Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Bioactive Compounds from Mimosa pudica Leaves Extract with Their α- glucosidase and Protein Tyrosine Phosphatase 1B Inhibitory Activities in vitro and in silico Approaches

Author(s): Pham Thi Lan, Nguyen Thi Thu, Vu Thi Thom, Nguyen Thi Hai Yen, Phan Hong Minh, Bui Son Nhat, Nguyen Thi Huyen, Nguyen Hong Nhung, Ta Thi Thu Hang, Pham Thi Nguyet Hang and Bui Thanh Tung*

Volume 20, Issue 3, 2023

Published on: 31 August, 2022

Page: [353 - 364] Pages: 12

DOI: 10.2174/1570180819666220510105202

Price: $65

conference banner
Abstract

Background: Mimosa pudica Linn has been used in traditional medicine to support the treatment of type 2 diabetes. In the present study, we aimed to isolate and evaluate α-glucosidase and Protein Tyrosine Phosphatase 1B (PTP1B) inhibitory activities of bioactive compounds from Mimosa pudica’s leaf extract.

Methods: Mimosa pudica leaves were extracted with 80% of ethanol. Bioactive compounds were isolated using a column chromatographic technique and elucidated the structure based on the nuclear magnetic resonance and electrospray ionization mass spectrometry spectral data. The α- glucosidase and PTP1B inhibitory activities of the isolated compounds were evaluated using pnitrophenyl phosphate and p-nitrophenyl-α-D-glucopyranoside as a substrate, respectively. Molecular docking and molecular dynamics are used to study the interaction between isolated compounds and proteins. Lipinski’s rule of five was used to evaluate the drug-like properties of isolated compounds. Predict pharmacokinetic parameters were evaluated using the pkCSM tool.

Results: Protocatechuic acid and syringic acid were isolated and identified using spectroscopic methods. Protocatechuic acid and syringic acid considerably inhibited α-glucosidase enzyme at IC50 values of 416.17 ± 9.41 μM and 490.78 ± 9.28 μM, respectively. Furthermore, protocatechuic acid and syringic acid expressed strong PTP1B inhibitory activity at IC50 values of 248.83 ± 7.66 μM and 450.31 ± 7.77 μM, respectively. Molecular docking and molecular dynamics results showed the interactions of protocatechuic acid and syringic acid with amino acids of PTP1B and α-glucosidase enzyme. Lipinski’s rule of five and absorption, distribution, metabolism, excretion, and toxicity studies predicted that protocatechuic acid and syringic acid have drug-likeness properties. In molecular docking simulation, protocatechuic acid and syringic acid gave relatively negative free binding energies and interacted with many amino acids in the active sites of PTP1B and α-glucosidase. The molecular dynamics simulation results of the complexes were also relatively stable.

Conclusion: Our results showed that protocatechuic and syringic acids could be promising compounds for type 2 diabetes treatment.

Keywords: Mimosa pudica, α-glucosidase, protein tyrosine phosphatase 1B, Protocatechuic acid, Syringic acid

Graphical Abstract

[1]
Association, A.D. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2009, 32(Suppl. 1), S62-S67.
[http://dx.doi.org/10.2337/dc09-S062] [PMID: 19118289]
[2]
Federation, I.D. IDF Diabetes Atlas, 9th ed; , 2019.
[3]
Bischoff, H. Pharmacology of -glucosidase inhibition. Eur. J. Clin. Invest., 1994, 24(S3)(Suppl. 3), 3-10.
[PMID: 8001624]
[4]
Van de Laar, F.A.; Lucassen, P.L.; Akkermans, R.P.; Van de Lisdonk, E.H.; Rutten, G.E.; Van Weel, C. Alpha glucosidase inhibitors for type 2 diabetes mellitus. Cochrane Database Syst. Rev., 2005.
[http://dx.doi.org/10.1002/14651858.CD003639.pub2]
[5]
Cho, H. Protein tyrosine phosphatase 1B (PTP1B) and obesity. Vitam. Horm., 2013, 91, 405-424.
[http://dx.doi.org/10.1016/B978-0-12-407766-9.00017-1] [PMID: 23374726]
[6]
Zabolotny, J.M.; Kim, Y-B.; Welsh, L.A.; Kershaw, E.E.; Neel, B.G.; Kahn, B.B. Protein-tyrosine phosphatase 1B expression is induced by inflammation in vivo. J. Biol. Chem., 2008, 283(21), 14230-14241.
[http://dx.doi.org/10.1074/jbc.M800061200] [PMID: 18281274]
[7]
Montalibet, J.; Kennedy, B.P. Therapeutic strategies for targeting PTP1B in diabetes. Drug Discov. Today Ther. Strateg., 2005, 2(2), 129-135.
[http://dx.doi.org/10.1016/j.ddstr.2005.05.002]
[8]
Joseph, B.; George, J.; Mohan, J. Pharmacology and traditional uses of Mimosa pudica. Int. J. Pharm. Sci. Drug Res., 2013, 5(2), 41-44.
[9]
Muhammad, G.; Hussain, M.A.; Jantan, I.; Bukhari, S.N.A. Mimosa pudica L., a high value medicinal plant as a source of bioactives for pharmaceuticals. Compr. Rev. Food Sci. Food Saf., 2016, 15(2), 303-315.
[http://dx.doi.org/10.1111/1541-4337.12184] [PMID: 33371596]
[10]
Tunna, T.; Zaidul, I.; Ahmed, Q.; Ghafoor, K.; Al-Juhaimi, F.; Uddin, M.; Hasan, M.; Ferdous, S. Analyses and profiling of extract and fractions of neglected weed Mimosa pudica Linn. traditionally used in Southeast Asia to treat diabetes. S. Afr. J. Bot., 2015, 99, 144-152.
[http://dx.doi.org/10.1016/j.sajb.2015.02.016]
[11]
Thi Thuy, N.; Ha Linh Trang, N.; Thi Thanh Binh, N.; Thanh Tung, B. Evaluation of antioxidant and α-glucosidase inhibitory activities of codonopsisjavanica (Blume) Hook. f. thoms’ root extract. VNU Journal of Science: Medical and Pharmaceutical Sciences, 2020, 36(3)
[12]
Nguyen, P-H.; Yang, J-L.; Uddin, M.N.; Park, S-L.; Lim, S-I.; Jung, D-W.; Williams, D.R.; Oh, W-K. Protein tyrosine phosphatase 1B (PTP1B) inhibitors from Morinda citrifolia (Noni) and their insulin mimetic activity. J. Nat. Prod., 2013, 76(11), 2080-2087.
[http://dx.doi.org/10.1021/np400533h] [PMID: 24224843]
[13]
Lipinski, C.; Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1, 337-341.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[14]
Jayaram, B.; Singh, T.; Mukherjee, G.; Mathur, A.; Shekhar, S.; Shekhar, V. Sanjeevini: A freely accessible web-server for target directed lead molecule discovery. BMC Bioinformatics, 2012, 13(17)(Suppl. 17), S7.
[http://dx.doi.org/10.1186/1471-2105-13-S17-S7] [PMID: 23282245]
[15]
Pires, D.E.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem., 2015, 58(9), 4066-4072.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00104] [PMID: 25860834]
[16]
Tang, H.; Huang, L.; Sun, C.; Zhao, D. Exploring the structure-activity relationship and interaction mechanism of flavonoids and α-glucosidase based on experimental analysis and molecular docking studies. Food Funct., 2020, 11(4), 3332-3350.
[http://dx.doi.org/10.1039/C9FO02806D] [PMID: 32226990]
[17]
Nokhala, A.; Siddiqui, M.J.; Ahmed, Q.U.; Ahamad Bustamam, M.S.; Zakaria, A.Z.A. Investigation of α-Glucosidase Inhibitory Metabolites from Tetracera scandens Leaves by GC-MS Metabolite Profiling and Docking Studies. Biomolecules, 2020, 10(2), 287.
[http://dx.doi.org/10.3390/biom10020287] [PMID: 32059529]
[18]
Rho, T.; Yoon, K.D. Chemical constituents of Nelumbo nucifera seeds. Nat. Prod. Sci., 2017, 23(4), 253-257.
[http://dx.doi.org/10.20307/nps.2017.23.4.253]
[19]
Panyo, J.; Matsunami, K.; Panichayupakaranant, P. Bioassay-guided isolation and evaluation of antimicrobial compounds from Ixora megalophylla against some oral pathogens. Pharm. Biol., 2016, 54(9), 1522-1527.
[http://dx.doi.org/10.3109/13880209.2015.1107106] [PMID: 26809027]
[20]
Larregieu, C.A.; Benet, L.Z. Drug discovery and regulatory considerations for improving in silico and in vitro predictions that use Caco-2 as a surrogate for human intestinal permeability measurements. AAPS J., 2013, 15(2), 483-497.
[http://dx.doi.org/10.1208/s12248-013-9456-8] [PMID: 23344793]
[21]
Pham-The, H.; Cabrera-Pérez, M.Á.; Nam, N.H.; Castillo-Garit, J.A.; Rasulev, B.; Le-Thi-Thu, H.; Casañola-Martin, G.M. In silico assessment of ADME properties: Advances in Caco-2 cell monolayer permeability modeling. Curr. Top. Med. Chem., 2018, 18(26), 2209-2229.
[http://dx.doi.org/10.2174/1568026619666181130140350] [PMID: 30499410]
[22]
Zhang, W.; Hong, D.; Zhou, Y.; Zhang, Y.; Shen, Q.; Li, J.Y.; Hu, L.H.; Li, J. Ursolic acid and its derivative inhibit protein tyrosine phosphatase 1B, enhancing insulin receptor phosphorylation and stimulating glucose uptake. Biochim. Biophys. Acta, 2006, 1760(10), 1505-1512.
[http://dx.doi.org/10.1016/j.bbagen.2006.05.009] [PMID: 16828971]
[23]
Parasuraman, S.; Ching, T.H.; Leong, C.H.; Banik, U. Antidiabetic and antihyperlipidemic effects of a methanolic extract of Mimosa pudica (Fabaceae) in diabetic rats. Egypt. J. Basic Appl. Sci., 2019, 6(1), 137-148.
[http://dx.doi.org/10.1080/2314808X.2019.1681660]
[24]
Yupparach, P.; Konsue, A. Hypoglycemic and hypolipidemic activities of ethanolic extract from Mimosa pudica L. in normal and streptozotocin-induced diabetic rats. Pharmacogn. J., 2017, 9(6)
[http://dx.doi.org/10.5530/pj.2017.6.130]
[25]
Tasnuva, S.T. Qamar, U.A.; Ghafoor, K.; Sahena, F.; Jahurul, M.H.A.; Rukshana, A.H.; Juliana, M.J.; Al-Juhaimi, F.Y.; Jalifah, L.; Jalal, K.C.A.; Ali, M.E.; Zaidul, I.S.M. α-glucosidase inhibitors isolated from Mimosa pudica L. Nat. Prod. Res., 2019, 33(10), 1495-1499.
[http://dx.doi.org/10.1080/14786419.2017.1419224] [PMID: 29281898]
[26]
Bialy, L.; Waldmann, H. Inhibitors of protein tyrosine phosphatases: Next-generation drugs? Angew. Chem. Int. Ed., 2005, 44(25), 3814-3839.
[http://dx.doi.org/10.1002/anie.200461517] [PMID: 15900534]
[27]
Johnson, T.O.; Ermolieff, J.; Jirousek, M.R. Protein tyrosine phosphatase 1B inhibitors for diabetes. Nat. Rev. Drug Discov., 2002, 1(9), 696-709.
[http://dx.doi.org/10.1038/nrd895] [PMID: 12209150]
[28]
Adefegha, S.A.; Oboh, G.; Ejakpovi, I.I.; Oyeleye, S.I. Antioxidant and antidiabetic effects of gallic and protocatechuic acids: A structure–function perspective. Comp. Clin. Pathol., 2015, 24(6), 1579-1585.
[http://dx.doi.org/10.1007/s00580-015-2119-7]
[29]
Ablat, A.; Halabi, M.F.; Mohamad, J.; Hasnan, M.H.H.; Hazni, H.; Teh, S.H.; Shilpi, J.A.; Mohamed, Z.; Awang, K. Antidiabetic effects of Brucea javanica seeds in type 2 diabetic rats. BMC Complement. Altern. Med., 2017, 17(1), 94.
[http://dx.doi.org/10.1186/s12906-017-1610-x] [PMID: 28166749]
[30]
Nguyen, M.T.T.; Nguyen, N.T.; Nguyen, H.X.; Huynh, T.N.N.; Min, B-S. Screening of lpha-glucosidase inhibitory activity of Vietnamese medicinal plants: Isolation of active principles from Oroxylum indicum. Nat. Prod. Sci., 2012, 18(1), 47-51.
[31]
Lee, Y.S.; Kang, I.-J.; Won, M.H.; Lee, J.-Y.; Kim, J.K.; Lim, S.S. Inhibition of protein tyrosine phosphatase 1β by hispidin derivatives isolated from the fruiting body of Phellinus linteus. Nat. Prod. Commun. 2010, 5(12) 1934578X1000501218
[32]
Ormazabal, P.; Scazzocchio, B.; Varì, R.; Santangelo, C.; D’Archivio, M.; Silecchia, G.; Iacovelli, A.; Giovannini, C.; Masella, R. Effect of protocatechuic acid on insulin responsiveness and inflammation in visceral adipose tissue from obese individuals: Possible role for PTP1B. Int. J. Obes., 2018, 42(12), 2012-2021.
[http://dx.doi.org/10.1038/s41366-018-0075-4] [PMID: 29769704]
[33]
Kumar, S. Narwal, S.; Kumar, V.; Prakash, O. α-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacogn. Rev., 2011, 5(9), 19-29.
[http://dx.doi.org/10.4103/0973-7847.79096] [PMID: 22096315]
[34]
Derosa, G. Maffioli, P. α-Glucosidase inhibitors and their use in clinical practice. Arch. Med. Sci., 2012, 8(5), 899-906.
[http://dx.doi.org/10.5114/aoms.2012.31621] [PMID: 23185202]
[35]
Rasouli, H.; Hosseini-Ghazvini, S.M-B.; Adibi, H.; Khodarahmi, R. Differential α-amylase/α-glucosidase inhibitory activities of plant-derived phenolic compounds: A virtual screening perspective for the treatment of obesity and diabetes. Food Funct., 2017, 8(5), 1942-1954.
[http://dx.doi.org/10.1039/C7FO00220C] [PMID: 28470323]
[36]
Costa, T.M.; Mayer, D.A.; Siebert, D.A.; Micke, G.A.; Alberton, M.D.; Tavares, L.B.B.; de Oliveira, D. Kinetics analysis of the inhibitory effects of alpha-glucosidase and identification of compounds from Ganoderma lipsiense Mycelium. Appl. Biochem. Biotechnol., 2020, 191(3), 996-1009.
[http://dx.doi.org/10.1007/s12010-020-03239-4] [PMID: 31950449]
[37]
Ali Asgar, M. Anti-diabetic potential of phenolic compounds: A review. Int. J. Food Prop., 2013, 16(1), 91-103.
[http://dx.doi.org/10.1080/10942912.2011.595864]
[38]
Oboh, G.; Isaac, A.T.; Akinyemi, A.J.; Ajani, R.A. Inhibition of key enzymes linked to type 2 diabetes and sodium nitroprusside induced lipid peroxidation in rats’ pancreas by phenolic extracts of avocado pear leaves and fruit. Int. J. Biomed. Sci., 2014, 10(3), 208-216.
[PMID: 25324703]
[39]
Kwon, Y-I.I.; Vattem, D.A.; Shetty, K. Evaluation of clonal herbs of Lamiaceae species for management of diabetes and hypertension. Asia Pac. J. Clin. Nutr., 2006, 15(1), 107-118.
[PMID: 16500886]
[40]
Choi, J-H.; Kim, S. Mechanisms of attenuation of clot formation and acute thromboembolism by syringic acid in mice. J. Funct. Foods, 2018, 43, 112-122.
[http://dx.doi.org/10.1016/j.jff.2018.02.004]
[41]
Woo, M.H.; Nguyen, D.H.; Choi, J.S.; Park, S.E.; Thuong, P.T.; Min, B.S.; Le, D.D. Chemical constituents from the roots of Kadsura coccinea with their protein tyrosine phosphatase 1B and acetylcholinesterase inhibitory activities. Arch. Pharm. Res., 2020, 43(2), 204-213.
[http://dx.doi.org/10.1007/s12272-020-01211-8] [PMID: 31965513]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy