Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Nasal Caffeine Thermo-Sensitive In Situ Gel for Enhanced Cognition after Sleep-Deprivation

Author(s): Siqing Zhu, Yuanyuan Zhang, Qi Li, Lulu Pang, Jinqiu Ma, Chunqing Wang, Shouguo Zhang, Yiguang Jin, Xiu Wang, Shan Ma*, Liqin Li* and Lina Du*

Volume 20, Issue 1, 2023

Published on: 10 June, 2022

Page: [98 - 109] Pages: 12

DOI: 10.2174/1567201819666220509192200

Price: $65

conference banner
Abstract

Background: Caffeine abundant in coffee has a strong excitation effect on the central nerve system (CNS).

Methods: To combat the adverse effects of sleep deprivation on physical and mental health, this article designed a new nasal temperature-sensitive gel loaded with caffeine, whose effects of awakening and improving cognition in sleep-deprived rats were evaluated.

Results: It was found that the caffeine thermo-sensitive in situ gel (TSG) stayed in the nasal cavity for a longer time and increased the contact time between the drugs and the nasal mucosa, which made it possible for caffeine TSG to exert a lasting effect. Secondly, compared with sleep-deprived rats, those administrated with caffeine TSG were more responsive in behavioral experiments. Moreover, the antipentobarbital test proved that caffeine TSG could prolong the sleep latency and shorten the sleep time. Furthermore, caffeine TSG could significantly restore the cognitive ability by ameliorating neuronal cell injuries by upregulating brain-derived neurotrophic factor (BDNF) levels.

Conclusion: Generally, caffeine TSG could quickly exert the efficacy of enhancing cognition and wakefulness, and overcome the drawbacks of frequent medications. It can potentially be used for the treatment of psychiatric disorders, such as dementia, Parkinson and Alzheimer’s disease.

Keywords: Caffeine, sleep deprivation, wakefulness, cognition, thermo-sensitive, CNS.

Graphical Abstract

[1]
Parvez, M.K. Natural or plant products for the treatment of neurological disorders: Current knowledge. Curr. Drug Metab., 2018, 19(5), 424-428.
[http://dx.doi.org/10.2174/1389200218666170710190249] [PMID: 28699506]
[2]
Barry, R.J.; Clarke, A.R.; Johnstone, S.J.; Rushby, J.A. Timing of caffeine’s impact on autonomic and central nervous system measures: Clarification of arousal effects. Biol. Psychol., 2008, 77(3), 304-316.
[http://dx.doi.org/10.1016/j.biopsycho.2007.11.002] [PMID: 18093716]
[3]
Wurts, S.W.; Edgar, D.M. Caffeine during sleep deprivation: Sleep tendency and dynamics of recovery sleep in rats. Pharmacol. Biochem. Behav., 2000, 65(1), 155-162.
[http://dx.doi.org/10.1016/S0091-3057(99)00173-2] [PMID: 10638649]
[4]
Wickham, K.A.; Spriet, L.L. Administration of caffeine in alternate forms. Sports Med., 2018, 48(S1)(Suppl. 1), 79-91.
[http://dx.doi.org/10.1007/s40279-017-0848-2] [PMID: 29368182]
[5]
Ramakrishnan, S.; Laxminarayan, S.; Wesensten, N.J.; Kamimori, G.H.; Balkin, T.J.; Reifman, J. Dose-dependent model of caffeine effects on human vigilance during total sleep deprivation. J. Theor. Biol., 2014, 358, 11-24.
[http://dx.doi.org/10.1016/j.jtbi.2014.05.017] [PMID: 24859426]
[6]
Zhu, Y.; Xi, Y.; Sun, J.; Guo, F.; Xu, Y.; Fei, N.; Zhang, X.; Yang, X.; Yin, H.; Qin, W. Neural correlates of dynamic changes in working memory performance during one night of sleep deprivation. Hum. Brain Mapp., 2019, 40(11), 3265-3278.
[http://dx.doi.org/10.1002/hbm.24596] [PMID: 30972884]
[7]
Hou, J.; Shen, Q.; Wan, X.; Zhao, B.; Wu, Y.; Xia, Z. REM sleep deprivation-induced circadian clock gene abnormalities participate in hippo-campal-dependent memory impairment by enhancing inflammation in rats undergoing sevoflurane inhalation. Behav. Brain Res., 2019, 364, 167-176.
[http://dx.doi.org/10.1016/j.bbr.2019.01.038] [PMID: 30779975]
[8]
Drummond, S.P.A.; McKenna, B.S. Sleep deprivation and brain function. Encyclopedia Neurosci, 2009, 991-995.
[http://dx.doi.org/10.1016/B978-008045046-9.00074-7]
[9]
Santiago, J.C.P.; Hallschmid, M. Outcomes and clinical implications of intranasal insulin administration to the central nervous system. Exp. Neurol., 2019, 317, 180-190.
[http://dx.doi.org/10.1016/j.expneurol.2019.03.007] [PMID: 30885653]
[10]
Singh, N.K.; Lee, D.S. In situ gelling pH- and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery. J. Control. Release, 2014, 193, 214-227.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.056] [PMID: 24815421]
[11]
Rao, M.; Agrawal, D.K.; Shirsath, C. Thermoreversible mucoadhesive in situ nasal gel for treatment of Parkinson’s disease. Drug Dev. Ind. Pharm., 2017, 43(1), 142-150.
[http://dx.doi.org/10.1080/03639045.2016.1225754] [PMID: 27533244]
[12]
Takahashi, F.; Kobayashi, M.; Kobayashi, A.; Kobayashi, K.; Asamura, H. High-frequency heating extraction method for sensitive drug analysis in human nails. Molecules, 2018, 23(12), 3231.
[http://dx.doi.org/10.3390/molecules23123231] [PMID: 30544538]
[13]
Coviello, T.; Coluzzi, G.; Palleschi, A.; Grassi, M.; Santucci, E.; Alhaique, F. Structural and rheological characterization of Scleroglucan/borax hydrogel for drug delivery. Int. J. Biol. Macromol., 2003, 32(3-5), 83-92.
[http://dx.doi.org/10.1016/S0141-8130(03)00041-2] [PMID: 12957304]
[14]
Vanthanouvong, V.; Roomans, G.M. Methods for determining the composition of nasal fluid by X-ray microanalysis. Microsc. Res. Tech., 2004, 63(2), 122-128.
[http://dx.doi.org/10.1002/jemt.20020] [PMID: 14722910]
[15]
Ye, Y.; Wang, F.; Zhou, T.; Luo, Y. Low complication rate of sellar reconstruction by artificial dura mater during endoscopic endonasal transsphenoidal surgery. Medicine (Baltimore), 2017, 96(52), e9422.
[http://dx.doi.org/10.1097/MD.0000000000009422] [PMID: 29384918]
[16]
Santoveña, A.; Monzón, C.; Alvarez-Lorenzo, C.; Del Rosario, C.; Delgado, A.; Evora, C.; Concheiro, A.; Llabrés, M.; Fariña, J.B. Structure-performance relationships of temperature-responsive PLGA-PEG-PLGA gels for sustained release of bone morphogenetic protein-2. J. Pharm. Sci., 2017, 106(11), 3353-3362.
[http://dx.doi.org/10.1016/j.xphs.2017.07.007] [PMID: 28732712]
[17]
Choleris, E.; Thomas, A.W.; Kavaliers, M.; Prato, F.S. A detailed ethological analysis of the mouse open field test: Effects of diazepam, chlordiazepoxide and an extremely low frequency pulsed magnetic field. Neurosci. Biobehav. Rev., 2001, 25(3), 235-260.
[http://dx.doi.org/10.1016/S0149-7634(01)00011-2] [PMID: 11378179]
[18]
Ahmadian, N.; Mahmoudi, J.; Talebi, M.; Molavi, L.; Sadigh-Eteghad, S.; Rostrup, E.; Ziaee, M. Sleep deprivation disrupts striatal anti-apoptotic responses in 6-hydroxy dopamine-lesioned parkinsonian rats. Iran. J. Basic Med. Sci., 2018, 21(12), 1289-1296.
[PMID: 30627374]
[19]
Espejo, E.F. Effects of weekly or daily exposure to the elevated plusmaze in male mice. Behav. Brain Res., 1997, 87(2), 233-238.
[http://dx.doi.org/10.1016/S0166-4328(97)02286-9] [PMID: 9331492]
[20]
Esfandiari, E.; Ghanadian, M.; Rashidi, B.; Mokhtarian, A.; Vatankhah, A.M. The effects of Acorus calamus L. in preventing memory loss, anxiety, and oxidative stress on lipopolysaccharide-induced neuroinflammation rat models. Int. J. Prev. Med., 2018, 9(1), 85.
[http://dx.doi.org/10.4103/ijpvm.IJPVM_75_18] [PMID: 30450168]
[21]
Brandeis, R.; Brandys, Y.; Yehuda, S. The use of the Morris Water Maze in the study of memory and learning. Int. J. Neurosci., 1989, 48(1-2), 29-69.
[http://dx.doi.org/10.3109/00207458909002151] [PMID: 2684886]
[22]
Tang, S.H.; Du, Y.J.; Xiao, J.H.; Wang, Y.; Shen, F.; Sun, G.J. Acupuncture and moxibustion improves learning-memory ability of Alzheimer’s disease rats possibly by up-regulating serum A internalization enzyme contents. Zhen Ci Yan Jiu, 2018, 43(11), 692-697.
[PMID: 30585465]
[23]
Cho, S.; Yang, H.; Yoon, M.; Kim, J.; Kim, D.; Kim, J.; Kim, S.B. Arousal inhibitory effect of phlorotannins on caffeine in pentobarbital-induced mice. Fish. Aquatic Sci., 2014, 17(1), 1461-1476.
[http://dx.doi.org/10.5657/FAS.2014.0013]
[24]
Ge, L.; Zhu, M.M.; Yang, J.Y.; Wang, F.; Zhang, R.; Zhang, J.H.; Shen, J.; Tian, H.F.; Wu, C.F. Differential proteomic analysis of the anti-depressive effects of oleamide in a rat chronic mild stress model of depression. Pharmacol. Biochem. Behav., 2015, 131, 77-86.
[http://dx.doi.org/10.1016/j.pbb.2015.01.017] [PMID: 25641667]
[25]
Joy, T.; Rao, M.S.; Madhyastha, S. N-Acetyl cysteine supplement minimize Tau expression and neuronal loss in animal model of Alzheimer’s disease. Brain Sci., 2018, 8(10), 185.
[http://dx.doi.org/10.3390/brainsci8100185] [PMID: 30314380]
[26]
Serra, M.P.; Poddighe, L.; Boi, M.; Sanna, F.; Piludu, M.A.; Corda, M.G.; Giorgi, O.; Quartu, M. Expression of BDNF and trkB in the hippocampus of a rat genetic model of vulnerability (Roman low-avoidance) and resistance (Roman high-avoidance) to stress-induced depression. Brain Behav., 2017, 7(10), e00861-e00861.
[http://dx.doi.org/10.1002/brb3.861] [PMID: 29075579]
[27]
Lenoir, J.; Adriaens, E.; Remon, J-P. New aspects of the slug mucosal irritation assay: Predicting nasal stinging, itching and burning sensations. J. Appl. Toxicol., 2011, 31(7), 640-648.
[http://dx.doi.org/10.1002/jat.1610] [PMID: 21132841]
[28]
Kamimori, G.H.; Karyekar, C.S.; Otterstetter, R.; Cox, D.S.; Balkin, T.J.; Belenky, G.L.; Eddington, N.D. The rate of absorption and relative bioavailability of caffeine administered in chewing gum versus capsules to normal healthy volunteers. Int. J. Pharm., 2002, 234(1-2), 159-167.
[http://dx.doi.org/10.1016/S0378-5173(01)00958-9] [PMID: 11839447]
[29]
Aslani, A.; Jalilian, F. Design, formulation and evaluation of caffeine chewing gum. Adv. Biomed. Res., 2013, 2(1), 72.
[http://dx.doi.org/10.4103/2277-9175.115806] [PMID: 24223387]
[30]
Leenaars, C.H.; Dematteis, M.; Joosten, R.N.; Eggels, L.; Sandberg, H.; Schirris, M.; Feenstra, M.G.; Van Someren, E.J. A new automated method for rat sleep deprivation with minimal confounding effects on corticosterone and locomotor activity. J. Neurosci. Methods, 2011, 196(1), 107-117.
[http://dx.doi.org/10.1016/j.jneumeth.2011.01.014] [PMID: 21262261]
[31]
Pilcher, J.J.; Vander Wood, M.A.; O’Connell, K.L. The effects of extended work under sleep deprivation conditions on team-based performance. Ergonomics, 2011, 54(7), 587-596.
[http://dx.doi.org/10.1080/00140139.2011.592599] [PMID: 21770747]
[32]
Suchecki, D.; Tufik, S. Social stability attenuates the stress in the modified multiple platform method for paradoxical sleep deprivation in the rat. Physiol. Behav., 2000, 68(3), 309-316.
[http://dx.doi.org/10.1016/S0031-9384(99)00181-X] [PMID: 10716540]
[33]
Fischman, M.W.; Schuster, C.R. Cocaine effects in sleep-deprived humans. Psychopharmacology (Berl.), 1980, 72(1), 1-8.
[http://dx.doi.org/10.1007/BF00433800] [PMID: 6780998]
[34]
Holtmann, G.; Enck, P. Stress and gastrointestinal motility in humans: A review of the literature. Neurogastroenterol. Motil., 1991, 3(4), 245-254.
[http://dx.doi.org/10.1111/j.1365-2982.1991.tb00068.x]
[35]
Liu, Q-S.; Deng, R.; Fan, Y.; Li, K.; Meng, F.; Li, X.; Liu, R. Low dose of caffeine enhances the efficacy of antidepressants in major depressive disorder and the underlying neural substrates. Mol. Nutr. Food Res., 2017, 61(8), 1600910.
[http://dx.doi.org/10.1002/mnfr.201600910] [PMID: 28054436]
[36]
Vorhees, C.V.; Williams, M.T. Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nat. Protoc., 2006, 1(2), 848-858.
[http://dx.doi.org/10.1038/nprot.2006.116] [PMID: 17406317]
[37]
Li, F.; Zhang, Y.Y.; Jing, X.M.; Yan, C.H.; Shen, X.M. Memory impairment in early sensorimotor deprived rats is associated with suppressed hippocampal neurogenesis and altered CREB signaling. Behav. Brain Res., 2010, 207(2), 458-465.
[http://dx.doi.org/10.1016/j.bbr.2009.10.033] [PMID: 19891990]
[38]
McDermott, C.M.; LaHoste, G.J.; Chen, C.; Musto, A.; Bazan, N.G.; Magee, J.C. Sleep deprivation causes behavioral, synaptic, and membrane excitability alterations in hippocampal neurons. J. Neurosci., 2003, 23(29), 9687-9695.
[http://dx.doi.org/10.1523/JNEUROSCI.23-29-09687.2003] [PMID: 14573548]
[39]
Alkadhi, K.A.; Alhaider, I.A. Caffeine and REM sleep deprivation: Effect on basal levels of signaling molecules in area CA1. Mol. Cell. Neurosci., 2016, 71, 125-131.
[http://dx.doi.org/10.1016/j.mcn.2015.12.015] [PMID: 26767416]
[40]
Cui, X.; Chopp, M.; Shehadah, A.; Zacharek, A.; Kuzmin-Nichols, N.; Sanberg, C.D.; Dai, J.; Zhang, C.; Ueno, Y.; Roberts, C.; Chen, J. Therapeutic benefit of treatment of stroke with simvastatin and human umbilical cord blood cells: neurogenesis, synaptic plasticity, and axon growth. Cell Transplant., 2012, 21(5), 845-856.
[http://dx.doi.org/10.3727/096368911X627417] [PMID: 22405262]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy