Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Mini-Review Article

Cannabinoids as Potential Molecules for Addiction Disorders

Author(s): Virna Margarita Martín Giménez, Luciana Mazzei, Raúl Sanz and Walter Manucha*

Volume 23, Issue 3, 2022

Published on: 27 May, 2022

Page: [152 - 157] Pages: 6

DOI: 10.2174/1389203723666220510121031

Price: $65

conference banner
Abstract

Background: Addictions are a group of chronic and recurrent diseases of the brain characterized by a pathological search for reward or relief through the use of a substance or other action. This situation implies an inability to control behavior, difficulty in permanent abstinence, a compelling desire to consume, decreased recognition of significant problems caused by behavior and interpersonal relationships, and a dysfunctional emotional response. The result is a decrease in the quality of life of the affected person, generating problems in their work, academic activities, social relationships, or family or partner relationships. Unfortunately, there are not enough pharmacotherapeutic solutions to treat addictions due to the complexity of their physiopathology and signaling pathways. Therefore, it is an imperative search for new pharmacological alternatives which may be used for this purpose.

Purpose of Review: This review summarizes the main recent findings of the potential therapeutic effects of different cannabinoids on treating several addictions, including alcohol, opioids, methamphetamine, cocaine, and nicotine use disorders.

Highlights Standpoints: It has been demonstrated that many phyto, synthetic, and endogenous cannabinoids may act as therapeutic molecules in this psychiatric pathology through their action on multiple cannabinoid receptors. To highlight, cannabinoid receptors, types 1 and 2 (CB1 and CB2) have a crucial role in modulating the anti-addictive properties of these compounds.

Keywords: Addictions, phytocannabinoids, synthetic cannabinoids, endocannabinoids, therapeutic molecules, and psychiatric pathology.

Graphical Abstract

[1]
Spanagel, R. Cannabinoids and the endocannabinoid system in reward processing and addiction: From mechanisms to interventions. Dialogues Clin. Neurosci., 2020, 22(3), 241-250.
[http://dx.doi.org/10.31887/DCNS.2020.22.3/rspanagel] [PMID: 33162767]
[2]
Ronan, P.J.; Wongngamnit, N.; Beresford, T.P. Molecular Mechanisms of Cannabis Signaling in the Brain. Prog. Mol. Biol. Transl. Sci., 2016, 137, 123-147.
[http://dx.doi.org/10.1016/bs.pmbts.2015.10.002] [PMID: 26810000]
[3]
Gottschling, S.; Ayonrinde, O.; Bhaskar, A.; Blockman, M.; D’Agnone, O.; Schecter, D.; Suárez Rodríguez, L.D.; Yafai, S.; Cyr, C. Safety considerations in cannabinoid-based medicine. Int. J. Gen. Med., 2020, 13, 1317-1333.
[http://dx.doi.org/10.2147/IJGM.S275049] [PMID: 33299341]
[4]
Basavarajappa, B.S.; Nagre, N.N.; Xie, S.; Subbanna, S. Elevation of endogenous anandamide impairs LTP, learning, and memory through CB1 receptor signaling in mice. Hippocampus, 2014, 24(7), 808-818.
[http://dx.doi.org/10.1002/hipo.22272] [PMID: 24648181]
[5]
Yu, S.; Levi, L.; Casadesus, G.; Kunos, G.; Noy, N. Fatty acid-binding protein 5 (FABP5) regulates cognitive function both by decreasing anandamide levels and by activating the nuclear receptor peroxisome proliferator-activated receptor ß/d (PPARß/d) in the brain. J. Biol. Chem., 2014, 289(18), 12748-12758.
[http://dx.doi.org/10.1074/jbc.M114.559062] [PMID: 24644281]
[6]
Ativie, F.; Albayram, O.; Bach, K.; Pradier, B.; Zimmer, A.; Bilkei-Gorzo, A. Enhanced microglial activity in FAAH(-/-) animals. Life Sci., 2015, 138, 52-56.
[http://dx.doi.org/10.1016/j.lfs.2014.12.016] [PMID: 25534441]
[7]
Liechti, M. Novel psychoactive substances (designer drugs): Overview and pharmacology of modulators of monoamine signaling. Swiss Med. Wkly., 2015, 145, w14043.
[http://dx.doi.org/10.4414/smw.2015.14043] [PMID: 25588018]
[8]
Samra, K.; Boon, I.S.; Packer, G.; Jacob, S. Lethal high: Acute disseminated encephalomyelitis (ADEM) triggered by toxic effect of synthetic cannabinoid black mamba. BMJ Case Rep., 2017, 2017
[9]
Hermanns-Clausen, M.; Kithinji, J.; Spehl, M.; Angerer, V.; Franz, F.; Eyer, F.; Auwärter, V. Adverse effects after the use of JWH-210 - a case series from the EU Spice II plus project. Drug Test. Anal., 2016, 8(10), 1030-1038.
[http://dx.doi.org/10.1002/dta.1936] [PMID: 26768345]
[10]
Fraguas-Sánchez, A.I.; Torres-Suárez, A.I. Medical use of cannabinoids. Drugs, 2018, 78(16), 1665-1703.
[http://dx.doi.org/10.1007/s40265-018-0996-1] [PMID: 30374797]
[11]
Fernández-Ruiz, J.; Galve-Roperh, I.; Sagredo, O.; Guzmán, M. Possible therapeutic applications of cannabis in the neuropsychopharma-cology field. Eur. Neuropsychopharmacol., 2020, 36, 217-234.
[http://dx.doi.org/10.1016/j.euroneuro.2020.01.013] [PMID: 32057592]
[12]
Schindler, C.W.; Redhi, G.H.; Vemuri, K.; Makriyannis, A.; Le Foll, B.; Bergman, J.; Goldberg, S.R.; Justinova, Z. Blockade of nicotine and cannabinoid reinforcement and relapse by a Cannabinoid CB1-receptor neutral antagonist AM4113 and inverse agonist rimonabant in squirrel monkeys. Neuropsychopharmacology, 2016, 41(9), 2283-2293.
[http://dx.doi.org/10.1038/npp.2016.27] [PMID: 26888056]
[13]
Gueye, A.B.; Pryslawsky, Y.; Trigo, J.M.; Poulia, N.; Delis, F.; Antoniou, K.; Loureiro, M.; Laviolette, S.R.; Vemuri, K.; Makriyannis, A.; Le Foll, B. The CB1 neutral antagonist AM4113 retains the therapeutic efficacy of the inverse agonist rimonabant for nicotine dependence and weight loss with better psychiatric tolerability. Int. J. Neuropsychopharmacol., 2016, 19(12), pyw068.
[http://dx.doi.org/10.1093/ijnp/pyw068] [PMID: 27493155]
[14]
Robinson, J.D.; Cinciripini, P.M.; Karam-Hage, M.; Aubin, H.J.; Dale, L.C.; Niaura, R.; Anthenelli, R.M. Pooled analysis of three random-ized, double-blind, placebo controlled trials with rimonabant for smoking cessation. Addict. Biol., 2018, 23(1), 291-303.
[http://dx.doi.org/10.1111/adb.12508] [PMID: 28429843]
[15]
Manzanares, J.; Cabañero, D.; Puente, N.; García-Gutiérrez, M.S.; Grandes, P.; Maldonado, R. Role of the endocannabinoid system in drug addiction. Biochem. Pharmacol., 2018, 157, 108-121.
[http://dx.doi.org/10.1016/j.bcp.2018.09.013] [PMID: 30217570]
[16]
Vilela, L.R.; Gobira, P.H.; Viana, T.G.; Medeiros, D.C.; Ferreira-Vieira, T.H.; Doria, J.G.; Rodrigues, F.; Aguiar, D.C.; Pereira, G.S.; Massessini, A.R.; Ribeiro, F.M.; de Oliveira, A.C.; Moraes, M.F.; Moreira, F.A. Enhancement of endocannabinoid signaling protects against cocaine-induced neurotoxicity. Toxicol. Appl. Pharmacol., 2015, 286(3), 178-187.
[http://dx.doi.org/10.1016/j.taap.2015.04.013] [PMID: 25933444]
[17]
Leweke, F.M.; Rohleder, C.; Gerth, C.W.; Hellmich, M.; Pukrop, R.; Koethe, D. Cannabidiol and amisulpride improve cognition in acute schizophrenia in an explorative, double-blind, active-controlled, randomized clinical trial. Front. Pharmacol., 2021, 12, 614811.
[http://dx.doi.org/10.3389/fphar.2021.614811] [PMID: 33995015]
[18]
Martin Gimenez, V.M.; Mocayar Maron, F.J.; Kassuha, D.E.; Ferder, L.; Manucha, W. Key aspects to consider about beneficial and harm-ful effects on the central nervous system by the endocannabinoid modulation linked to new cardiovascular therapies. Ann. Pharmacol. Pharm., 2019, 4(2), 11.
[19]
Howlett, A.C.; Abood, M.E. CB1 and CB2 receptor pharmacology. Adv. Pharmacol., 2017, 80, 169-206.
[http://dx.doi.org/10.1016/bs.apha.2017.03.007] [PMID: 28826534]
[20]
Henricks, A.M.; Berger, A.L.; Lugo, J.M.; Baxter-Potter, L.N.; Bieniasz, K.V.; Petrie, G.; Sticht, M.A.; Hill, M.N.; McLaughlin, R.J. Sex- and hormone-dependent alterations in alcohol withdrawal-induced anxiety and corticolimbic endocannabinoid signaling. Neuropharmacology, 2017, 124, 121-133.
[http://dx.doi.org/10.1016/j.neuropharm.2017.05.023] [PMID: 28554848]
[21]
Kleczkowska, P.; Smaga, I.; Filip, M.; Bujalska-Zadrozny, M. Cannabinoid ligands and alcohol addiction: A promising therapeutic tool or a humbug? Neurotox. Res., 2016, 29(1), 173-196.
[http://dx.doi.org/10.1007/s12640-015-9555-7] [PMID: 26353844]
[22]
Bedse, G.; Centanni, S.W.; Winder, D.G.; Patel, S. Endocannabinoid signaling in the central amygdala and bed nucleus of the stria termi-nalis: Implications for the pathophysiology and treatment of alcohol use disorder. Alcohol. Clin. Exp. Res., 2019, 43(10), 2014-2027.
[http://dx.doi.org/10.1111/acer.14159] [PMID: 31373708]
[23]
Zhou, Y.; Schwartz, B.I.; Giza, J.; Gross, S.S.; Lee, F.S.; Kreek, M.J. Blockade of alcohol escalation and “relapse” drinking by pharmaco-logical FAAH inhibition in male and female C57BL/6J mice. Psychopharmacology (Berl.), 2017, 234(19), 2955-2970.
[http://dx.doi.org/10.1007/s00213-017-4691-9] [PMID: 28730283]
[24]
Centanni, S.W.; Morris, B.D.; Luchsinger, J.R.; Bedse, G.; Fetterly, T.L.; Patel, S.; Winder, D.G. Endocannabinoid control of the insular-bed nucleus of the stria terminalis circuit regulates negative affective behavior associated with alcohol abstinence. Neuropsychopharmacology, 2019, 44(3), 526-537.
[http://dx.doi.org/10.1038/s41386-018-0257-8] [PMID: 30390064]
[25]
Gianessi, C.A.; Groman, S.M.; Thompson, S.L.; Jiang, M.; van der Stelt, M.; Taylor, J.R. Endocannabinoid contributions to alcohol habits and motivation: Relevance to treatment. Addict. Biol., 2020, 25(3), e12768.
[http://dx.doi.org/10.1111/adb.12768] [PMID: 31056846]
[26]
Basavarajappa, B.S.; Joshi, V.; Shivakumar, M.; Subbanna, S. Distinct functions of endogenous cannabinoid system in alcohol abuse disorders. Br. J. Pharmacol., 2019, 176(17), 3085-3109.
[http://dx.doi.org/10.1111/bph.14780] [PMID: 31265740]
[27]
Sloan, M.E.; Gowin, J.L.; Ramchandani, V.A.; Hurd, Y.L.; Le Foll, B. The endocannabinoid system as a target for addiction treatment: Trials and tribulations. Neuropharmacology, 2017, 124, 73-83.
[http://dx.doi.org/10.1016/j.neuropharm.2017.05.031] [PMID: 28564576]
[28]
Nguyen, J.D. Grant, Y.; Creehan, K.M.; Hwang, C.S.; Vandewater, S.A.; Janda, K.D.; Cole, M.; Taffe, M.A.Δ. Δ9-tetrahydrocannabinol attenuates oxycodone self-administration under extended access conditions. Neuropharmacology, 2019, 151, 127-135.
[http://dx.doi.org/10.1016/j.neuropharm.2019.04.010] [PMID: 30980837]
[29]
Zhao, X.; Yao, L.; Wang, F.; Zhang, H.; Wu, L. Cannabinoid 1 receptor blockade in the dorsal hippocampus prevents the reinstatement but not acquisition of morphine-induced conditioned place preference in rats. Neuroreport, 2017, 28(10), 565-570.
[http://dx.doi.org/10.1097/WNR.0000000000000796] [PMID: 28492416]
[30]
Nawata, Y.; Yamaguchi, T.; Fukumori, R.; Yamamoto, T. Inhibition of monoacylglycerol lipase reduces the reinstatement of methamphet-amine-seeking and anxiety-like behaviors in methamphetamine self-administered rats. Int. J. Neuropsychopharmacol., 2019, 22(2), 165-172.
[http://dx.doi.org/10.1093/ijnp/pyy086] [PMID: 30481332]
[31]
McReynolds, J.R.; Doncheck, E.M.; Vranjkovic, O.; Ganzman, G.S.; Baker, D.A.; Hillard, C.J.; Mantsch, J.R. CB1 receptor antagonism blocks stress-potentiated reinstatement of cocaine seeking in rats. Psychopharmacology (Berl.), 2016, 233(1), 99-109.
[http://dx.doi.org/10.1007/s00213-015-4092-x] [PMID: 26455361]
[32]
Martín-García, E.; Bourgoin, L.; Cathala, A.; Kasanetz, F.; Mondesir, M.; Gutiérrez-Rodriguez, A.; Reguero, L.; Fiancette, J.F.; Grandes, P.; Spampinato, U.; Maldonado, R.; Piazza, P.V.; Marsicano, G.; Deroche-Gamonet, V. Differential control of cocaine self-administration by GABAergic and glutamatergic CB1 cannabinoid receptors. Neuropsychopharmacology, 2016, 41(9), 2192-2205.
[http://dx.doi.org/10.1038/npp.2015.351] [PMID: 26612422]
[33]
Gobira, P.H.; Oliveira, A.C.; Gomes, J.S.; da Silveira, V.T.; Asth, L.; Bastos, J.R.; Batista, E.M.; Issy, A.C.; Okine, B.N.; de Oliveira, A.C.; Ribeiro, F.M.; Del Bel, E.A.; Aguiar, D.C.; Finn, D.P.; Moreira, F.A. Opposing roles of CB1 and CB2 cannabinoid receptors in the stimulant and rewarding effects of cocaine. Br. J. Pharmacol., 2019, 176(10), 1541-1551.
[http://dx.doi.org/10.1111/bph.14473] [PMID: 30101419]
[34]
Lopes, J.B.; Bastos, J.R.; Costa, R.B.; Aguiar, D.C.; Moreira, F.A. The roles of cannabinoid CB1 and CB2 receptors in cocaine-induced behavioral sensitization and conditioned place preference in mice. Psychopharmacology (Berl.), 2020, 237(2), 385-394.
[http://dx.doi.org/10.1007/s00213-019-05370-5] [PMID: 31667531]
[35]
Scherma, M.; Muntoni, A.L.; Melis, M.; Fattore, L.; Fadda, P.; Fratta, W.; Pistis, M. Interactions between the endocannabinoid and nicotin-ic cholinergic systems: Preclinical evidence and therapeutic perspectives. Psychopharmacology (Berl.), 2016, 233(10), 1765-1777.
[http://dx.doi.org/10.1007/s00213-015-4196-3] [PMID: 26728894]
[36]
Forget, B.; Guranda, M.; Gamaleddin, I.; Goldberg, S.R.; Le Foll, B. Attenuation of cue-induced reinstatement of nicotine seeking by URB597 through cannabinoid CB1 receptor in rats. Psychopharmacology (Berl.), 2016, 233(10), 1823-1828.
[http://dx.doi.org/10.1007/s00213-016-4232-y] [PMID: 26864774]
[37]
Butler, K.; Le Foll, B. Novel therapeutic and drug development strategies for tobacco use disorder: Endocannabinoid modulation. Expert Opin. Drug Discov., 2020, 15(9), 1065-1080.
[http://dx.doi.org/10.1080/17460441.2020.1767581] [PMID: 32425077]
[38]
Martín Giménez, V.M.; Russo, M.G.; Narda, G.E.; Fuentes, L.B.; Mazzei, L.; Gamarra-Luques, C.; Kassuha, D.E.; Manucha, W. Synthe-sis, physicochemical characterisation and biological activity of anandamide/ɛ-polycaprolactone nanoparticles obtained by electrospraying. IET Nanobiotechnol., 2020, 14(1), 86-93.
[http://dx.doi.org/10.1049/iet-nbt.2019.0108] [PMID: 31935683]
[39]
Debbage, P. Targeted drugs and nanomedicine: Present and future. Curr. Pharm. Des., 2009, 15(2), 153-172.
[http://dx.doi.org/10.2174/138161209787002870] [PMID: 19149610]
[40]
Onaivi, E.S.; Singh Chauhan, B.P.; Sharma, V. Challenges of cannabinoid delivery: How can nanomedicine help? Nanomedicine (Lond.), 2020, 15(21), 2023-2028.
[http://dx.doi.org/10.2217/nnm-2020-0221] [PMID: 32589080]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy