Generic placeholder image

Current Nanomedicine

Editor-in-Chief

ISSN (Print): 2468-1873
ISSN (Online): 2468-1881

Research Article

Ultrasmall Superparamagnetic Iron Oxide Nanoparticles Synthesized by Micellar Approach as a Potential Dual-Mode T1-T2 Contrast Agent

Author(s): Watson Beck, Laudemir C. Varanda*, Simone J.S. Lopes, Daniel A. Moraes, Natalia M. Santos and Maria Eduarda S. D. Lino

Volume 12, Issue 1, 2022

Published on: 14 June, 2022

Page: [63 - 75] Pages: 13

DOI: 10.2174/2468187312666220509213555

open access plus

conference banner
Abstract

Objective: A micellar approach is used to synthesize Ultrasmall Superparamagnetic Iron Oxide Nanoparticles (USPIONs) with an average diameter of 3.4±0.5 nm, suitable for dual-mode T1-T2 contrast agents.

Methods: Micelles with 3.8 nm, measured by dynamic light scattering, were obtained by selforganizing the surfactant iron(III) dodecyl sulfate (IDS) in 1-octanol. IDS was prepared by replacing Na+ cation in sodium dodecyl sulfate molecule, and its critical micelle concentration (CMC) was measured by electrical conductivity. The USPIONs were synthesized in a biphasic system: IDS in octanol (55% above the CMC) and water containing NaBH4.

Results: A yellow precipitate is immediately formed at the water/alcohol interface, rapidly changes to a black one, and transfers to the aqueous phase. The magnetite phase was confirmed by X-ray diffraction and Mössbauer spectroscopy. The magnetic behavior shows a major paramagnetic character with a weak ferromagnetic component at 5 K, the latter attributed to the interparticle couplings below its blocking temperature (TB = 35 K). The particles were coated with carboxymethyl dextran, showing an isoelectric point of 2.7 with electrokinetic potential around -30 mV in the physiological pH range. Magnetic relaxation measurements showed relaxivity values r1 = 0.17 mM-1 s-1 and r2 = 1.73 mM-1 s-1 (r2/r1 = 10) in a 3T field. These values infer that the ultrasmall size affects the interactions with the protons of the nearby water molecules. The r2 value decreases because the core magnetization decreases with size; r1 intensifies due to the high surface.

Conclusion: The results show a system with high colloidal stability, non-cytotoxic, and potential application as T1-T2 dual-mode contrast agents.

Keywords: Micellar system, iron(III) dodecyl sulfate, cation-substituted surfactant, USPIONs, biocompatibility, colloidal stability, dual-mode contrast agents.

Graphical Abstract

[1]
Spanos A, Athanasiou K, Ioannou A, Fotopoulos V, Krasia-Christoforou T. Functionalized magnetic nanomaterials in agricultural applications. Nanomaterials (Basel) 2021; 11(11): 3106.
[http://dx.doi.org/10.3390/nano11113106] [PMID: 34835870]
[2]
Kemp JA, Kwon YJ. Cancer nanotechnology: Current status and perspectives. Nano Converg 2021; 8(1): 34.
[http://dx.doi.org/10.1186/s40580-021-00282-7] [PMID: 34727233]
[3]
Aslam H, Shukrullah S, Naz MY, Fatima H, Ullah S, Al-Sehemi AG. Multifunctional magnetic nanomedicine drug delivery and imaging-based diagnostic systems. Part Part Syst Charact 2021; 2100179(12): 2100179.
[http://dx.doi.org/10.1002/ppsc.202100179]
[4]
Li J, Xin M, Ma Z, Shi Y, Pan L. Nanomaterials and their applications on bio-inspired wearable electronics. Nanotechnology 2021; 32(47): 472002.
[http://dx.doi.org/10.1088/1361-6528/abe6c7] [PMID: 33592596]
[5]
Kolahalam LA, Kasi Viswanath IV, Diwakar BS, Govindh B, Reddy V, Murthy YLN. Review on nanomaterials: Synthesis and applications. Mater Today Proc 2019; 18: 2182-90.
[http://dx.doi.org/10.1016/j.matpr.2019.07.371]
[6]
Varanda LC, Souza CGS, Moraes DA, et al. Size and shape-controlled nanomaterials based on modified polyol and thermal decomposition approaches. A brief review. An Acad Bras Cienc 2019; 91(4): e20181180.
[http://dx.doi.org/10.1590/0001-3765201920181180]
[7]
Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 2008; 108(6): 2064-110.
[http://dx.doi.org/10.1021/cr068445e] [PMID: 18543879]
[8]
Roca AG, Costo R, Rebolledo AF, et al. Progress in the preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 2009; 42(22): 224002.
[http://dx.doi.org/10.1088/0022-3727/42/22/224002]
[9]
Noqta OA, Aziz AA, Usman IA, Bououdina M. Recent Advances in Iron Oxide Nanoparticles (IONPs): Synthesis and surface modification for biomedical applications. J Supercond Nov Magn 2019; 32(4): 779-95.
[http://dx.doi.org/10.1007/s10948-018-4939-6]
[10]
Minaei SE, Khoei S, Khoee S, Vafashoar F, Mahabadi VP. In vitro anti-cancer efficacy of multi-functionalized magnetite nanoparticles combining alternating magnetic hyperthermia in glioblastoma cancer cells. Mater Sci Eng C 2019; 101: 575-87.
[http://dx.doi.org/10.1016/j.msec.2019.04.007] [PMID: 31029351]
[11]
Castellanos-Rubio I, Rodrigo I, Olazagoitia-Garmendia A, et al. Highly reproducible hyperthermia response in water, agar, and cellular environment by discretely pegylated magnetite nanoparticles. ACS Appl Mater Interfaces 2020; 12(25): 27917-29.
[http://dx.doi.org/10.1021/acsami.0c03222] [PMID: 32464047]
[12]
Oltolina F, Peigneux A, Colangelo D, et al. Biomimetic magnetite nanoparticles as targeted drug nanocarriers and mediators of hyperthermia in an experimental cancer model. Cancers (Basel) 2020; 12(9): E2564.
[http://dx.doi.org/10.3390/cancers12092564] [PMID: 32916816]
[13]
Perecin CJ, Tirich BM, Nagamine LCCM, et al. Aqueous synthesis of magnetite nanoparticles for magnetic hyperthermia: Formation mechanism approach, high water-dispersity and stability. Colloids Surf A Physicochem Eng Asp 2021; 627: 127169.
[http://dx.doi.org/10.1016/j.colsurfa.2021.127169]
[14]
Berry CC. Progress in functionalization of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 2009; 42(22): 224003.
[http://dx.doi.org/10.1088/0022-3727/42/22/224003]
[15]
Gonçalves AI, Miranda MS, Rodrigues MT, Reis RL, Gomes ME. Magnetic responsive cell-based strategies for diagnostics and therapeutics. Biomed Mater 2018; 13(5): 054001.
[http://dx.doi.org/10.1088/1748-605X/aac78b] [PMID: 29794324]
[16]
Kheirkhah P, Denyer S, Bhimani AD, et al. Magnetic drug targeting: A novel treatment for intramedullary spinal cord tumors. Sci Rep 2018; 8(1): 11417.
[http://dx.doi.org/10.1038/s41598-018-29736-5] [PMID: 30061692]
[17]
Hachani R, Birchall MA, Lowdell MW, et al. Assessing cell-nanoparticle interactions by high content imaging of biocompatible iron oxide nanoparticles as potential contrast agents for magnetic resonance imaging. Sci Rep 2017; 7(1): 7850.
[http://dx.doi.org/10.1038/s41598-017-08092-w] [PMID: 28798327]
[18]
Nosrati H, Salehiabar M, Fridoni M, et al. New insight about biocompatibility and biodegradability of iron oxide magnetic nanoparticles: Stereological and in vivo MRI monitor. Sci Rep 2019; 9(1): 7173.
[http://dx.doi.org/10.1038/s41598-019-43650-4] [PMID: 31073222]
[19]
Lin G, Mu Q, Revia R, Stephen Z, Jeon M, Zhang M. A highly selective iron oxide-based imaging nanoparticle for long-term monitoring of drug-induced tumor cell apoptosis. Biomater Sci 2021; 9(2): 471-81.
[http://dx.doi.org/10.1039/D0BM00518E] [PMID: 32662460]
[20]
Branca M, Marciello M, Ciuculescu-Pradines D, et al. Towards MRI T2 contrast agents of increased efficiency. J Magn Magn Mater 2015; 377: 348-53.
[http://dx.doi.org/10.1016/j.jmmm.2014.10.086]
[21]
El-Gendy HA, Harstad SM, Vijayaragavan V, et al. Ferromagnetic Gd5Si4 nanoparticles as T2 contrast agents for magnetic resonance imaging. IEEE Magn Lett 2017; 8: 1-4.
[http://dx.doi.org/10.1109/LMAG.2017.2728503]
[22]
Ramalho J, Semelka RC, Ramalho M, Nunes RH, AlObaidy M, Castillo M. Gadolinium-based contrast agent accumulation and toxicity: An update. AJNR Am J Neuroradiol 2016; 37(7): 1192-8.
[http://dx.doi.org/10.3174/ajnr.A4615] [PMID: 26659341]
[23]
Neves HR, Bini RA, Barbosa J H O, Salmon C E G, Varanda LC. Dextran-coated antiferromagnetic mno nanoparticles for a T-1-MRI contrast agent with high colloidal stability. Part Part Syst Char 2016; 33(3): 167-76.
[http://dx.doi.org/10.1002/ppsc.201500251]
[24]
Wang G, Gao W, Zhang X, Mei X. Au nanocage functionalized with ultra-small Fe3O4 nanoparticles for targeting T1-T2Dual MRI and CT imaging of tumor. Sci Rep 2016; 6(1): 28258.
[http://dx.doi.org/10.1038/srep28258] [PMID: 27312564]
[25]
Arami H, Khandhar AP, Tomitaka A, et al. In vivo multimodal magnetic particle imaging (MPI) with tailored magneto/optical contrast agents. Biomaterials 2015; 52: 251-61.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.040] [PMID: 25818431]
[26]
Alipour A, Soran-Erdem Z, Utkur M, et al. A new class of cubic SPIONs as a dual-mode T1 and T2 contrast agent for MRI. Magn Reson Imaging 2018; 49: 16-24.
[http://dx.doi.org/10.1016/j.mri.2017.09.013] [PMID: 28958878]
[27]
Chen C, Ge J X, Gao Y, et al. Ultrasmall superparamagnetic iron oxide nanoparticles: A next generation contrast agent for magnetic resonance imaging. WIREs Nanomed Nanobiotechnol 2021; e1740.
[http://dx.doi.org/10.1002/wnan.1740]
[28]
Kim BH, Lee N, Kim H, et al. Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. J Am Chem Soc 2011; 133(32): 12624-31.
[http://dx.doi.org/10.1021/ja203340u] [PMID: 21744804]
[29]
Liu D, Li J, Wang C, et al. Ultrasmall Fe@Fe3O4 nanoparticles as T1-T2 dual-mode MRI contrast agents for targeted tumor imaging. Nanomedicine 2021; 32: 102335.
[http://dx.doi.org/10.1016/j.nano.2020.102335] [PMID: 33220508]
[30]
Lee N, Yoo D, Ling D, Cho MH, Hyeon T, Cheon J. Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem Rev 2015; 115(19): 10637-89.
[http://dx.doi.org/10.1021/acs.chemrev.5b00112] [PMID: 26250431]
[31]
Johnson J Jr, Pajarillo E, Karki P, et al. Valproic acid attenuates manganese-induced reduction in expression of GLT-1 and GLAST with concomitant changes in murine dopaminergic neurotoxicity. Neurotoxicology 2018; 67: 112-20.
[http://dx.doi.org/10.1016/j.neuro.2018.05.001] [PMID: 29778792]
[32]
Pajarillo E, Johnson J Jr, Kim J, et al. 17β-estradiol and tamoxifen protect mice from manganese-induced dopaminergic neurotoxicity. Neurotoxicology 2018; 65: 280-8.
[http://dx.doi.org/10.1016/j.neuro.2017.11.008] [PMID: 29183790]
[33]
Fernandez-Barahona I, Munoz-Hernando M, Ruiz-Cabello J, Herranz F, Pellico J. Iron oxide nanoparticles: An alternative for positive contrast in magnetic resonance imaging. Inorganics (Basel) 2020; 8(4): 28.
[http://dx.doi.org/10.3390/inorganics8040028]
[34]
Bai C, Hu PC, Liu NL, et al. Synthesis of ultrasmall Fe3O4 nanoparticles as T-1-T-2 dual-modal magnetic resonance imaging contrast agents in rabbit hepatic tumors. ACS Appl Nano Mater 2020; 3(4): 3585-95.
[http://dx.doi.org/10.1021/acsanm.0c00306]
[35]
Wei H, Bruns OT, Kaul MG, et al. Exceedingly small iron oxide nanoparticles as positive MRI contrast agents. Proc Natl Acad Sci USA 2017; 114(9): 2325-30.
[http://dx.doi.org/10.1073/pnas.1620145114] [PMID: 28193901]
[36]
Bai C, Jia ZY, Song LN, et al. Time-dependent T-1-T-2 switchable magnetic resonance imaging realized by c(RGDyK) modified ultrasmall Fe3O4 nanoprobes. Adv Funct Mater 2018; 28(32): 1802281.
[http://dx.doi.org/10.1002/adfm.201802281]
[37]
Ni D, Bu W, Ehlerding EB, Cai W, Shi J. Engineering of inorganic nanoparticles as magnetic resonance imaging contrast agents. Chem Soc Rev 2017; 46(23): 7438-68.
[http://dx.doi.org/10.1039/C7CS00316A] [PMID: 29071327]
[38]
Jeon M, Halbert MV, Stephen ZR, Zhang M. Iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging: Fundamentals, challenges, applications, and prospectives. Adv Mater 2021; 33(23): e1906539.
[http://dx.doi.org/10.1002/adma.201906539] [PMID: 32495404]
[39]
Shin TH, Choi Y, Kim S, Cheon J. Recent advances in magnetic nanoparticle-based multi-modal imaging. Chem Soc Rev 2015; 44(14): 4501-16.
[http://dx.doi.org/10.1039/C4CS00345D] [PMID: 25652670]
[40]
Zhou Z, Yang L, Gao J, Chen X. Structure-relaxivity relationships of magnetic nanoparticles for magnetic resonance imaging. Adv Mater 2019; 31(8): e1804567.
[http://dx.doi.org/10.1002/adma.201804567] [PMID: 30600553]
[41]
Varanda LC. Souza CGSd, Perecin CJ, et al Inorganic and organic-inorganic composite nanoparticles with potential biomedical applications: Synthesis challenges for enhanced performanceMaterials for Biomedical Engineering. Amsterdam: Elsevier 2019; pp. 47-99.
[http://dx.doi.org/10.1016/B978-0-12-818431-8.00004-0]
[42]
Marciello M, Connord V, Veintemillas-Verdaguer S, et al. Large scale production of biocompatible magnetite nanocrystals with high saturation magnetization values through green aqueous synthesis. J Mater Chem B Mater Biol Med 2013; 1(43): 5995-6004.
[http://dx.doi.org/10.1039/c3tb20949k] [PMID: 32261067]
[43]
Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006; 27(15): 2907-15.
[http://dx.doi.org/10.1016/j.biomaterials.2006.01.017] [PMID: 16448693]
[44]
Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65(1-2): 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[45]
Mukerjee P, Mysels K, Kapauan P. Counterion specificity in the formation of ionic micelles - size. J Phys Chem 1967; 71(13): 4166-75.
[http://dx.doi.org/10.1021/j100872a702]
[46]
Sanchez-Fernandez A, Hammond O S, Edler K J, et al. Counterion binding alters surfactant self-assembly in deep eutectic solvents. 2018; 20(20): 13952-61.
[http://dx.doi.org/10.1039/C8CP01008K]
[47]
Fioretto D, Freda M, Onori G, Santucci A. Effect of counterion substitution on AOT-based micellar systems: dielectric study of Cu(AOT)2 reverse micelles in CCl4. 1999; 103(39): 8216-20.
[http://dx.doi.org/10.1021/jp9918048]
[48]
Cushing BL, Kolesnichenko VL, O’Connor CJ. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 2004; 104(9): 3893-946.
[http://dx.doi.org/10.1021/cr030027b] [PMID: 15352782]
[49]
Veisi H, Maleki B, Eshbala FH, et al. In situ generation of Iron(III) dodecyl sulfate as Lewis acid-surfactant catalyst for synthesis of bis-indolyl, tris-indolyl, Di(bis-indolyl), Tri(bis-indolyl), tetra(bis-indolyl)methanes and 3-alkylated indole compounds in water. RSC Advances 2014; 4(58): 30683-8.
[http://dx.doi.org/10.1039/C4RA03194F]
[50]
Mahmoodi NO, Jalalifard Z, Fathanbari GP. Green synthesis of bis-coumarin derivatives using Fe(SD)3 as a catalyst and investigation of their biological activities. J Chin Chem Soc (Taipei) 2020; 67(1): 172-82.
[http://dx.doi.org/10.1002/jccs.201800444]
[51]
Nakamoto K. Infrared and raman spectra of inorganic and coordination compounds, part a: theory and applications in inorganic chemistry. Wiley 2009.
[52]
Pereira RFP, Valente AJM, Burrows HD, de Zea Bermudez V, Carvalho RA, Castro RAE. Structural characterization of solid trivalent metal dodecyl sulfates: From aqueous solution to lamellar superstructures. RSC Adv 2013; 3(5): 1420-33.
[http://dx.doi.org/10.1039/C2RA21906A]
[53]
Machida M, Kawamura K, Kawano T, Zhang D, Ikeue K. Layered Pr-dodecyl sulfate mesophases as precursors of Pr2O2SO4 having a large oxygen-storage capacity. J Mater Chem 2006; 16(30): 3084-90.
[http://dx.doi.org/10.1039/b605518d]
[54]
Bai B, Hankins NP, Hey MJ, Kingman SW. In situ mechanistic study of SDS adsorption on hematite for optimized froth flotation. Ind Eng Chem Res 2004; 43(17): 5326-38.
[http://dx.doi.org/10.1021/ie034307t]
[55]
Hadjiivanov KI. Identification of neutral and charged Nx Oy surface species by IR spectroscopy. Catal Rev, Sci Eng 2000; 42(1-2): 71-144.
[http://dx.doi.org/10.1081/CR-100100260]
[56]
Mihaylov MY, Ivanova EZ, Vayssilov GN, Hadjiivanov KI. Revisiting ceria-NOx interaction: FTIR studies. 2020; 357: 613-20.
[http://dx.doi.org/10.1016/j.cattod.2019.05.014]
[57]
Darbandi M, Stromberg F, Landers J, et al. Nanoscale size effect on surface spin canting in iron oxide nanoparticles synthesized by the microemulsion method. J Phys D Appl Phys 2012; 45(19): 195001.
[http://dx.doi.org/10.1088/0022-3727/45/19/195001]
[58]
Wongwailikhit K, Horwongsakul S. The preparation of iron (III) oxide nanoparticles using W/O microemulsion. Mater Lett 2011; 65(17-18): 2820-2.
[http://dx.doi.org/10.1016/j.matlet.2011.05.063]
[59]
Pileni MP. Nanosized particles made in colloidal assemblies. Langmuir 1997; 13(13): 3266-76.
[http://dx.doi.org/10.1021/la960319q]
[60]
Cornell RM, Schwertmann U. The Iron oxides: structure, properties, reactions, occurrences and uses. 2nd ed. Weinheim: Wiley-VCH 2006.
[61]
Daou TJ, Pourroy G, Begin-Colin S, et al. Hydrothermal synthesis of monodisperse magnetite nanoparticles. Chem Mater 2006; 18(18): 4399-404.
[http://dx.doi.org/10.1021/cm060805r]
[62]
Rasouli E, Basirun WJ, Rezayi M, et al. Ultrasmall superparamagnetic Fe3O4 nanoparticles: Honey-based green and facile synthesis and in vitro viability assay. Int J Nanomedicine 2018; 13: 6903-11.
[http://dx.doi.org/10.2147/IJN.S158083] [PMID: 30498350]
[63]
Goya GF, Berquo TS, Fonseca FC, Morales MP. Static and dynamic magnetic properties of spherical magnetite nanoparticles. J Appl Phys 2003; 94(5): 3520-8.
[http://dx.doi.org/10.1063/1.1599959]
[64]
Cullity BD, Graham CD. Introduction to magnetic materials. 2nd ed. New Jersey, USA: IEEE Press 2008; p. 832.
[http://dx.doi.org/10.1002/9780470386323]
[65]
Kim BH, Hackett MJ, Park J, Hyeon T. Synthesis, characterization, and application of ultrasmall nanoparticles. Chem Mater 2014; 26(1): 59-71.
[http://dx.doi.org/10.1021/cm402225z]
[66]
Glisic S, Nikolic G, Cakic M, Trutic N. Spectroscopic study of copper(II) complexes with carboxymethyl dextran and dextran sulfate. Russ J Phys Chem A Focus Chem 2015; 89(7): 1254-62.
[http://dx.doi.org/10.1134/S0036024415070122]
[67]
Herrera AP, Barrera C, Rinaldi C. Synthesis and functionalization of magnetite nanoparticles with aminopropylsilane and carboxymethyldextran. J Mater Chem 2008; 18(31): 3650-4.
[http://dx.doi.org/10.1039/b805256e]
[68]
Hajesmaeelzadeh F, Shanehsazzadeh S, Grüttner C, Daha FJ, Oghabian MA. Effect of coating thickness of iron oxide nanoparticles on their relaxivity in the MRI. Iran J Basic Med Sci 2016; 19(2): 166-71.
[PMID: 27081461]
[69]
Schladt TD, Koll K, Prufer S, et al. Multifunctional superparamagnetic MnO@SiO2 core/shell nanoparticles and their application for optical and magnetic resonance imaging. J Mater Chem 2012; 22(18): 9253-62.
[http://dx.doi.org/10.1039/c2jm15320c]
[70]
Tegafaw T, Xu W, Ahmad MW, et al. Dual-mode T1 and T2 magnetic resonance imaging contrast agent based on ultrasmall mixed gadolinium-dysprosium oxide nanoparticles: Synthesis, characterization, and in vivo application. Nanotechnology 2015; 26(36): 365102.
[http://dx.doi.org/10.1088/0957-4484/26/36/365102] [PMID: 26291827]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy