Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Inhibitory Effect of Verapamil on the Growth of Human Airway Granulation Fibroblasts

Author(s): Bo Cai, Bing Yuan, Jinghua Cui, Jing Li* and Yunhui Zhang*

Volume 26, Issue 4, 2023

Published on: 23 August, 2022

Page: [826 - 837] Pages: 12

DOI: 10.2174/1386207325666220509175916

Price: $65

Abstract

Objectives: To explore the inhibitory effect of verapamil, a calcium channel blocker, on the growth of human airway granulation fibroblasts to provide an experimental basis for the clinical use of calcium channel blockers in preventing and treating benign airway stenosis.

Methods: Primary human airway normal fibroblasts and human airway granulation fibroblasts were cultured by tissue block attachment culture method, and the experimental studies were carried out using 3-8 generation cells. Cell Counting Kit-8 (CCK-8) was used to test the proliferation of human normal airway fibroblasts and human airway granulation fibroblasts and the semi-inhibitory concentration of verapamil on normal airway fibroblasts and airway granulation fibroblasts. A scratch test detected the migration effect of verapamil on human airway granulation fibroblasts. The mRNA relative expression levels of related factors were detected by PCR to compare the differences between normal airway fibroblasts and airway granulation fibroblasts. Western blot was used to detect the relative amount of related proteins and compare the differences between normal airway fibroblasts and granulation airway fibroblasts. After 48 hours of treatment with half of the inhibitory concentration of Vera Pammy for granulation airway fibroblasts, the relative expression levels of related factors on mRNA and protein were observed.

Results: Human normal airway fibroblasts and human airway granulation fibroblasts with a purity of more than 95% could be obtained from primary culture by tissue block adherence method. CCK8 results showed that the proliferation rate of human airway granulation fibroblasts was faster than that of the normal human airway fibroblasts. The semi-inhibitory concentration of verapamil on human normal airway fibroblasts was 92.81 ug/ml, while the semi-inhibitory concentration on human airway granulation fibroblasts was 69.57 ug/ml. The scratch test indicated that the cell migration rate of human airway granulation fibroblasts treated with verapamil decreased significantly (P < 0.05). PCR results showed that the mRNA relative expression levels of TGFβ1, COL1A1, Smad2/3, VEGFA, IL6, and IL8 in human airway granulation fibroblasts were significantly higher than those in normal human airway fibroblasts (P < 0.05). The mRNA relative expressions of TGFβ1, smad2/3, and COL1A1 in human airway granulation fibroblasts treated with semi-inhibited verapamil for 48h were down-regulated (P < 0.05), while the mRNA relative expressions of VEGFA, IL6 and IL8 had no significant changes (P > 0.05). WB test showed that the relative protein expressions of TGFβ1, Smad2, and VEGFC in human airway granulation fibroblasts were upregulated (P < 0.05) but downregulated after verapamil treatment compared with before treatment (P < 0.05).

Conclusion: Calcium channel blockers can inhibit the proliferation of human airway granulation fibroblasts through TGFβ1/ Smad pathway, which may be a method to prevent and treat benign airway stenosis.

Keywords: Benign airway stenosis, airway granulation fibroblasts, verapamil, inhibition, tumor necrosis factor, TGFβI.

Graphical Abstract

[1]
Chen, H.; Zhang, J.; Qiu, X.; Wang, J.; Pei, Y.; Wang, Y.; Wang, T. Choice of bronchoscopic intervention working channel for benign central airway stenosis. Intern. Emerg. Med., 2021, 16(7), 1865-1871.
[2]
Yuyuan, L.; Jihong, Z.; Xing, Z.; Qing, Q.; Yaolin, G.; Jisong, Z.; Enguo, C. Application of extracorporeal membrane oxygenation in the endoscopic treatment of severe benign airway stenosis: A case report and literature review. J. Int. Med. Res., 2021, 49(4), 3000605211009489.
[3]
Kleiss, I.J.; Verhagen, A.F.; Honings, J.; Schuurbiers, O.C.; van der Heijden, H.F.; Marres, H.A. Tracheal surgery for benign tracheal stenosis: Our experience in sixty three patients. Clin. Otolaryngol., 2013, 38(4), 343-347.
[4]
Singh, T.; Sandulache, V.C.; Otteson, T.D.; Barsic, M.; Klein, E.C.; Dohar, J.E.; Hebda, P.A. Subglottic stenosis examined as a fibrotic response to airway injury characterized by altered mucosal fibroblast activity. Arch. Otolaryngol. Head Neck Surg., 2010, 136(2), 163-170.
[http://dx.doi.org/10.1001/archoto.2009.175] [PMID: 20157063]
[5]
Janis, J.E.; Harrison, B. Wound healing: Part I. basic science. Plast. Reconstr. Surg., 2016, 138(3)(Suppl.), 9S-17S.
[http://dx.doi.org/10.1097/PRS.0000000000002773] [PMID: 27556781]
[6]
Lian, N.; Li, T. Growth factor pathways in hypertrophic scars: Molecular pathogenesis and therapeutic implications. Biomed. Pharmacother., 2016, 84, 42-50.
[7]
Xue, C.; Lin, X.P.; Zhang, J.M.; Zeng, Y.M.; Chen, X.Y. β-Elemene suppresses the proliferation of human airway granulation fibroblasts via attenuation of TGF-β/Smad signaling pathway. J. Cell. Biochem., 2019, 120(10), 16553-16566.
[http://dx.doi.org/10.1002/jcb.28915] [PMID: 31104326]
[8]
Wang, P.; Gu, L.; Bi, H.; Wang, Q.; Qin, Z. Comparing the efficacy and safety of intralesional verapamil with intralesional triamcinolone acetonide in treatment of hypertrophic scars and keloids: A meta-analysis of randomized controlled trials. Aesthet. Surg. J., 2021, 41(6), NP567-NP575.
[http://dx.doi.org/10.1093/asj/sjaa357] [PMID: 33313652]
[9]
Raheem, O.A.; Khandwala, Y.S.; Hsieh, T-C.; Buckley, J.C. Review Article: Is there a role for antifibrotics in the treatment of urological disease? A systematic review of the literature. J. Urol. Pract., 2018, 5(1), 31-38.
[http://dx.doi.org/10.1016/j.urpr.2016.11.011]
[10]
Han, Y.N.; Lee, Y.J.; Kim, K.J.; Lee, S.J.; Choi, J.Y.; Moon, S.H.; Rhie, J.W. Nitric oxide produced by the antioxidant activity of verapamil improves the acute wound healing process. Nitric oxide produced by the antioxidant activity of verapamil improves the acute wound healing process. Tissue Eng. Regen. Med., 2021, 18(1), 179-186.
[http://dx.doi.org/10.1007/s13770-020-00308-x] [PMID: 33515165]
[11]
Zhang, L.K.; Sun, Y.; Zeng, H.; Wang, Q.; Jiang, X.; Shang, W.J.; Wu, Y.; Li, S.; Zhang, Y.L.; Hao, Z.N.; Chen, H.; Jin, R.; Liu, W.; Li, H.; Peng, K.; Xiao, G. Calcium channel blocker amlodipine besylate therapy is associated with reduced case fatality rate of COVID-19 patients with hypertension. Cell Discov., 2020, 6(1), 96.
[http://dx.doi.org/10.1038/s41421-020-00235-0] [PMID: 33349633]
[12]
Bajbouj, K.; Hachim, M.Y.; Ramakrishnan, R.K.; Fazel, H.; Mustafa, J.; Alzaghari, S.; Eladl, M.; Shafarin, J.; Olivenstein, R.; Hamid, Q. IL-13 augments histone demethylase jmjd2b/kdm4b expression levels, activity, and nuclear translocation in airway fibroblasts in asthma. J. Immunol. Res., 2021, 2021, 6629844.
[http://dx.doi.org/10.1155/2021/6629844] [PMID: 33688506]
[13]
Charokopos, N.; Foroulis, C.N.; Rouska, E.; Sileli, M.N.; Papadopoulos, N.; Papakonstantinou, C. The management of post-intubation tracheal stenoses with self-expandable stents: Early and long-term results in 11 cases. Euro. J. Cardio-Thoracic Surg., 2011, 40(4), 919-924.
[14]
Uğur Chousein, E.G.; Özgül, M.A. Postintubation tracheal stenosis. Tuberk. Toraks, 2018, 66(3), 239-248.
[PMID: 30479232]
[15]
Tölle, R.C.; Gaggioli, C.; Dengjel, J. Three-dimensional cell culture conditions affect the proteome of cancer-associated fibroblasts. J. Proteome Res., 2018, 17(8), 2780-2789.
[http://dx.doi.org/10.1021/acs.jproteome.8b00237] [PMID: 29989826]
[16]
Chen, N.; Zhang, J.; Xu, M.; Wang, Y.L.; Pei, Y.H. Inhibitory effect of mitomycin C on proliferation of primary cultured fibroblasts from human airway granulation tissues. Respiration, 2013, 85(6), 500-504.
[17]
Gazda, K.; Bazała, M.; Węgierski, T. Microscopic imaging of calcium ions with genetically encoded calcium indicators. Postepy Biochem., 2017, 63(1), 34-43.
[PMID: 28409573]
[18]
Cho, M.R.; Marler, J.P.; Thatte, H.S.; Golan, D.E. Control of calcium entry in human fibroblasts by frequency-dependent electrical stimulation. Front. Biosci., 2002, 7, a1-8.
[19]
Baker, S.A.; Hennig, G.W.; Salter, A.K.; Kurahashi, M.; Ward, S.M.; Sanders, K.M. Distribution and Ca(2+) signalling of fibroblast-like (PDGFR(+)) cells in the murine gastric fundus. J. Physiol., 2013, 591(24), 6193-6208.
[http://dx.doi.org/10.1113/jphysiol.2013.264747] [PMID: 24144881]
[20]
Walsh, M. Commentary on: Comparing the efficacy and safety of intralesional verapamil with intralesional triamcinolone acetonide in treatment of hypertrophic scars and keloids: A meta-analysis of randomized controlled trials. Aesthet. Surg. J., 2021, 41(6), NP576-NP578.
[http://dx.doi.org/10.1093/asj/sjaa300] [PMID: 33515238]
[21]
Choi, M.H.; Kim, J.; Ha, J.H.; Park, J.U. A selective small-molecule inhibitor of c-Met suppresses keloid fibroblast growth in vitro and in a mouse model. Sci. Rep., 2021, 11(1), 5468.
[http://dx.doi.org/10.1038/s41598-021-84982-4] [PMID: 33750878]
[22]
Hu, H.H.; Chen, D.Q.; Wang, Y.N.; Feng, Y.L.; Cao, G.; Vaziri, N.D.; Zhao, Y.Y. New insights into TGF-β/Smad signaling in tissue fibrosis. Chem. Biol. Interact., 2018, 292, 76-83.
[http://dx.doi.org/10.1016/j.cbi.2018.07.008] [PMID: 30017632]
[23]
Aceña, Á.; Pello-Lázaro, A.M.; Martínez-Milla, J.; González-Lorenzo, Ó.; Tarín, N.; Cristóbal, C.; Blanco-Colio, L.M.; Martín-Ventura, J.L.; Huelmos, A.; López-Castillo, M.; Alonso, J.; Gutiérrez-Landaluce, C.; López Bescós, L.; Alonso-Pulpón, L.; González-Parra, E.; Egido, J.; Mahíllo-Fernández, I.; Lorenzo, Ó.; González-Casaus, M.L.; Tuñón, J. Impact of renal function on the prognostic value of mineral metabolism in patients with chronic ischaemic heart disease patients with chronic ischaemic heart disease. Clin. Investig. Arterioscler., 2022, 34(1), 1-9.
[PMID: 34876305]
[24]
Chen, X.; Miao, M.; Zhou, M.; Chen, J.; Li, D.; Zhang, L.; Sun, A.; Guan, M.; Wang, Z.; Liu, P.; Zhang, S.; Zha, X.; Fan, X. Poly-L-arginine promotes asthma angiogenesis through induction of FGFBP1 in airway epithelial cells via activation of the mTORC1-STAT3 pathway. Cell Death Dis., 2021, 12(8), 761.
[http://dx.doi.org/10.1038/s41419-021-04055-2] [PMID: 34341336]
[25]
Xu, F.; Liu, C.; Zhou, D.; Zhang, L. TGF-β/SMAD pathway and its regulation in hepatic fibrosis. J. Histochem. Cytochem., 2016, 64(3), 157-167.
[http://dx.doi.org/10.1369/0022155415627681] [PMID: 26747705]
[26]
Calvo, A.C.; Moreno, L.; Moreno, L.; Toivonen, J.M.; Manzano, R.; Molina, N.; de la Torre, M.; López, T.; Miana-Mena, F.J.; Muñoz, M.J.; Zaragoza, P.; Larrodé, P.; García-Redondo, A.; Osta, R. Type XIX collagen: A promising biomarker from the basement membranes. Neural Regen. Res., 2020, 15(6), 988-995.
[http://dx.doi.org/10.4103/1673-5374.270299] [PMID: 31823868]
[27]
Kim, K.K.; Sheppard, D.; Chapman, H.A. TGF-β1 signaling and tissue fibrosis. Cold Spring Harb. Perspect. Biol., 2018, 10(4), a022293.
[http://dx.doi.org/10.1101/cshperspect.a022293] [PMID: 28432134]
[28]
Finnson, K.W.; Almadani, Y.; Philip, A. Non-canonical (non-SMAD2/3) TGF-β signaling in fibrosis: Mechanisms and targets. Semin. Cell Dev. Biol., 2020, 101, 115-122.
[http://dx.doi.org/10.1016/j.semcdb.2019.11.013] [PMID: 31883994]
[29]
Apte, R.S.; Chen, D.S.; Ferrara, N. VEGF in signaling and disease: Beyond discovery and development. Cell, 2019, 176(6), 1248-1264.
[http://dx.doi.org/10.1016/j.cell.2019.01.021] [PMID: 30849371]
[30]
Jundi, K.; Greene, C.M. Transcription of interleukin-8: How altered regulation can affect cystic fibrosis lung disease. Biomolecules, 2015, 5(3), 1386-1398.
[http://dx.doi.org/10.3390/biom5031386] [PMID: 26140537]
[31]
Hedayatyanfard, K.; Haddadi, N.S.; Ziai, S.A.; Karim, H.; Niazi, F.; Steckelings, U.M.; Habibi, B.; Modarressi, A.; Dehpour, A.R. The renin-angiotensin system in cutaneous hypertrophic scar and keloid formation. Exp. Dermatol., 2020, 29(9), 902-909.
[http://dx.doi.org/10.1111/exd.14154] [PMID: 32678966]
[32]
Sabry, H. H.; Abdel Rahman, S. H.; Hussein, M. S.; Sanad, R. R.; Abd El Azez, T. A. The Efficacy of combining fractional carbon dioxide laser with verapamil hydrochloride or 5-fluorouracil in the treatment of hypertrophic scars and keloids: A clinical and immunohistochemical study. Dermatologic Surg., 2019, 45(4), 536-546.
[33]
Mendes, A.S.; Blascke de Mello, M.M.; Parente, J.M.; Omoto, A.C.M.; Neto-Neves, E.M.; Fazan, R., Jr; Tanus-Santos, J.E.; Castro, M.M. Verapamil decreases calpain-1 and matrix metalloproteinase-2 activities and improves hypertension-induced hypertrophic cardiac remodeling in rats. Life Sci., 2020, 244, 117153.
[http://dx.doi.org/10.1016/j.lfs.2019.117153] [PMID: 31830479]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy