Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Predicting Glioma Cell Differentiation-inducing Drugs Using a Drug Repositioning Strategy

Author(s): Zhao-Qi Tang and Yan-Rong Ye*

Volume 26, Issue 2, 2023

Published on: 06 July, 2022

Page: [339 - 346] Pages: 8

DOI: 10.2174/1386207325666220509194428

Price: $65

conference banner
Abstract

Background: Currently, there are no effective differentiation-inducing agents for gliomas. Drug repositioning is a time-saving, low-risk, and low-cost drug development strategy. In this study, drugs that could induce the differentiation of glioma cells were searched by using a drug repositioning strategy.

Methods: Data mining was used to screen for differentially expressed genes (DEGs). The STRING 11.0 database was used for enrichment analysis. The Connectivity Map database was used for drug screening. The ChEMBL and STITCH databases were used to search for drug targets. The SwissDock database was used for molecular docking.

Results: A total of 45 DEGs were identified. The biological processes in which the DEGs were enriched mainly involved nervous system development and the regulation of biological processes. The enriched molecular functions mainly involved transcription-related molecular binding. The enriched cellular components mainly involved membrane-bound organelles and cellular protrusions. The enriched local network clusters mainly involved autophagy, the retinoic acid signalling pathway, and DNA methylation. The drug screening results showed that the drug with the highest score was acenocoumarol. A total of 12 acenocoumarol targets were obtained, among which histone deacetylase 1 (HDAC1) was the target with the highest degree value; the lowest ΔG value for acenocoumarol docked with HDAC1 was -7.52 kcal/mol, which was between those of the HDAC1 inhibitors romidepsin and vorinostat.

Conclusion: Acenocoumarol may be a potential differentiation-inducing agent for glioma cells.

Keywords: Glioma, differentiation induction, drug repositioning, acenocoumarol, HDAC1, DNA methylation, retinoic acid signalling pathway.

Graphical Abstract

[1]
Lapointe, S.; Perry, A.; Butowski, N.A. Primary brain tumours in adults. Lancet, 2018, 392(10145), 432-446.http://dx.doi.org/10.1016/S0140-6736(18)30990-5
[PMID: 30060998]
[2]
Tamimi, A.F.; Juweid, M. Epidemiology and Outcome of Glioblastoma. GLIOBLASTOMA; De Vleeschouwer, S., Ed.; Codon: Brisbane, 2017, pp. 143-153.
[http://dx.doi.org/10.15586/codon.glioblastoma.2017.ch8]
[3]
Bush, N.A.; Chang, S.M.; Berger, M.S. Current and future strategies for treatment of glioma. Neurosurg. Rev., 2017, 40(1), 1-14.
[http://dx.doi.org/10.1007/s10143-016-0709-8] [PMID: 27085859]
[4]
Grek, C.L.; Sheng, Z.; Naus, C.C.; Sin, W.C.; Gourdie, R.G.; Ghatnekar, G.G. Novel approach to temozolomide resistance in malignant glioma: Connexin43-directed therapeutics. Curr. Opin. Pharmacol., 2018, 41, 79-88.
[http://dx.doi.org/10.1016/j.coph.2018.05.002] [PMID: 29803991]
[5]
Costantini, L.; Molinari, R.; Farinon, B.; Merendino, N. Retinoic acids in the treatment of most lethal solid cancers. J. Clin. Med., 2020, 9(2), 360.
[http://dx.doi.org/10.3390/jcm9020360] [PMID: 32012980]
[6]
Schmoch, T.; Gal, Z.; Mock, A.; Mossemann, J.; Lahrmann, B.; Grabe, N.; Schmezer, P.; Lasitschka, F.; Beckhove, P.; Unterberg, A.; Herold-Mende, C. Combined treatment of ATRA with epigenetic drugs increases aggressiveness of glioma xenografts. Anticancer Res., 2016, 36(4), 1489-1496.
[PMID: 27069124]
[7]
Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmohamed, M. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov., 2019, 18(1), 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[8]
Xue, H.; Li, J.; Xie, H.; Wang, Y. Review of drug repositioning approaches and resources. Int. J. Biol. Sci., 2018, 14(10), 1232-1244.
[http://dx.doi.org/10.7150/ijbs.24612] [PMID: 30123072]
[9]
Fu, J.Q.; Chen, Z.; Hu, Y.J.; Fan, Z.H.; Guo, Z.X.; Liang, J.Y.; Ryu, B.M.; Ren, J.L.; Shi, X.J.; Li, J.; Jia, S.; Wang, J.; Ke, X.S.; Ma, X.; Tan, X.; Zhang, T.; Chen, X.Z.; Zhang, C. A single factor induces neuronal differentiation to suppress glioma cell growth. CNS Neurosci. Ther., 2019, 25(4), 486-495.
[http://dx.doi.org/10.1111/cns.13066] [PMID: 30264483]
[10]
Liao, C.H.; Lai, I.C.; Kuo, H.C.; Chuang, S.E.; Lee, H.L.; Whang-Peng, J.; Yao, C.J.; Lai, G.M. Epigenetic modification and differentiation induction of malignant glioma cells by oligo-fucoidan. Mar. Drugs, 2019, 17(9), 525.
[http://dx.doi.org/10.3390/md17090525] [PMID: 31500384]
[11]
Wang, Y.; Huang, N.; Li, H.; Liu, S.; Chen, X.; Yu, S.; Wu, N.; Bian, X.W.; Shen, H.Y.; Li, C.; Xiao, L. Promoting oligodendroglial-oriented differentiation of glioma stem cell: A repurposing of quetiapine for the treatment of malignant glioma. Oncotarget, 2017, 8(23), 37511-37524.
[http://dx.doi.org/10.18632/oncotarget.16400] [PMID: 28415586]
[12]
Sun, X.; Zhang, J.; Zhao, Q.; Chen, X.; Zhu, W.; Yan, G.; Zhou, T. Stochastic modeling suggests that noise reduces differentiation efficiency by inducing a heterogeneous drug response in glioma differentiation therapy. BMC Syst. Biol., 2016, 10(1), 73.
[http://dx.doi.org/10.1186/s12918-016-0316-x] [PMID: 27515956]
[13]
Liu, M.Y.; Xie, F.; Zhang, Y.; Wang, T.T.; Ma, S.N.; Zhao, P.X.; Zhang, X.; Lebaron, T.W.; Yan, X.L.; Ma, X.M. Molecular hydrogen suppresses glioblastoma growth via inducing the glioma stem-like cell differentiation. Stem Cell Res. Ther., 2019, 10(1), 145.
[http://dx.doi.org/10.1186/s13287-019-1241-x] [PMID: 31113492]
[14]
Hu, J.; Shi, B.; Liu, X.; Jiang, M.; Yuan, C.; Jiang, B.; Song, Y.; Zeng, Y.; Wang, G. The activation of Toll-like receptor 4 reverses tumor differentiation in human glioma U251 cells via Notch pathway. Int. Immunopharmacol., 2018, 64, 33-41.
[http://dx.doi.org/10.1016/j.intimp.2018.08.019] [PMID: 30145468]
[15]
Liang, H.; Wang, Q.; Wang, D.; Zheng, H.; Kalvakolanu, D.V.; Lu, H.; Wen, N.; Chen, X.; Xu, L.; Ren, J.; Guo, B.; Zhang, L. RGFP966, a histone deacetylase 3 inhibitor, promotes glioma stem cell differentiation by blocking TGF-β signaling via SMAD7. Biochem. Pharmacol., 2020, 180114118
[http://dx.doi.org/10.1016/j.bcp.2020.114118] [PMID: 32585142]
[16]
Lin, Y.; Sun, H.; Dang, Y.; Li, Z. Isoliquiritigenin inhibits the proliferation and induces the differentiation of human glioma stem cells. Oncol. Rep., 2018, 39(2), 687-694.
[PMID: 29251326]
[17]
Zhou, N.; Yao, Y.; Ye, H.; Zhu, W.; Chen, L.; Mao, Y. Abscisic-acid-induced cellular apoptosis and differentiation in glioma via the retinoid acid signaling pathway. Int. J. Cancer, 2016, 138(8), 1947-1958.
[http://dx.doi.org/10.1002/ijc.29935] [PMID: 26594836]
[18]
Chen, K.S.; Bridges, C.R.; Lynton, Z.; Lim, J.W.C.; Stringer, B.W.; Rajagopal, R.; Wong, K.T.; Ganesan, D.; Ariffin, H.; Day, B.W.; Richards, L.J.; Bunt, J. Transcription factors NFIA and NFIB induce cellular differentiation in high-grade astrocytoma. J. Neurooncol., 2020, 146(1), 41-53.
[http://dx.doi.org/10.1007/s11060-019-03352-3] [PMID: 31760595]
[19]
Ciechomska, I.A.; Przanowski, P.; Jackl, J.; Wojtas, B.; Kaminska, B. BIX01294, an inhibitor of histone methyltransferase, induces autophagy-dependent differentiation of glioma stem-like cells. Sci. Rep., 2016, 6, 38723.
[http://dx.doi.org/10.1038/srep38723] [PMID: 27934912]
[20]
Sareddy, G.R.; Viswanadhapalli, S.; Surapaneni, P.; Suzuki, T.; Brenner, A.; Vadlamudi, R.K. Novel KDM1A inhibitors induce differentiation and apoptosis of glioma stem cells via unfolded protein response pathway. Oncogene, 2017, 36(17), 2423-2434.
[http://dx.doi.org/10.1038/onc.2016.395] [PMID: 27893719]
[21]
Sati, I.S.E.E.; Parhar, I. MicroRNAs regulate cell cycle and cell death pathways in glioblastoma. Int. J. Mol. Sci., 2021, 22(24), 13550.
[http://dx.doi.org/10.3390/ijms222413550] [PMID: 34948346]
[22]
Ghyselinck, N.B.; Duester, G. Retinoic acid signaling pathways. Development, 2019, 146(13)dev167502
[http://dx.doi.org/10.1242/dev.167502] [PMID: 31273085]
[23]
Suelves, M.; Carrió, E.; Núñez-Álvarez, Y.; Peinado, M.A. DNA methylation dynamics in cellular commitment and differentiation. Brief. Funct. Genomics, 2016, 15(6), 443-453.
[http://dx.doi.org/10.1093/bfgp/elw017] [PMID: 27416614]
[24]
Klutstein, M.; Nejman, D.; Greenfield, R.; Cedar, H. DNA methylation in cancer and aging. Cancer Res., 2016, 76(12), 3446-3450.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-3278] [PMID: 27256564]
[25]
Chen, Z.; Zhuo, S.; He, G.; Tang, J.; Hao, W.; Gao, W.Q.; Yang, K.; Xu, H. Prognosis and immunotherapy significances of a cancer-associated fibroblasts-related gene signature in gliomas. Front. Cell Dev. Biol., 2021, 9721897
[http://dx.doi.org/10.3389/fcell.2021.721897] [PMID: 34778248]
[26]
Trailokya, A.; Hiremath, J.S.; Sawhney, J.; Mishra, Y.K.; Kanhere, V.; Srinivasa, R.; Tiwaskar, M. Acenocoumarol: A review of anticoagulant efficacy and safety. J. Assoc. Physicians India, 2016, 64(2), 88-93.
[PMID: 27730796]
[27]
Küpeli Akkol, E.; Genç, Y.; Karpuz, B.; Sobarzo-Sánchez, E.; Capasso, R. Coumarins and coumarin-related compounds in pharmacotherapy of cancer. Cancers (Basel), 2020, 12(7), 1959.
[http://dx.doi.org/10.3390/cancers12071959] [PMID: 32707666]
[28]
Huang, Q.; Wang, L.; Ran, Q.; Wang, J.; Wang, C.; He, H.; Li, L.; Qi, H. Notopterol-induced apoptosis and differentiation in human acute myeloid leukemia HL-60 cells. Drug Des. Devel. Ther., 2019, 13, 1927-1940.
[http://dx.doi.org/10.2147/DDDT.S189969] [PMID: 31239643]
[29]
Guo, L.; Chen, Y.; Hu, S.; Gao, L.; Tang, N.; Liu, R.; Qin, Y.; Ren, C.; Du, S. GDF15 expression in glioma is associated with malignant progression, immune microenvironment, and serves as a prognostic factor. CNS Neurosci. Ther., 2022, 28(1), 158-171.
[http://dx.doi.org/10.1111/cns.13749] [PMID: 34697897]
[30]
Sun, J.; Xu, Y.; Liu, J.; Cui, H.; Cao, H.; Ren, J. PDRG1 promotes the proliferation and migration of GBM cells by the MEK/ERK/CD44 pathway. Cancer Sci., 2021, 00, 1-17.
[PMID: 34812552]
[31]
Shukla, S.; Tekwani, B.L. Histone deacetylases inhibitors in neurodegenerative diseases, neuroprotection and neuronal differentiation. Front. Pharmacol., 2020, 11, 537.
[http://dx.doi.org/10.3389/fphar.2020.00537] [PMID: 32390854]
[32]
Yoon, S.; Eom, G.H. HDAC and HDAC inhibitor: From cancer to cardiovascular diseases. Chonnam Med. J., 2016, 52(1), 1-11.
[http://dx.doi.org/10.4068/cmj.2016.52.1.1] [PMID: 26865995]
[33]
Cusack, M.; King, H.W.; Spingardi, P.; Kessler, B.M.; Klose, R.J.; Kriaucionis, S. Distinct contributions of DNA methylation and histone acetylation to the genomic occupancy of transcription factors. Genome Res., 2020, 30(10), 1393-1406.
[http://dx.doi.org/10.1101/gr.257576.119] [PMID: 32963030]
[34]
Li, Y.; Wang, L.; Ai, W.; He, N.; Zhang, L.; Du, J.; Wang, Y.; Mao, X.; Ren, J.; Xu, D.; Zhou, B.; Li, R.; Mai, L. Regulation of retinoic acid synthetic enzymes by WT1 and HDAC inhibitors in 293 cells. Int. J. Mol. Med., 2017, 40(3), 661-672.
[http://dx.doi.org/10.3892/ijmm.2017.3051] [PMID: 28677722]
[35]
Schilderink, R.; Verseijden, C.; Seppen, J.; Muncan, V.; van den Brink, G.R.; Lambers, T.T.; van Tol, E.A.; de Jonge, W.J. The SCFA butyrate stimulates the epithelial production of retinoic acid via inhibition of epithelial HDAC. Am. J. Physiol. Gastrointest. Liver Physiol., 2016, 310(11), G1138-G1146.
[http://dx.doi.org/10.1152/ajpgi.00411.2015] [PMID: 27151945]
[36]
Zhang, Y.; Fu, T.; Ren, Y.; Li, F.; Zheng, G.; Hong, J.; Yao, X.; Xue, W.; Zhu, F. Selective inhibition of HDAC1 by macrocyclic polypeptide for the treatment of glioblastoma: A binding mechanistic analysis based on molecular dynamics. Front. Mol. Biosci., 2020, 7, 41.
[http://dx.doi.org/10.3389/fmolb.2020.00041] [PMID: 32219100]
[37]
Song, Y.; Jiang, Y.; Tao, D.; Wang, Z.; Wang, R.; Wang, M.; Han, S. NFAT2-HDAC1 signaling contributes to the malignant phenotype of glioblastoma. Neuro-oncol., 2020, 22(1), 46-57.
[http://dx.doi.org/10.1093/neuonc/noz136] [PMID: 31400279]
[38]
Frumm, S.M.; Fan, Z.P.; Ross, K.N.; Duvall, J.R.; Gupta, S.; VerPlank, L.; Suh, B.C.; Holson, E.; Wagner, F.F.; Smith, W.B.; Paranal, R.M.; Bassil, C.F.; Qi, J.; Roti, G.; Kung, A.L.; Bradner, J.E.; Tolliday, N.; Stegmaier, K. Selective HDAC1/HDAC2 inhibitors induce neuroblastoma differentiation. Chem. Biol., 2013, 20(5), 713-725.
[http://dx.doi.org/10.1016/j.chembiol.2013.03.020] [PMID: 23706636]
[39]
Yang, F.; Zhao, N.; Song, J.; Zhu, K.; Jiang, C.S.; Shan, P.; Zhang, H. Design, synthesis and biological evaluation of novel coumarin-based hydroxamate derivatives as histone deacetylase (Hdac) inhibitors with antitumor activities. Molecules, 2019, 24(14), 2569.
[http://dx.doi.org/10.3390/molecules24142569] [PMID: 31311163]
[40]
Ding, J.; Liu, J.; Zhang, Z.; Guo, J.; Cheng, M.; Wan, Y.; Wang, R.; Fang, Y.; Guan, Z.; Jin, Y.; Xie, S.S. Design, synthesis and biological evaluation of coumarin-based N-hydroxycinnamamide derivatives as novel histone deacetylase inhibitors with anticancer activities. Bioorg. Chem., 2020, 101104023
[http://dx.doi.org/10.1016/j.bioorg.2020.104023] [PMID: 32650178]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy