Kushnir, M.; Aharonov, R. Classification of the four main types of lung cancer using a microRNA-based diagnostic assay. J. Mol. Diagn., 2012, 14(5), 510-517.
[http://dx.doi.org/10.1016/j.jmoldx.2012.03.004] [PMID: 22749746]
[11]
Broutin, S.; Stewart, A.; Thavasu, P.; Paci, A.; Bidart, J.M.; Banerji, U. Insights into significance of combined inhibition of MEK and m-TOR signalling output in KRAS mutant non-small-cell lung cancer. Br. J. Cancer, 2016, 115(5), 549-552.
[http://dx.doi.org/10.1038/bjc.2016.220] [PMID: 27441499]
[12]
Sone, S.; Takashima, S.; Li, F.; Yang, Z.; Honda, T.; Maruyama, Y.; Hasegawa, M.; Yamanda, T.; Kubo, K.; Hanamura, K.; Asakura, K. Mass screening for lung cancer with mobile spiral computed tomography scanner. Lancet, 1998, 351(9111), 1242-1245.
[http://dx.doi.org/10.1016/S0140-6736(97)08229-9] [PMID: 9643744]
[13]
Makaju, S.; Prasad, P.W.; Alsadoon, A.; Singh, A.K.; Elchouemi, A. Lung cancer detection using CT scan images. Procedia Comput. Sci., 2018, 125, 107-114.
[http://dx.doi.org/10.1016/j.procs.2017.12.016]
[14]
Maurya, A.; Singh, A.K.; Mishra, G.; Kumari, K.; Rai, A.; Sharma, B.; Kulkarni, G.T.; Awasthi, R. Strategic use of nanotechnology in drug targeting and its consequences on human health: A focused review. Interv. Med. Appl. Sci., 2019, 11(1), 38-54.
[http://dx.doi.org/10.1556/1646.11.2019.04] [PMID: 32148902]
[15]
Awasthi, R.; Roseblade, A.; Hansbro, P.M.; Rathbone, M.J.; Dua, K.; Bebawy, M. Nanoparticles in cancer treatment: Opportunities and obstacles. Curr. Drug Targets, 2018, 19(14), 1696-1709.
[http://dx.doi.org/10.2174/1389450119666180326122831] [PMID: 29577855]
[16]
Dua, K.; Awasthi, R.; Madan, J.R.; Chellappan, D.K.; Nalluri, B.N.; Gupta, G.; Bebawy, M.; Hansbro, P.M. Novel drug delivery approaches in treating pulmonary fibrosis. Panminerva Med., 2018, 60(4), 238-240.
[http://dx.doi.org/10.23736/S0031-0808.18.03428-6] [PMID: 29480673]
[17]
Allahyari, H.; Heidari, S.; Ghamgosha, M.; Saffarian, P.; Amani, J. Immunotoxin: A new tool for cancer therapy. Tumour Biol., 2017, 39(2), 1010428317692226.
[http://dx.doi.org/10.1177/1010428317692226] [PMID: 28218037]
[18]
Davis, M.E.; Chen, Z.; Shin, D.M. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat. Rev. Drug Discov., 2008, 7(9), 771-782.
[http://dx.doi.org/10.1038/nrd2614] [PMID: 18758474]
[19]
Maeda, H. The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul., 2001, 41(1), 189-207.
[http://dx.doi.org/10.1016/S0065-2571(00)00013-3] [PMID: 11384745]
[20]
Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces, 2010, 75(1), 1-18.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.001] [PMID: 19782542]
[21]
Elsabahy, M.; Wooley, K.L. Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev., 2012, 41(7), 2545-2561.
[http://dx.doi.org/10.1039/c2cs15327k] [PMID: 22334259]
[22]
Manchester, M.; Singh, P. Virus-based nanoparticles (VNPs): Platform technologies for diagnostic imaging. Adv. Drug Deliv. Rev., 2006, 58(14), 1505-1522.
[http://dx.doi.org/10.1016/j.addr.2006.09.014] [PMID: 17118484]
[23]
Rivera, E. Current status of liposomal anthracycline therapy in metastatic breast cancer. Clin. Breast Cancer, 2003, 4(Suppl. 2), S76-S83.
[http://dx.doi.org/10.3816/CBC.2003.s.019] [PMID: 14667278]
[24]
Ghosh, P.; Han, G.; De, M.; Kim, C.K.; Rotello, V.M. Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev., 2008, 60(11), 1307-1315.
[http://dx.doi.org/10.1016/j.addr.2008.03.016] [PMID: 18555555]
[25]
Mornet, S.; Vasseur, S.; Grasset, F.; Duguet, E. Morne,t S.; Vasseur, S.; Grasset, F.; Duguet, E. Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem., 2004, 14(14), 2161-2175.
[http://dx.doi.org/10.1039/b402025a]
[26]
Kantarjian, H.M.; Martinelli, G.; Jabbour, E.J.; Quintás-Cardama, A.; Ando, K.; Bay, J-O.; Wei, A.; Gröpper, S.; Papayannidis, C.; Owen, K.; Pike, L.; Schmitt, N.; Stockman, P.K.; Giagounidis, A. Stage I of a phase 2 study assessing the efficacy, safety, and tolerability of barasertib (AZD1152) versus low-dose cytosine arabinoside in elderly patients with acute myeloid leukemia. Cancer, 2013, 119(14), 2611-2619.
[http://dx.doi.org/10.1002/cncr.28113] [PMID: 23605952]
[27]
Ashton, S.; Song, Y.H.; Nolan, J.; Cadogan, E.; Murray, J.; Odedra, R.; Foster, J.; Hall, P.A.; Low, S.; Taylor, P.; Ellston, R.; Polanska, U.M.; Wilson, J.; Howes, C.; Smith, A.; Goodwin, R.J.; Swales, J.G.; Strittmatter, N.; Takáts, Z.; Nilsson, A.; Andren, P.; Trueman, D.; Walker, M.; Reimer, C.L.; Troiano, G.; Parsons, D.; De Witt, D.; Ashford, M.; Hrkach, J.; Zale, S.; Jewsbury, P.J.; Barry, S.T. Aurora kinase inhibitor nanoparticles target tumors with favorable therapeutic index in vivo. Sci. Transl. Med., 2016, 8(325), 325ra17.
[http://dx.doi.org/10.1126/scitranslmed.aad2355] [PMID: 26865565]
[28]
Mangal, S.; Gao, W.; Li, T.; Zhou, Q.T. Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: Challenges and opportunities. Acta Pharmacol. Sin., 2017, 38(6), 782-797.
[http://dx.doi.org/10.1038/aps.2017.34] [PMID: 28504252]
[29]
Kaminskas, L.M.; McLeod, V.M.; Ryan, G.M.; Kelly, B.D.; Haynes, J.M.; Williamson, M.; Thienthong, N.; Owen, D.J.; Porter, C.J. Pulmonary administration of a doxorubicin-conjugated dendrimer enhances drug exposure to lung metastases and improves cancer therapy. J. Control. Release, 2014, 183, 18-26.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.012] [PMID: 24637466]
[30]
Abdulbaqi, I.M.; Assi, R.A.; Yaghmur, A.; Darwis, Y.; Mohtar, N.; Parumasivam, T.; Saqallah, F.G.; Wahab, H.A. Pulmonary delivery of anticancer drugs via lipid-based nanocarriers for the treatment of lung cancer: An update. Pharmaceuticals (Basel), 2021, 14(8), 725.
[http://dx.doi.org/10.3390/ph14080725] [PMID: 34451824]
[31]
Taratula, O.; Garbuzenko, O.B.; Chen, A.M.; Minko, T. Innovative strategy for treatment of lung cancer: Targeted nanotechnology-based inhalation co-delivery of anticancer drugs and siRNA. J. Drug Target., 2011, 19(10), 900-914.
[http://dx.doi.org/10.3109/1061186X.2011.622404] [PMID: 21981718]
[32]
Onodera, R.; Morioka, S.; Unida, S.; Motoyama, K.; Tahara, K.; Takeuchi, H. Design and evaluation of folate-modified liposomes for pulmonary administration in lung cancer therapy. Eur. J. Pharm. Sci., 2022, 168, 106081.
[http://dx.doi.org/10.1016/j.ejps.2021.106081] [PMID: 34818571]
[33]
Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control. Release, 2000, 65(1-2), 271-284.
[http://dx.doi.org/10.1016/S0168-3659(99)00248-5] [PMID: 10699287]
[34]
Kibria, G.; Hatakeyama, H.; Sato, Y.; Harashima, H. Anti-tumor effect via passive anti-angiogenesis of PEGylated liposomes encapsulating doxorubicin in drug resistant tumors. Int. J. Pharm., 2016, 509(1-2), 178-187.
[http://dx.doi.org/10.1016/j.ijpharm.2016.05.047] [PMID: 27234700]
[35]
Faulk, W.P.; Taylor, C.G.; Yeh, C.J.; McIntyre, J.A. Preliminary clinical study of transferrin-adriamycin conjugate for drug delivery to acute leukemia patients. Mol. Biother., 1990, 2(1), 57-60.
[PMID: 2334538]
[36]
Gandhi, M.; Bhatt, P.; Chauhan, G.; Gupta, S.; Misra, A.; Mashru, R. IGF-II-conjugated nanocarrier for brain-targeted delivery of p11 gene for depression. AAPS PharmSciTech, 2019, 20(2), 50.
[http://dx.doi.org/10.1208/s12249-018-1206-x] [PMID: 30617637]
[37]
Pan, X.; Wu, G.; Yang, W.; Barth, R.F.; Tjarks, W.; Lee, R.J. Synthesis of cetuximab-immunoliposomes via a cholesterol-based membrane anchor for targeting of EGFR. Bioconjug. Chem., 2007, 18(1), 101-108.
[http://dx.doi.org/10.1021/bc060174r] [PMID: 17226962]
[38]
Patel, J.; Amrutiya, J.; Bhatt, P.; Javia, A.; Jain, M.; Misra, A. Targeted delivery of monoclonal antibody conjugated docetaxel loaded PLGA nanoparticles into EGFR overexpressed lung tumour cells. J. Microencapsul., 2018, 35(2), 204-217.
[http://dx.doi.org/10.1080/02652048.2018.1453560] [PMID: 29542378]
[39]
Low, P.S.; Antony, A.C. Folate receptor-targeted drugs for cancer and inflammatory diseases. Adv. Drug Deliv. Rev., 2004, 56(8), 1055-1058.
[http://dx.doi.org/10.1016/j.addr.2004.02.003] [PMID: 15094205]
[40]
Shmeeda, H.; Mak, L.; Tzemach, D.; Astrahan, P.; Tarshish, M.; Gabizon, A. Intracellular uptake and intracavitary targeting of folate-conjugated liposomes in a mouse lymphoma model with up-regulated folate receptors. Mol. Cancer Ther., 2006, 5(4), 818-824.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0543] [PMID: 16648551]
[41]
Riviere, K.; Huang, Z.; Jerger, K.; Macaraeg, N.; Szoka, F.C. Jr Antitumor effect of folate-targeted liposomal doxorubicin in KB tumor-bearing mice after intravenous administration. J. Drug Target., 2011, 19(1), 14-24.
[http://dx.doi.org/10.3109/10611861003733953] [PMID: 20353291]
[42]
Jani, R.K.; Krupa, G. Active targeting of nanoparticles: An innovative technology for drug delivery in cancer therapeutics. J. Drug Deliv. Ther., 2019, 9(1-s), 408-415.
[http://dx.doi.org/10.22270/jddt.v9i1-s.2356]
[43]
Muhamad, N.; Plengsuriyakarn, T.; Na-Bangchang, K. Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: A systematic review. Int. J. Nanomedicine, 2018, 13, 3921-3935.
[http://dx.doi.org/10.2147/IJN.S165210] [PMID: 30013345]
[44]
Park, J.H.; Gu, L.; von Maltzahn, G.; Ruoslahti, E.; Bhatia, S.N.; Sailor, M.J. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater., 2009, 8(4), 331-336.
[http://dx.doi.org/10.1038/nmat2398] [PMID: 19234444]
[45]
Mundra, V.; Peng, Y.; Rana, S.; Natarajan, A.; Mahato, R.I. Micellar formulation of indocyanine green for phototherapy of melanoma. J. Control. Release, 2015, 220(Pt A), 130-140.
[http://dx.doi.org/10.1016/j.jconrel.2015.10.029] [PMID: 26482083]
[46]
Cho, K.; Wang, X.; Nie, S.; Chen, Z.G.; Shin, D.M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res., 2008, 14(5), 1310-1316.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1441] [PMID: 18316549]
[47]
Yang, B.; Ni, X.; Chen, L.; Zhang, H.; Ren, P.; Feng, Y.; Chen, Y.; Fu, S.; Wu, J. Honokiol-loaded polymeric nanoparticles: An active targeting drug delivery system for the treatment of nasopharyngeal carcinoma. Drug Deliv., 2017, 24(1), 660-669.
[http://dx.doi.org/10.1080/10717544.2017.1303854] [PMID: 28368206]
[48]
Amiri-Kordestani, L.; Basseville, A.; Kurdziel, K.; Fojo, A.T.; Bates, S.E. Targeting MDR in breast and lung cancer: Discriminating its potential importance from the failure of drug resistance reversal studies. Drug Resist. Updat., 2012, 15(1-2), 50-61.
[http://dx.doi.org/10.1016/j.drup.2012.02.002] [PMID: 22464282]
[49]
Gottesman, M.M. Mechanisms of cancer drug resistance. Annu. Rev. Med., 2002, 53(1), 615-627.
[http://dx.doi.org/10.1146/annurev.med.53.082901.103929] [PMID: 11818492]
[50]
Schoenlein, P.V. Role of gene amplification in drug resistance. In: Anticancer drug resistance: Advances in molecular and clinical research; Goldstein, L.J.; Ozols, R.F., Eds.; Kluwer: Boston, MA, 1994; pp. 167-200.
[http://dx.doi.org/10.1007/978-1-4615-2632-2_9]
[51]
Sharma, R.; Awasthi, Y.C.; Yang, Y.; Sharma, A.; Singhal, S.S.; Awasthi, S. Energy dependent transport of xenobiotics and its relevance to multidrug resistance. Curr. Cancer Drug Targets, 2003, 3(2), 89-107.
[http://dx.doi.org/10.2174/1568009033482047] [PMID: 12678713]
[52]
Cole, S.P.; Bhardwaj, G.; Gerlach, J.H.; Mackie, J.E.; Grant, C.E.; Almquist, K.C.; Stewart, A.J.; Kurz, E.U.; Duncan, A.M.; Deeley, R.G. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science, 1992, 258(5088), 1650-1654.
[http://dx.doi.org/10.1126/science.1360704] [PMID: 1360704]
[53]
Lampidis, T.J.; Kuo, M.T. Multidrug resistance associated gene expression in small cell and non small cell lung cancer. Proc. Am. Assoc. Cancer Res., 1994, 35, 242.
[54]
Ambudkar, S.V.; Dey, S.; Hrycyna, C.A.; Ramachandra, M.; Pastan, I.; Gottesman, M.M. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu. Rev. Pharmacol. Toxicol., 1999, 39(1), 361-398.
[http://dx.doi.org/10.1146/annurev.pharmtox.39.1.361] [PMID: 10331089]
[55]
Townsend, D.M.; Tew, K.D. The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene, 2003, 22(47), 7369-7375.
[http://dx.doi.org/10.1038/sj.onc.1206940] [PMID: 14576844]
[56]
Eastman, A.; Schulte, N. Enhanced DNA repair as a mechanism of resistance to cis-diamminedichloroplatinum(II). Biochemistry, 1988, 27(13), 4730-4734.
[http://dx.doi.org/10.1021/bi00413a022] [PMID: 3167012]
[57]
Green, S.K.; Frankel, A.; Kerbel, R.S. Adhesion-dependent multicellular drug resistance. Anticancer Drug Des., 1999, 14(2), 153-168.
[PMID: 10405642]
[58]
Morin, P.J. Drug resistance and the microenvironment: Nature and nurture. Drug Resist. Updat., 2003, 6(4), 169-172.
[http://dx.doi.org/10.1016/S1368-7646(03)00059-1] [PMID: 12962682]
[59]
Ganesh, S.; Iyer, A.K.; Weiler, J.; Morrissey, D.V.; Amiji, M.M. Combination of siRNA-directed gene silencing with cisplatin reverses drug resistance in human non-small cell lung cancer. Mol. Ther. Nucleic Acids, 2013, 2, e110.
[http://dx.doi.org/10.1038/mtna.2013.29] [PMID: 23900224]
[60]
Scagliotti, G.V.; Michelotto, F.; Kalikatzaros, G.; Leonardo, E.; Cappia, S.; Gubetta, L.; Borasio, P.; Pozzi, E. Detection of multidrug resistance associated P-170 glycoprotein in previously untreated non small cell lung cancer. Anticancer Res., 1991, 11(6), 2207-2210.
[PMID: 1685647]
[61]
Scagliotti, G.V.; Novello, S.; Selvaggi, G. Multidrug resistance in non-small-cell lung cancer. Ann. Oncol., 1999, 10(Suppl. 5), S83-S86.
[http://dx.doi.org/10.1093/annonc/10.suppl_5.S83] [PMID: 10582146]
[62]
Goldstein, L.J.; Galski, H.; Fojo, A.; Willingham, M.; Lai, S.L.; Gazdar, A.; Pirker, R.; Green, A.; Crist, W.; Brodeur, G.M.; Lieber, M.; Cossman, J.; Gottesman, M.M.; Pastan, I. Expression of a multidrug resistance gene in human cancers. J. Natl. Cancer Inst., 1989, 81(2), 116-124.
[http://dx.doi.org/10.1093/jnci/81.2.116] [PMID: 2562856]
[63]
Grant, C.E.; Valdimarsson, G.; Hipfner, D.R.; Almquist, K.C.; Cole, S.P.; Deeley, R.G. Overexpression of multidrug resistance-associated protein (MRP) increases resistance to natural product drugs. Cancer Res., 1994, 54(2), 357-361.
[PMID: 8275468]
[64]
Loe, D.W.; Deeley, R.G.; Cole, S.P. Biology of the multidrug resistance-associated protein, MRP. Eur. J. Cancer, 1996, 32A(6), 945-957.
[http://dx.doi.org/10.1016/0959-8049(96)00046-9] [PMID: 8763335]
[65]
Kasahara, K.; Fujiwara, Y.; Sugimoto, Y.; Nishio, K.; Tamura, T.; Matsuda, T.; Saijo, N. Determinants of response to the DNA topoisomerase II inhibitors doxorubicin and etoposide in human lung cancer cell lines. J. Natl. Cancer Inst., 1992, 84(2), 113-118.
[http://dx.doi.org/10.1093/jnci/84.2.113] [PMID: 1310509]
[66]
Izquierdo, M.A.; Scheffer, G.L.; Flens, M.J.; Giaccone, G.; Broxterman, H.J.; Meijer, C.J.; van der Valk, P.; Scheper, R.J. Broad distribution of the multidrug resistance-related vault lung resistance protein in normal human tissues and tumors. Am. J. Pathol., 1996, 148(3), 877-887.
[PMID: 8774142]
[67]
Wang, X.; Adjei, A.A. Lung cancer and metastasis: New opportunities and challenges. Cancer Metastasis Rev., 2015, 34(2), 169-171.
[http://dx.doi.org/10.1007/s10555-015-9562-4] [PMID: 25956388]
[68]
Ghorani, E.; Reading, J.L.; Henry, J.Y.; de Massy, M.R.; Rosenthal, R.; Turati, V.; Joshi, K.; Furness, A.J.S.; Aissa, A.B.; Saini, S.K.; Ramskov, S.; Georgiou, A.; Sunderland, M.W.; Wong, Y.N.S.; De Mucha, M.V.; Day, W.; Galvez-Cancino, F.; Becker, P.D.; Uddin, I.; Ismail, M.; Ronel, T.; Woolston, A.; Jamal-Hanjani, M.; Veeriah, S.; Birkbak, N.J.; Wilson, G.A.; Litchfield, K.; Conde, L.; Guerra-Assunção, J.A.; Blighe, K.; Biswas, D.; Salgado, R.; Lund, T.; Al Bakir, M.; Moore, D.A.; Hiley, C.T.; Loi, S.; Sun, Y.; Yuan, Y. AbdulJabbar, K.; Turajilic, S.; Herrero, J.; Enver, T.; Hadrup, S.R.; Hackshaw, A.; Peggs, K.S.; McGranahan, N.; Chain, B.; Swanton, C.; Quezada, S.A. The T cell differentiation landscape is shaped by tumour mutations in lung cancer. Nat. Can., 2020, 1(5), 546-561.
[http://dx.doi.org/10.1038/s43018-020-0066-y] [PMID: 32803172]
[69]
Harrison, P.T.; Vyse, S.; Huang, P.H. Rare epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer. Semin. Cancer Biol., 2020, 61, 167-179.
[http://dx.doi.org/10.1016/j.semcancer.2019.09.015] [PMID: 31562956]
[70]
Ruzycka-Ayoush, M.; Kowalik, P.; Kowalczyk, A.; Bujak, P.; Nowicka, A.M.; Wojewodzka, M.; Kruszewski, M.; Grudzinski, I.P. Quantum dots as targeted doxorubicin drug delivery nanosystems. Cancer Nanotechnol., 2021, 12(1), 1-27.
[PMID: 33456622]
[71]
Oldenburg, S.J.; Averitt, R.D.; Westcott, S.L.; Halas, N.J. Nanoengineering of optical resonances. Chem. Phys. Lett., 1998, 288(2-4), 243-247.
[http://dx.doi.org/10.1016/S0009-2614(98)00277-2]
[72]
Tharkar, P.; Madani, A.U.; Lasham, A.; Shelling, A.N.; Al-Kassas, R. Nanoparticulate carriers: An emerging tool for breast cancer therapy. J. Drug Target., 2015, 23(2), 97-108.
[http://dx.doi.org/10.3109/1061186X.2014.958844] [PMID: 25230853]
[73]
Averitt, R.D.; Westcott, S.L.; Halas, N.J. Linear optical properties of gold nanoshells. J. Opt. Soc. Am. B, 1999, 16(10), 1824-1832.
[http://dx.doi.org/10.1364/JOSAB.16.001824]
[74]
Khosroshahi, M.E.; Nourbakhsh, M.S.; Ghazanfari, L. Synthesis and biomedical application of SiO2/Au nanofluid based on laser-induced surface plasmon resonance thermal effect. J. Mod. Phys., 2011, 2(9), 944-953.
[http://dx.doi.org/10.4236/jmp.2011.29112]
[75]
Knights, O.B.; McLaughlan, J.R. Gold nanorods for light-based lung cancer theranostics. Int. J. Mol. Sci., 2018, 19(11), 3318.
[http://dx.doi.org/10.3390/ijms19113318] [PMID: 30366384]
[76]
Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic. Bioeng. Transl. Med., 2016, 1(1), 10-29.
[http://dx.doi.org/10.1002/btm2.10003] [PMID: 29313004]
[77]
Singh, P.; Pandit, S.; Mokkapati, V.R.S.S.; Garg, A.; Ravikumar, V.; Mijakovic, I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int. J. Mol. Sci., 2018, 19(7), 1979.
[http://dx.doi.org/10.3390/ijms19071979] [PMID: 29986450]
[78]
Ramalingam, V.; Varunkumar, K.; Ravikumar, V.; Rajaram, R. Target delivery of doxorubicin tethered with PVP stabilized gold nanoparticles for effective treatment of lung cancer. Sci. Rep., 2018, 8(1), 3815.
[http://dx.doi.org/10.1038/s41598-018-22172-5] [PMID: 29491463]
[79]
Pal, S.L.; Jana, U.; Manna, P.K.; Mohanta, G.P.; Manavalan, R. Nanoparticle: An overview of preparation and characterization. J. Appl. Pharm., 2011, 1(6), 228-234.
[80]
Awasthi, R.; Rathbone, M.J.; Hansbro, P.M.; Bebawy, M.; Dua, K. Therapeutic prospects of microRNAs in cancer treatment through nanotechnology. Drug Deliv. Transl. Res., 2018, 8(1), 97-110.
[http://dx.doi.org/10.1007/s13346-017-0440-1] [PMID: 29185148]
[81]
Jiang, Z.M.; Dai, S.P.; Xu, Y.Q.; Li, T.; Xie, J.; Li, C.; Zhang, Z.H. Crizotinib-loaded polymeric nanoparticles in lung cancer chemotherapy. Med. Oncol., 2015, 32(7), 193.
[http://dx.doi.org/10.1007/s12032-015-0636-5] [PMID: 26025486]
[82]
Wang, X.; Chen, H.; Zeng, X.; Guo, W.; Jin, Y.; Wang, S.; Tian, R.; Han, Y.; Guo, L.; Han, J.; Wu, Y.; Mei, L. Efficient lung cancer-targeted drug delivery via a nanoparticle/MSC system. Acta Pharm. Sin. B, 2019, 9(1), 167-176.
[http://dx.doi.org/10.1016/j.apsb.2018.08.006] [PMID: 30766788]
[83]
Ganesh, S.; Iyer, A.K.; Morrissey, D.V.; Amiji, M.M. Hyaluronic acid based self-assembling nanosystems for CD44 target mediated siRNA delivery to solid tumors. Biomaterials, 2013, 34(13), 3489-3502.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.077] [PMID: 23410679]
[84]
Kim, I.; Byeon, H.J.; Kim, T.H.; Lee, E.S.; Oh, K.T.; Shin, B.S.; Lee, K.C.; Youn, Y.S. Doxorubicin-loaded porous PLGA microparticles with surface attached TRAIL for the inhalation treatment of metastatic lung cancer. Biomaterials, 2013, 34(27), 6444-6453.
[http://dx.doi.org/10.1016/j.biomaterials.2013.05.018] [PMID: 23755831]
[85]
Feng, T.; Tian, H.; Xu, C.; Lin, L.; Xie, Z.; Lam, M.H.; Liang, H.; Chen, X. Synergistic co-delivery of doxorubicin and paclitaxel by porous PLGA microspheres for pulmonary inhalation treatment. Eur. J. Pharm. Biopharm., 2014, 88(3), 1086-1093.
[http://dx.doi.org/10.1016/j.ejpb.2014.09.012] [PMID: 25305583]
[86]
Niculescu, A.G.; Grumezescu, A.M. Applications of chitosan-alginate-based nanoparticles-an up-to-date review. Nanomaterials (Basel), 2022, 12(2), 186.
[http://dx.doi.org/10.3390/nano12020186] [PMID: 35055206]
[87]
Yee Kuen, C.; Masarudin, M.J. Chitosan nanoparticle-based system: A new insight into the promising controlled release system for lung cancer treatment. Molecules, 2022, 27(2), 473.
[http://dx.doi.org/10.3390/molecules27020473] [PMID: 35056788]
[88]
Moghimi, S.M.; Szebeni, J. Stealth liposomes and long circulating nanoparticles: Critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog. Lipid Res., 2003, 42(6), 463-478.
[http://dx.doi.org/10.1016/S0163-7827(03)00033-X] [PMID: 14559067]
[89]
Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 2005, 4(2), 145-160.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[90]
Awasthi, R.; Madan, J.R.; Malipeddi, H.; Dua, K.; Kulkarni, G.T. Therapeutic strategies for targeting non-coding RNAs with special emphasis on novel delivery systems. Non-coding RNA Investig., 2019, 3(11), 1-7.
[http://dx.doi.org/10.21037/ncri.2019.02.02]
[91]
Cheng, L.; Huang, F.Z.; Cheng, L.F.; Zhu, Y.Q.; Hu, Q.; Li, L.; Wei, L.; Chen, D.W. GE11-modified liposomes for non-small cell lung cancer targeting: Preparation, ex vitro and in vivo evaluation. Int. J. Nanomedicine, 2014, 9, 921-935.
[http://dx.doi.org/10.2147/IJN.S53310] [PMID: 24611009]
[92]
Lin, C.; Zhang, X.; Chen, H.; Bian, Z.; Zhang, G.; Riaz, M.K.; Tyagi, D.; Lin, G.; Zhang, Y.; Wang, J.; Lu, A.; Yang, Z. Dual-ligand modified liposomes provide effective local targeted delivery of lung-cancer drug by antibody and tumor lineage-homing cell-penetrating peptide. Drug Deliv., 2018, 25(1), 256-266.
[http://dx.doi.org/10.1080/10717544.2018.1425777] [PMID: 29334814]
[93]
Song, X.L.; Ju, R.J.; Xiao, Y.; Wang, X.; Liu, S.; Fu, M.; Liu, J.J.; Gu, L.Y.; Li, X.T.; Cheng, L. Application of multifunctional targeting epirubicin liposomes in the treatment of non-small-cell lung cancer. Int. J. Nanomedicine, 2017, 12, 7433-7451.
[http://dx.doi.org/10.2147/IJN.S141787] [PMID: 29066893]
[94]
Park, Y.I.; Kwon, S.H.; Lee, G.; Motoyama, K.; Kim, M.W.; Lin, M.; Niidome, T.; Choi, J.H.; Lee, R. pH-sensitive multi-drug liposomes targeting folate receptor β for efficient treatment of non-small cell lung cancer. J. Control. Release, 2021, 330, 1-14.
[http://dx.doi.org/10.1016/j.jconrel.2020.12.011] [PMID: 33321157]
[95]
Miao, Y.Q.; Chen, M.S.; Zhou, X.; Guo, L.M.; Zhu, J.J.; Wang, R.; Zhang, X.X.; Gan, Y. Chitosan oligosaccharide modified liposomes enhance lung cancer delivery of paclitaxel. Acta Pharmacol. Sin., 2021, 42(10), 1714-1722.
[http://dx.doi.org/10.1038/s41401-020-00594-0] [PMID: 33469196]
[96]
Rohilla, S.; Awasthi, R.; Mehta, M.; Chellappan, D.K.; Gupta, G.; Gulati, M.; Singh, S.K.; Anand, K.; Oliver, B.G.; Dua, K.; Dureja, H. Preparation and evaluation of gefitinib containing nanoliposomal formulation for lung cancer therapy. Bionanoscience, 2022.
[http://dx.doi.org/10.1007/s12668-022-00938-6]
[97]
Carvalheiro, M.; Ferreira-Silva, M.; Holovanchuk, D.; Marinho, H.S.; Moreira, J.N.; Soares, H.; Corvo, M.L.; Cruz, M.E.M. Antagonist G-targeted liposomes for improved delivery of anticancer drugs in small cell lung carcinoma. Int. J. Pharm., 2022, 612, 121380.
[http://dx.doi.org/10.1016/j.ijpharm.2021.121380] [PMID: 34915142]
[98]
Gorain, B.; Tekade, M.; Kesharwani, P.; Iyer, A.K.; Kalia, K.; Tekade, R.K. The use of nanoscaffolds and dendrimers in tissue engineering. Drug Discov. Today, 2017, 22(4), 652-664.
[http://dx.doi.org/10.1016/j.drudis.2016.12.007] [PMID: 28219742]
[99]
Zhu, J.; Zheng, L.; Wen, S.; Tang, Y.; Shen, M.; Zhang, G.; Shi, X. Targeted cancer theranostics using alpha-tocopheryl succinate-conjugated multifunctional dendrimer-entrapped gold nanoparticles. Biomaterials, 2014, 35(26), 7635-7646.
[http://dx.doi.org/10.1016/j.biomaterials.2014.05.046] [PMID: 24927683]
[100]
Kesharwani, P.; Jain, K.; Jain, N.K. Dendrimer as nanocarrier for drug delivery. Prog. Polym. Sci., 2014, 39(2), 268-307.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.07.005]
[101]
Kaur, D.; Jain, K.; Mehra, N.K.; Kesharwani, P.; Jain, N.K. A review on comparative study of PPI and PAMAM dendrimers. J. Nanopart. Res., 2016, 18(6), 146.
[http://dx.doi.org/10.1007/s11051-016-3423-0]
[102]
Pettit, M.W.; Griffiths, P.; Ferruti, P.; Richardson, S.C. Poly(amidoamine) polymers: Soluble linear amphiphilic drug-delivery systems for genes, proteins and oligonucleotides. Ther. Deliv., 2011, 2(7), 907-917.
[http://dx.doi.org/10.4155/tde.11.55] [PMID: 22833902]
[103]
Qin, W.; Yang, K.; Tang, H.; Tan, L.; Xie, Q.; Ma, M.; Zhang, Y.; Yao, S. Improved GFP gene transfection mediated by polyamidoamine dendrimer-functionalized multi-walled carbon nanotubes with high biocompatibility. Colloids Surf. B Biointerfaces, 2011, 84(1), 206-213.
[http://dx.doi.org/10.1016/j.colsurfb.2011.01.001] [PMID: 21256722]
[104]
Bharatwaj, B.; Mohammad, A.K.; Dimovski, R.; Cassio, F.L.; Bazito, R.C.; Conti, D.; Fu, Q.; Reineke, J.; da Rocha, S.R. Dendrimer nanocarriers for transport modulation across models of the pulmonary epithelium. Mol. Pharm., 2015, 12(3), 826-838.
[http://dx.doi.org/10.1021/mp500662z] [PMID: 25455560]
[105]
Duncan, R.; Izzo, L. Dendrimer biocompatibility and toxicity. Adv. Drug Deliv. Rev., 2005, 57(15), 2215-2237.
[http://dx.doi.org/10.1016/j.addr.2005.09.019] [PMID: 16297497]
[106]
Palmerston Mendes, L.; Pan, J.; Torchilin, V.P. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules, 2017, 22(9), 1401.
[http://dx.doi.org/10.3390/molecules22091401] [PMID: 28832535]
[107]
Gorain, B.; Choudhury, H.; Pandey, M.; Amin, M.C.; Singh, B.; Gupta, U.; Kesharwani, P. Dendrimers as effective carriers for the treatment of brain tumor. In: Nanotechnology-based targeted drug delivery systems for brain tumors; , 2018; pp. 267-305.
[http://dx.doi.org/10.1016/B978-0-12-812218-1.00010-5]
[108]
Bhargava, M.; Bhargava, S.; Bhargava, V. Mannosylated poly (propylene imine) dendrimer mediated lung delivery of anticancer bioactive. J. Thorac. Oncol., 2017, 65(1), S1272.
[http://dx.doi.org/10.1016/j.jtho.2016.11.1797]
[109]
Sheikh, A.; Kesharwani, P. An insight into aptamer engineered dendrimer for cancer therapy. Eur. Polym. J., 2021, 159, 110746.
[http://dx.doi.org/10.1016/j.eurpolymj.2021.110746]
[110]
Bentolila, L.A.; Ebenstein, Y.; Weiss, S. Quantum dots for in vivo small-animal imaging. J. Nucl. Med., 2009, 50(4), 493-496.
[http://dx.doi.org/10.2967/jnumed.108.053561] [PMID: 19289434]
[111]
Hilderbrand, S.A.; Weissleder, R. Near-infrared fluorescence: Application to in vivo molecular imaging. Curr. Opin. Chem. Biol., 2010, 14(1), 71-79.
[http://dx.doi.org/10.1016/j.cbpa.2009.09.029] [PMID: 19879798]
[112]
Wang, Y.; Chen, L. Quantum dots, lighting up the research and development of nanomedicine. Nanomedicine, 2011, 7(4), 385-402.
[http://dx.doi.org/10.1016/j.nano.2010.12.006] [PMID: 21215327]
[113]
Tholouli, E.; Sweeney, E.; Barrow, E.; Clay, V.; Hoyland, J.A.; Byers, R.J. Quantum dots light up pathology. J. Pathol., 2008, 216(3), 275-285.
[http://dx.doi.org/10.1002/path.2421] [PMID: 18814189]
[114]
Papagiannaros, A.; Levchenko, T.; Hartner, W.; Mongayt, D.; Torchilin, V. Quantum dots encapsulated in phospholipid micelles for imaging and quantification of tumors in the near-infrared region. Nanomedicine, 2009, 5(2), 216-224.
[http://dx.doi.org/10.1016/j.nano.2008.10.001] [PMID: 19223245]
[115]
Soenen, S.J.; Manshian, B.B.; Aubert, T.; Himmelreich, U.; Demeester, J.; De Smedt, S.C.; Hens, Z.; Braeckmans, K. Cytotoxicity of cadmium-free quantum dots and their use in cell bioimaging. Chem. Res. Toxicol., 2014, 27(6), 1050-1059.
[http://dx.doi.org/10.1021/tx5000975] [PMID: 24869946]
[116]
Chakravarthy, K.V.; Davidson, B.A.; Helinski, J.D.; Ding, H.; Law, W.C.; Yong, K.T.; Prasad, P.N.; Knight, P.R. Doxorubicin-conjugated quantum dots to target alveolar macrophages and inflammation. Nanomedicine, 2011, 7(1), 88-96.
[http://dx.doi.org/10.1016/j.nano.2010.09.001] [PMID: 20887813]
[117]
Qu, G.; Zhang, C.; Yuan, L.; He, J.; Wang, Z.; Wang, L.; Liu, S.; Jiang, G. Quantum dots impair macrophagic morphology and the ability of phagocytosis by inhibiting the Rho-associated kinase signaling. Nanoscale, 2012, 4(7), 2239-2244.
[http://dx.doi.org/10.1039/c2nr30243h] [PMID: 22395807]
[118]
Pilch, J.; Kowalik, P.; Bujak, P.; Nowicka, A.M.; Augustin, E. Quantum dots as a good carriers of unsymmetrical bisacridines for modulating cellular uptake and the biological response in lung and colon cancer cells. Nanomaterials (Basel), 2021, 11(2), 462.
[http://dx.doi.org/10.3390/nano11020462] [PMID: 33670297]
[119]
Ottenbrite, R.M.; Park, K.; Okano, T. Biomedical applications of hydrogels handbook; Springer, 2010.
[http://dx.doi.org/10.1007/978-1-4419-5919-5]
[120]
Kopecek, J.; Yang, J.Y. Hydrogels as smart biomaterials. Polym. Int., 2007, 56(9), 1078-1098.
[http://dx.doi.org/10.1002/pi.2253]
[121]
Hoffman, A.S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev., 2002, 54(1), 3-12.
[http://dx.doi.org/10.1016/S0169-409X(01)00239-3] [PMID: 11755703]
[122]
Park, H.; Park, K.; Shalaby, W.S. Biodegradable hydrogels for drug delivery; CRC Press, 1993, p. 252.
[http://dx.doi.org/10.1201/9780429259098]
[123]
Peppas, N.A. Hydrogels in medicine and pharmacy; CRC Press: Boca Raton, 1987, pp. 1-3.
[124]
Della Sala, F.; Fabozzi, A.; di Gennaro, M.; Nuzzo, S.; Makvandi, P.; Solimando, N.; Pagliuca, M.; Borzacchiello, A. Advances in hyaluronic‐acid‐based (nano) devices for cancer therapy. Macromol. Biosci., 2022, 22(1), e2100304.
[http://dx.doi.org/10.1002/mabi.202100304] [PMID: 34657388]
[125]
Gil, M.S.; Thambi, T.; Phan, V.H.G.; Kim, S.H.; Lee, D.S. Injectable hydrogel-incorporated cancer cell-specific cisplatin releasing nanogels for targeted drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(34), 7140-7152.
[http://dx.doi.org/10.1039/C7TB00873B] [PMID: 32263905]
[126]
Rangel-Yagui, C.O.; Pessoa, A., Jr; Tavares, L.C. Micellar solubilization of drugs. J. Pharm. Pharm. Sci., 2005, 8(2), 147-165.
[PMID: 16124926]
[127]
Torchilin, V.P. Micellar nanocarriers: Pharmaceutical perspectives. Pharm. Res., 2007, 24(1), 1-16.
[http://dx.doi.org/10.1007/s11095-006-9132-0] [PMID: 17109211]
[128]
Gothwal, A.; Khan, I.; Gupta, U. Polymeric micelles: Recent advancements in the delivery of anticancer drugs. Pharm. Res., 2016, 33(1), 18-39.
[http://dx.doi.org/10.1007/s11095-015-1784-1] [PMID: 26381278]
[129]
Torchilin, V.P. Structure and design of polymeric surfactant-based drug delivery systems. J. Control. Release, 2001, 73(2-3), 137-172.
[http://dx.doi.org/10.1016/S0168-3659(01)00299-1] [PMID: 11516494]
[130]
Wei, X.; Wang, Y.; Zeng, W.; Huang, F.; Qin, L.; Zhang, C.; Liang, W. Stability influences the biodistribution, toxicity, and anti-tumor activity of doxorubicin encapsulated in PEG-PE micelles in mice. Pharm. Res., 2012, 29(7), 1977-1989.
[http://dx.doi.org/10.1007/s11095-012-0725-5] [PMID: 22426964]
[131]
Jones, M. Leroux, J. Polymeric micelles - a new generation of colloidal drug carriers. Eur. J. Pharm. Biopharm., 1999, 48(2), 101-111.
[http://dx.doi.org/10.1016/S0939-6411(99)00039-9] [PMID: 10469928]
[132]
Gaucher, G.; Dufresne, M.H.; Sant, V.P.; Kang, N.; Maysinger, D.; Leroux, J.C. Block copolymer micelles: Preparation, characterization and application in drug delivery. J. Control. Release, 2005, 109(1-3), 169-188.
[http://dx.doi.org/10.1016/j.jconrel.2005.09.034] [PMID: 16289422]
[133]
Zhang, L. Chen, Z.; Yang, K.; Liu, C.; Gao, J.; Qian, F. β-Lapachone and paclitaxel combination micelles with improved drug encapsulation and therapeutic synergy as novel nanotherapeutics for NQO1-targeted cancer therapy. Mol. Pharm., 2015, 12(11), 3999-4010.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00448] [PMID: 26415823]
[134]
Castelli, R.; Ibarra, M.; Faccio, R.; Miraballes, I.; Fernández, M.; Moglioni, A.; Cabral, P.; Cerecetto, H.; Glisoni, R.J.; Calzada, V. T908 polymeric micelles improved the uptake of Sgc8-c aptamer probe in tumor-bearing mice: A co-association study between the probe and preformed nanostructures. Pharmaceuticals (Basel), 2021, 15(1), 15.
[http://dx.doi.org/10.3390/ph15010015] [PMID: 35056072]
[135]
Hang, J.; Chen, Y.; Tian, P.; Yu, R.; Wang, M.; Zhao, M. Preparation and pharmacodynamics of niclosamide micelles. J. Drug Deliv. Sci. Technol., 2022, 103088, 103088.
[http://dx.doi.org/10.1016/j.jddst.2021.103088]
[136]
Kipp, J.E. The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int. J. Pharm., 2004, 284(1-2), 109-122.
[http://dx.doi.org/10.1016/j.ijpharm.2004.07.019] [PMID: 15454302]
[137]
Baba, K.; Pudavar, H.E.; Roy, I.; Ohulchanskyy, T.Y.; Chen, Y.; Pandey, R.K.; Prasad, P.N. New method for delivering a hydrophobic drug for photodynamic therapy using pure nanocrystal form of the drug. Mol. Pharm., 2007, 4(2), 289-297.
[http://dx.doi.org/10.1021/mp060117f] [PMID: 17266331]
[138]
Shao, W.; Paul, A.; Rodes, L.; Prakash, S. A new carbon nanotubebased breast cancer drug delivery system: Preparation and in vitro analysis using paclitaxel. Cell Biochem. Biophys., 2015, 71(3), 1405-1414.
[http://dx.doi.org/10.1007/s12013-014-0363-0] [PMID: 27101155]
[139]
De Volder, M.F.; Tawfick, S.H.; Baughman, R.H.; Hart, A.J. Carbon nanotubes: Present and future commercial applications. Science, 2013, 339(6119), 535-539.
[http://dx.doi.org/10.1126/science.1222453] [PMID: 23372006]
[140]
Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chemistry of carbon nanotubes. Chem. Rev., 2006, 106(3), 1105-1136.
[http://dx.doi.org/10.1021/cr050569o] [PMID: 16522018]
[141]
Lobez, J.M.; Afzali, A. Surface-selective directed assembly of carbon nanotubes using side-chain functionalized poly (thiophene)s. Chem. Mater., 2013, 25(18), 3662-3666.
[http://dx.doi.org/10.1021/cm401881w]
[142]
Wu, W.; Li, R.; Bian, X.; Zhu, Z.; Ding, D.; Li, X.; Jia, Z.; Jiang, X.; Hu, Y. Covalently combining carbon nanotubes with anticancer agent: Preparation and antitumor activity. ACS Nano, 2009, 3(9), 2740-2750.
[http://dx.doi.org/10.1021/nn9005686] [PMID: 19702292]
[143]
Huang, H.; Yuan, Q.; Shah, J.S.; Misra, R.D. A new family of folate-decorated and carbon nanotube-mediated drug delivery system: Synthesis and drug delivery response. Adv. Drug Deliv. Rev., 2011, 63(14-15), 1332-1339.
[http://dx.doi.org/10.1016/j.addr.2011.04.001] [PMID: 21514336]
[144]
Srivastava, R.K.; Pant, A.B.; Kashyap, M.P.; Kumar, V.; Lohani, M.; Jonas, L.; Rahman, Q. Multi-walled carbon nanotubes induce oxidative stress and apoptosis in human lung cancer cell line-A549. Nanotoxicology, 2011, 5(2), 195-207.
[http://dx.doi.org/10.3109/17435390.2010.503944] [PMID: 20804439]
[145]
Singh, R.P.; Sharma, G.; Sonali, S.S.; Singh, S.; Patne, S.C.U.; Pandey, B.L.; Koch, B.; Muthu, M.S. Effects of transferrin conjugated multi-walled carbon nanotubes in lung cancer delivery. Mater. Sci. Eng. C, 2016, 67, 313-325.
[http://dx.doi.org/10.1016/j.msec.2016.05.013] [PMID: 27287127]
[146]
Kayat, J.; Gajbhiye, V.; Tekade, R.K.; Jain, N.K. Pulmonary toxicity of carbon nanotubes: A systematic report. Nanomedicine, 2011, 7(1), 40-49.
[http://dx.doi.org/10.1016/j.nano.2010.06.008] [PMID: 20620235]
[147]
Abdelaziz, H.M.; Gaber, M.; Abd-Elwakil, M.M.; Mabrouk, M.T.; Elgohary, M.M.; Kamel, N.M.; Kabary, D.M.; Freag, M.S.; Samaha, M.W.; Mortada, S.M.; Elkhodairy, K.A.; Fang, J.Y.; Elzoghby, A.O. Inhalable particulate drug delivery systems for lung cancer therapy: Nanoparticles, microparticles, nanocomposites and nanoaggregates. J. Control. Release, 2018, 269, 374-392.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.036] [PMID: 29180168]
[148]
Ezzati Nazhad Dolatabadi, J.; Valizadeh, H.; Hamishehkar, H. Solid lipid nanoparticles as efficient drug and gene delivery systems: Recent breakthroughs. Adv. Pharm. Bull., 2015, 5(2), 151-159.
[http://dx.doi.org/10.15171/apb.2015.022] [PMID: 26236652]
[149]
Weber, S.; Zimmer, A.; Pardeike, J. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for pulmonary application: A review of the state of the art. Eur. J. Pharm. Biopharm., 2014, 86(1), 7-22.
[http://dx.doi.org/10.1016/j.ejpb.2013.08.013] [PMID: 24007657]
[150]
Shen, H.; Shi, S.; Zhang, Z.; Gong, T.; Sun, X. Coating solid lipid nanoparticles with hyaluronic acid enhances antitumor activity against melanoma stem-like cells. Theranostics, 2015, 5(7), 755-771.
[http://dx.doi.org/10.7150/thno.10804] [PMID: 25897340]
[151]
Elzoghby, A.O.; El-Lakany, S.A.; Helmy, M.W.; Abu-Serie, M.M.; Elgindy, N.A. Shell-crosslinked zein nanocapsules for oral codelivery of exemestane and resveratrol in breast cancer therapy. Nanomedicine (Lond.), 2017, 12(24), 2785-2805.
[http://dx.doi.org/10.2217/nnm-2017-0247] [PMID: 29094642]
[152]
El-Far, S.W.; Helmy, M.W.; Khattab, S.N.; Bekhit, A.A.; Hussein, A.A.; Elzoghby, A.O. Phytosomal bilayer-enveloped casein micelles for codelivery of monascus yellow pigments and resveratrol to breast cancer. Nanomedicine (Lond.), 2018, 13(5), 481-499.
[http://dx.doi.org/10.2217/nnm-2017-0301] [PMID: 29376765]
[153]
Elzoghby, A.O.; Mostafa, S.K.; Helmy, M.W.; ElDemellawy, M.A.; Sheweita, S.A. Multi-reservoir phospholipid shell encapsulating protamine nanocapsules for co-delivery of letrozole and celecoxib in breast cancer therapy. Pharm. Res., 2017, 34(9), 1956-1969.
[http://dx.doi.org/10.1007/s11095-017-2207-2] [PMID: 28643236]
[154]
Freag, M.S.; Saleh, W.M.; Abdallah, O.Y. Laminated chitosan-based composite sponges for transmucosal delivery of novel protamine-decorated tripterine phytosomes: Ex-vivo mucopenetration and in-vivo pharmacokinetic assessments. Carbohydr. Polym., 2018, 188, 108-120.
[http://dx.doi.org/10.1016/j.carbpol.2018.01.095] [PMID: 29525146]
[155]
El-Sherbiny, I.M.; El-Baz, N.M.; Yacoub, M.H. Inhaled nano- and microparticles for drug delivery. Glob. Cardiol. Sci. Pract., 2015, 2015(1), 2.
[http://dx.doi.org/10.5339/gcsp.2015.2] [PMID: 26779496]
[156]
Gaber, M.; Medhat, W.; Hany, M.; Saher, N.; Fang, J.Y.; Elzoghby, A. Protein-lipid nanohybrids as emerging platforms for drug and gene delivery: Challenges and outcomes. J. Control. Release, 2017, 254, 75-91.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.392] [PMID: 28365294]
[157]
Mohanraj, V.J.; Chen, Y. Nanoparticles - A review. Trop. J. Pharm. Res., 2006, 5, 561-573.
[158]
Kommareddy, S.; Tiwari, S.B.; Amiji, M.M. Long-circulating polymeric nanovectors for tumor-selective gene delivery. Technol. Cancer Res. Treat., 2005, 4(6), 615-625.
[http://dx.doi.org/10.1177/153303460500400605] [PMID: 16292881]
[159]
Bhadra, D.; Bhadra, S.; Jain, P.; Jain, N.K. Pegnology: A review of PEG-ylated systems. Pharmazie, 2002, 57(1), 5-29.
[PMID: 11836932]
[160]
Lee, M.; Kim, S.W. Polyethylene glycol-conjugated copolymers for plasmid DNA delivery. Pharm. Res., 2005, 22(1), 1-10.
[http://dx.doi.org/10.1007/s11095-004-9003-5] [PMID: 15771224]
[161]
Illum, L.; Davis, S.S. The organ uptake of intravenously administered colloidal particles can be altered using a non-ionic surfactant (Poloxamer 338). FEBS Lett., 1984, 167(1), 79-82.
[http://dx.doi.org/10.1016/0014-5793(84)80836-4] [PMID: 6698206]
[162]
Allen, T.M. The use of glycolipids and hydrophilic polymers in avoiding rapid uptake of liposomes by the mononuclear phagocyte system. Adv. Drug Deliv. Rev., 1994, 13(3), 285-309.
[http://dx.doi.org/10.1016/0169-409X(94)90016-7]
[163]
Tröster, S.D.; Kreuter, J. Influence of the surface properties of low contact angle surfactants on the body distribution of 14C-poly(methyl methacrylate) nanoparticles. J. Microencapsul., 1992, 9(1), 19-28.
[http://dx.doi.org/10.3109/02652049209021219] [PMID: 1613640]
[164]
Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol. Rev., 2001, 53(2), 283-318.
[PMID: 11356986]
[165]
Wolfram, J.; Zhu, M.; Yang, Y.; Shen, J.; Gentile, E.; Paolino, D.; Fresta, M.; Nie, G.; Chen, C.; Shen, H.; Ferrari, M.; Zhao, Y. Safety of nanoparticles in medicine. Curr. Drug Targets, 2015, 16(14), 1671-1681.
[http://dx.doi.org/10.2174/1389450115666140804124808] [PMID: 26601723]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy