Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Poloxamer-188 Exacerbates Brain Amyloidosis, Presynaptic Dystrophies, and Pathogenic Microglial Activation in 5XFAD Mice

Author(s): Antonio Di Meco, Shahrnaz Kemal, Jelena Popovic, Sidhanth Chandra, Katherine Sadleir and Robert Vassar*

Volume 19, Issue 4, 2022

Published on: 15 June, 2022

Page: [317 - 329] Pages: 13

DOI: 10.2174/1567205019666220509143823

Price: $65

Abstract

Background: Alzheimer’s disease (AD) is initiated by aberrant accumulation of amyloid beta (Aβ) protein in the brain parenchyma. The microenvironment surrounding amyloid plaques is characterized by the swelling of presynaptic terminals (dystrophic neurites) associated with lysosomal dysfunction, microtubule disruption, and impaired axonal transport. Aβ-induced plasma membrane damage and calcium influx could be potential mechanisms underlying dystrophic neurite formation.

Objective: We tested whether promoting membrane integrity by brain administration of a safe FDA approved surfactant molecule poloxamer-188 (P188) could attenuate AD pathology in vivo.

Methods: Three-month-old 5XFAD male mice were administered several concentrations of P188 in the brain for 42 days with mini-osmotic pumps. After 42 days, mice were euthanized and assessed for amyloid pathology, dystrophic neurites, pathogenic microglia activation, tau phosphorylation, and lysosomal / vesicular trafficking markers in the brain.

Results: P188 was lethal at the highest concentration of 10mM. Lower concentrations of P188 (1.2, 12, and 120μM) were well tolerated. P188 increased brain Aβ burden, potentially through activation of the γ-secretase pathway. Dystrophic neurite pathology was exacerbated in P188 treated mice as indicated by increased LAMP1 accumulation around Aβ deposits. Pathogenic microglial activation was increased by P188. Total tau levels were decreased by P188. Lysosomal enzyme cathepsin D and calciumdependent vesicular trafficking regulator synaptotagmin-7 (SYT7) were dysregulated upon P188 administration.

Conclusion: P188 brain delivery exacerbated amyloid pathology, dystrophic neurites, and pathogenic microglial activation in 5XFAD mice. These effects correlated with lysosomal dysfunction and dysregulation of plasma membrane vesicular trafficking. P188 is not a promising therapeutic strategy against AD pathogenesis.

Keywords: Alzheimer’s disease, poloxamer-188, dystrophic neurites, amyloid, γ-secretase, microglia, synaptotagmin-7.

[1]
Long JM, Holtzman DM. Alzheimer disease: An update on pathobiology and treatment strategies. Cell 2019; 179(2): 312-39.
[http://dx.doi.org/10.1016/j.cell.2019.09.001] [PMID: 31564456]
[2]
Sadleir KR, Kandalepas PC, Buggia-Prévot V, Nicholson DA, Thinakaran G, Vassar R. Presynaptic dystrophic neurites surrounding amyloid plaques are sites of microtubule disruption, BACE1 elevation, and increased Aβ generation in Alzheimer’s disease. Acta Neuropathol 2016; 132(2): 235-56.
[http://dx.doi.org/10.1007/s00401-016-1558-9] [PMID: 26993139]
[3]
Tsai J, Grutzendler J, Duff K, Gan WB. Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nat Neurosci 2004; 7(11): 1181-3.
[http://dx.doi.org/10.1038/nn1335] [PMID: 15475950]
[4]
Grutzendler J, Helmin K, Tsai J, Gan WB. Various dendritic abnormalities are associated with fibrillar amyloid deposits in Alzheimer’s disease. Ann N Y Acad Sci 2007; 1097(1): 30-9.
[http://dx.doi.org/10.1196/annals.1379.003] [PMID: 17413007]
[5]
Praprotnik D, Smith MA, Richey PL, Vinters HV, Perry G. Plasma membrane fragility in dystrophic neurites in senile plaques of Alzheimer’s disease: An index of oxidative stress. Acta Neuropathol 1996; 91(1): 1-5.
[http://dx.doi.org/10.1007/s004010050385] [PMID: 8773139]
[6]
Han S, Kollmer M, Markx D, Claus S, Walther P, Fändrich M. Amyloid plaque structure and cell surface interactions of β-amyloid fibrils revealed by electron tomography. Sci Rep 2017; 7(1): 43577.
[http://dx.doi.org/10.1038/srep43577] [PMID: 28240273]
[7]
Jang H, Connelly L, Arce FT, et al. Mechanisms for the Insertion of Toxic, Fibril-like β-Amyloid Oligomers into the Membrane. J Chem Theory Comput 2013; 9(1): 822-33.
[http://dx.doi.org/10.1021/ct300916f] [PMID: 23316126]
[8]
Drews A, Flint J, Shivji N, et al. Individual aggregates of amyloid beta induce temporary calcium influx through the cell membrane of neuronal cells. Sci Rep 2016; 6(1): 31910.
[http://dx.doi.org/10.1038/srep31910] [PMID: 27553885]
[9]
Kuchibhotla KV, Goldman ST, Lattarulo CR, Wu HY, Hyman BT, Bacskai BJ. Abeta plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks. Neuron 2008; 59(2): 214-25.
[http://dx.doi.org/10.1016/j.neuron.2008.06.008] [PMID: 18667150]
[10]
Kwiatkowski TA, Rose AL, Jung R, et al. Multiple poloxamers increase plasma membrane repair capacity in muscle and nonmuscle cells. Am J Physiol Cell Physiol 2020; 318(2): C253-62.
[http://dx.doi.org/10.1152/ajpcell.00321.2019] [PMID: 31747313]
[11]
Lee RC, River LP, Pan FS, Ji L, Wollmann RL. Surfactant-induced sealing of electropermeabilized skeletal muscle membranes in vivo. Proc Natl Acad Sci USA 1992; 89(10): 4524-8.
[http://dx.doi.org/10.1073/pnas.89.10.4524] [PMID: 1584787]
[12]
Adams-Graves P, Kedar A, Koshy M, et al. RheothRx (poloxamer 188) injection for the acute painful episode of sickle cell disease: A pilot study. Blood 1997; 90(5): 2041-6.
[http://dx.doi.org/10.1182/blood.V90.5.2041] [PMID: 9292541]
[13]
Riehm JJ, Wang L, Ghadge G, et al. Poloxamer 188 decreases membrane toxicity of mutant SOD1 and ameliorates pathology observed in SOD1 mouse model for ALS. Neurobiol Dis 2018; 115: 115-26.
[http://dx.doi.org/10.1016/j.nbd.2018.03.014] [PMID: 29627580]
[14]
Ding W, Lin H, Hong X, Ji D, Wu F. Poloxamer 188-mediated anti-inflammatory effect rescues cognitive deficits in paraquat and maneb-induced mouse model of Parkinson’s disease. Toxicology 2020; 436: 152437.
[http://dx.doi.org/10.1016/j.tox.2020.152437] [PMID: 32169474]
[15]
Dong H, Qin Y, Huang Y, Ji D, Wu F. Poloxamer 188 rescues MPTP-induced lysosomal membrane integrity impairment in cellular and mouse models of Parkinson’s disease. Neurochem Int 2019; 126: 178-86.
[http://dx.doi.org/10.1016/j.neuint.2019.03.013] [PMID: 30904670]
[16]
Mina EW, Lasagna-Reeves C, Glabe CG, Kayed R. Poloxamer 188 copolymer membrane sealant rescues toxicity of amyloid oligomers in vitro. J Mol Biol 2009; 391(3): 577-85.
[http://dx.doi.org/10.1016/j.jmb.2009.06.024] [PMID: 19524592]
[17]
Oakley H, Cole SL, Logan S, et al. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: Potential factors in amyloid plaque formation. J Neurosci 2006; 26(40): 10129-40.
[http://dx.doi.org/10.1523/JNEUROSCI.1202-06.2006] [PMID: 17021169]
[18]
Marquié M, Normandin MD, Meltzer AC, et al. Pathological correlations of [F-18]-AV-1451 imaging in non-alzheimer tauopathies. Ann Neurol 2017; 81(1): 117-28.
[http://dx.doi.org/10.1002/ana.24844] [PMID: 27997036]
[19]
Bhattacharya S, Haertel C, Maelicke A, Montag D. Galantamine slows down plaque formation and behavioral decline in the 5XFAD mouse model of Alzheimer’s disease. PLoS One 2014; 9(2): e89454.
[http://dx.doi.org/10.1371/journal.pone.0089454] [PMID: 24586789]
[20]
Gowrishankar S, Yuan P, Wu Y, et al. Massive accumulation of luminal protease-deficient axonal lysosomes at Alzheimer’s disease amyloid plaques. Proc Natl Acad Sci USA 2015; 112(28): E3699-708.
[http://dx.doi.org/10.1073/pnas.1510329112] [PMID: 26124111]
[21]
Shi Y, Andhey PS, Ising C, et al. Overexpressing low-density lipoprotein receptor reduces tau-associated neurodegeneration in relation to apoE-linked mechanisms. Neuron 2021; 109(15): 2413-2426.e7.
[http://dx.doi.org/10.1016/j.neuron.2021.05.034] [PMID: 34157306]
[22]
Sarlus H, Heneka MT. Microglia in Alzheimer’s disease. J Clin Invest 2017; 127(9): 3240-9.
[http://dx.doi.org/10.1172/JCI90606] [PMID: 28862638]
[23]
Shi Y, Holtzman DM. Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nat Rev Immunol 2018; 18(12): 759-72.
[http://dx.doi.org/10.1038/s41577-018-0051-1] [PMID: 30140051]
[24]
Zotova E, Holmes C, Johnston D, Neal JW, Nicoll JA, Boche D. Microglial alterations in human Alzheimer’s disease following Aβ42 immunization. Neuropathol Appl Neurobiol 2011; 37(5): 513-24.
[http://dx.doi.org/10.1111/j.1365-2990.2010.01156.x] [PMID: 21166690]
[25]
Streit WJ, Braak H, Xue QS, Bechmann I. Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer’s disease. Acta Neuropathol 2009; 118(4): 475-85.
[http://dx.doi.org/10.1007/s00401-009-0556-6] [PMID: 19513731]
[26]
Kanno T, Tsuchiya A, Nishizaki T. Hyperphosphorylation of Tau at Ser396 occurs in the much earlier stage than appearance of learning and memory disorders in 5XFAD mice. Behav Brain Res 2014; 274: 302-6.
[http://dx.doi.org/10.1016/j.bbr.2014.08.034] [PMID: 25172181]
[27]
Cataldo AM, Peterhoff CM, Troncoso JC, Gomez-Isla T, Hyman BT, Nixon RA. Endocytic pathway abnormalities precede amyloid beta deposition in sporadic Alzheimer’s disease and Down syndrome: Differential effects of APOE genotype and presenilin mutations. Am J Pathol 2000; 157(1): 277-86.
[http://dx.doi.org/10.1016/S0002-9440(10)64538-5] [PMID: 10880397]
[28]
Reddy A, Caler EV, Andrews NW. Plasma membrane repair is mediated by Ca(2+)-regulated exocytosis of lysosomes. Cell 2001; 106(2): 157-69.
[http://dx.doi.org/10.1016/S0092-8674(01)00421-4] [PMID: 11511344]
[29]
Sugita S, Han W, Butz S, et al. Synaptotagmin VII as a plasma membrane Ca(2+) sensor in exocytosis. Neuron 2001; 30(2): 459-73.
[http://dx.doi.org/10.1016/S0896-6273(01)00290-2] [PMID: 11395007]
[30]
Virmani T, Han W, Liu X, Südhof TC, Kavalali ET. Synaptotagmin 7 splice variants differentially regulate synaptic vesicle recycling. EMBO J 2003; 22(20): 5347-57.
[http://dx.doi.org/10.1093/emboj/cdg514] [PMID: 14532108]
[31]
Bao H, Yang X, Zhuang Y, et al. The effects of poloxamer 188 on the autophagy induced by traumatic brain injury. Neurosci Lett 2016; 634: 7-12.
[http://dx.doi.org/10.1016/j.neulet.2016.09.052] [PMID: 27693566]
[32]
Bao HJ, Wang T, Zhang MY, et al. Poloxamer-188 attenuates TBI-induced blood-brain barrier damage leading to decreased brain edema and reduced cellular death. Neurochem Res 2012; 37(12): 2856-67.
[http://dx.doi.org/10.1007/s11064-012-0880-4] [PMID: 23011204]
[33]
Bartos JA, Matsuura TR, Tsangaris A, et al. Intracoronary poloxamer 188 prevents reperfusion injury in a porcine model of ST-segment elevation myocardial infarction. JACC Basic Transl Sci 2016; 1(4): 224-34.
[http://dx.doi.org/10.1016/j.jacbts.2016.04.001] [PMID: 27695713]
[34]
Czeiszperger TL, Wang MP, Chung CS. Membrane stabilizer Poloxamer 188 improves yield of primary isolated rat cardiomyocytes without impairing function. Physiol Rep 2020; 8(4): e14382.
[http://dx.doi.org/10.14814/phy2.14382] [PMID: 32109347]
[35]
Gu JH, Ge JB, Li M, Xu HD, Wu F, Qin ZH. Poloxamer 188 protects neurons against ischemia/reperfusion injury through preserving integrity of cell membranes and blood brain barrier. PLoS One 2013; 8(4): e61641.
[http://dx.doi.org/10.1371/journal.pone.0061641] [PMID: 23613890]
[36]
Inyang E, Abhyankar V, Chen B, Cho M. Modulation of in vitro brain endothelium by mechanical trauma: Structural and functional restoration by poloxamer 188. Sci Rep 2020; 10(1): 3054.
[http://dx.doi.org/10.1038/s41598-020-59888-2] [PMID: 32080247]
[37]
Juneman EB, Saleh L, Lancaster JJ, Thai HM, Markham B, Goldman S. The effects of poloxamer-188 on left ventricular function in chronic heart failure after myocardial infarction. J Cardiovasc Pharmacol 2012; 60(3): 293-8.
[http://dx.doi.org/10.1097/FJC.0b013e31825f6f88] [PMID: 22653419]
[38]
Lotze FP, Riess ML. Poloxamer 188 Exerts direct protective effects on mouse brain microvascular endothelial cells in an in vitro traumatic brain injury model. Biomedicines 2021; 9(8): 1043.
[http://dx.doi.org/10.3390/biomedicines9081043] [PMID: 34440247]
[39]
Luo C, Li Q, Gao Y, et al. Poloxamer 188 attenuates cerebral hypoxia/ischemia injury in parallel with preventing mitochondrial membrane permeabilization and autophagic activation. J Mol Neurosci 2015; 56(4): 988-98.
[http://dx.doi.org/10.1007/s12031-015-0568-8] [PMID: 25966641]
[40]
Luo CL, Chen XP, Li LL, et al. Poloxamer 188 attenuates in vitro traumatic brain injury-induced mitochondrial and lysosomal membrane permeabilization damage in cultured primary neurons. J Neurotrauma 2013; 30(7): 597-607.
[http://dx.doi.org/10.1089/neu.2012.2425] [PMID: 23186154]
[41]
Markham BE, Kernodle S, Nemzek J, Wilkinson JE, Sigler R. Chronic dosing with membrane sealant poloxamer 188 nf improves respiratory dysfunction in dystrophic Mdx and Mdx/utrophin-/- mice. PLoS One 2015; 10(8): e0134832.
[http://dx.doi.org/10.1371/journal.pone.0134832] [PMID: 26248188]
[42]
Plataki M, Lee YD, Rasmussen DL, Hubmayr RD. Poloxamer 188 facilitates the repair of alveolus resident cells in ventilator-injured lungs. Am J Respir Crit Care Med 2011; 184(8): 939-47.
[http://dx.doi.org/10.1164/rccm.201104-0647OC] [PMID: 21778295]
[43]
Salzman MM, Bartos JA, Yannopoulos D, Riess ML. Poloxamer 188 protects isolated adult mouse cardiomyocytes from reoxygenation injury. Pharmacol Res Perspect 2020; 8(6): e00639.
[http://dx.doi.org/10.1002/prp2.639] [PMID: 33073927]
[44]
Suzuki N, Akiyama T, Takahashi T, et al. Continuous administration of poloxamer 188 reduces overload-induced muscular atrophy in dysferlin-deficient SJL mice. Neurosci Res 2012; 72(2): 181-6.
[http://dx.doi.org/10.1016/j.neures.2011.10.005] [PMID: 22044584]
[45]
Tang SE, Liao WI, Pao HP, et al. Poloxamer 188 attenuates ischemia-reperfusion-induced lung injury by maintaining cell membrane integrity and inhibiting multiple signaling pathways. Front Pharmacol 2021; 12: 650573.
[http://dx.doi.org/10.3389/fphar.2021.650573] [PMID: 34335242]
[46]
Walters TJ, Mase VJ Jr, Roe JL, Dubick MA, Christy RJ. Poloxamer-188 reduces muscular edema after tourniquet-induced ischemia-reperfusion injury in rats. J Trauma 2011; 70(5): 1192-7.
[http://dx.doi.org/10.1097/TA.0b013e318217879a] [PMID: 21610433]
[47]
Wang T, Chen X, Wang Z, et al. Poloxamer-188 can attenuate blood-brain barrier damage to exert neuroprotective effect in mice intracerebral hemorrhage model. J Mol Neurosci 2015; 55(1): 240-50.
[http://dx.doi.org/10.1007/s12031-014-0313-8] [PMID: 24770901]
[48]
Wong SW, Yao Y, Hong Y, et al. Preventive effects of poloxamer 188 on muscle cell damage mechanics under oxidative stress. Ann Biomed Eng 2017; 45(4): 1083-92.
[http://dx.doi.org/10.1007/s10439-016-1733-0] [PMID: 27650939]
[49]
Yuhua S, Ligen L, Jiake C, Tongzhu S. Effect of Poloxamer 188 on deepening of deep second-degree burn wounds in the early stage. Burns 2012; 38(1): 95-101.
[http://dx.doi.org/10.1016/j.burns.2010.06.002] [PMID: 22079539]
[50]
Zhang Y, Chopp M, Emanuele M, et al. Treatment of traumatic brain injury with vepoloxamer (purified poloxamer 188). J Neurotrauma 2018; 35(4): 661-70.
[http://dx.doi.org/10.1089/neu.2017.5284] [PMID: 29121826]
[51]
DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener 2019; 14(1): 32.
[http://dx.doi.org/10.1186/s13024-019-0333-5] [PMID: 31375134]
[52]
Tam JH, Seah C, Pasternak SH. The amyloid precursor protein is rapidly transported from the golgi apparatus to the lysosome and where it is processed into beta-amyloid. Mol Brain 2014; 7(1): 54.
[http://dx.doi.org/10.1186/s13041-014-0054-1] [PMID: 25085554]
[53]
Pasternak SH, Bagshaw RD, Guiral M, et al. Presenilin-1, nicastrin, amyloid precursor protein, and gamma-secretase activity are co-localized in the lysosomal membrane. J Biol Chem 2003; 278(29): 26687-94.
[http://dx.doi.org/10.1074/jbc.M304009200] [PMID: 12736250]
[54]
Lee JH, Yu WH, Kumar A, et al. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 2010; 141(7): 1146-58.
[http://dx.doi.org/10.1016/j.cell.2010.05.008] [PMID: 20541250]
[55]
Lee JH, McBrayer MK, Wolfe DM, et al. Presenilin 1 maintains lysosomal Ca(2+) homeostasis via TRPML1 by regulating vATpase-mediated lysosome acidification. Cell Rep 2015; 12(9): 1430-44.
[http://dx.doi.org/10.1016/j.celrep.2015.07.050] [PMID: 26299959]
[56]
Condello C, Yuan P, Schain A, Grutzendler J. Microglia constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques. Nat Commun 2015; 6(1): 6176.
[http://dx.doi.org/10.1038/ncomms7176] [PMID: 25630253]
[57]
Hickman SE, Allison EK, El Khoury J. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci 2008; 28(33): 8354-60.
[http://dx.doi.org/10.1523/JNEUROSCI.0616-08.2008] [PMID: 18701698]
[58]
Bachiller S, Jiménez-Ferrer I, Paulus A, et al. Microglia in neurological diseases: A road map to brain-disease dependent-inflammatory response. Front Cell Neurosci 2018; 12: 488.
[http://dx.doi.org/10.3389/fncel.2018.00488] [PMID: 30618635]
[59]
Ballatore C, Lee VM, Trojanowski JQ. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci 2007; 8(9): 663-72.
[http://dx.doi.org/10.1038/nrn2194] [PMID: 17684513]
[60]
Alonso AC, Zaidi T, Grundke-Iqbal I, Iqbal K. Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proc Natl Acad Sci USA 1994; 91(12): 5562-6.
[http://dx.doi.org/10.1073/pnas.91.12.5562] [PMID: 8202528]
[61]
He Z, Guo JL, McBride JD, et al. Amyloid-β plaques enhance Alzheimer’s brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation. Nat Med 2018; 24(1): 29-38.
[http://dx.doi.org/10.1038/nm.4443] [PMID: 29200205]
[62]
McDermott JR, Gibson AM. Degradation of Alzheimer’s beta-amyloid protein by human cathepsin D. Neuroreport 1996; 7(13): 2163-6.
[http://dx.doi.org/10.1097/00001756-199609020-00021] [PMID: 8930981]
[63]
Hamazaki H. Cathepsin D is involved in the clearance of Alzheimer’s beta-amyloid protein. FEBS Lett 1996; 396(2-3): 139-42.
[http://dx.doi.org/10.1016/0014-5793(96)01087-3] [PMID: 8914975]
[64]
Kenessey A, Nacharaju P, Ko LW, Yen SH. Degradation of tau by lysosomal enzyme cathepsin D: Implication for Alzheimer neurofibrillary degeneration. J Neurochem 1997; 69(5): 2026-38.
[http://dx.doi.org/10.1046/j.1471-4159.1997.69052026.x] [PMID: 9349548]
[65]
Monterrat C, Grise F, Benassy MN, Hémar A, Lang J. The calcium-sensing protein synaptotagmin 7 is expressed on different endosomal compartments in endocrine, neuroendocrine cells or neurons but not on large dense core vesicles. Histochem Cell Biol 2007; 127(6): 625-32.
[http://dx.doi.org/10.1007/s00418-007-0271-0] [PMID: 17277932]
[66]
Vevea JD, Kusick GF, Courtney KC, Chen E, Watanabe S, Chapman ER. Synaptotagmin 7 is targeted to the axonal plasma membrane through γ-secretase processing to promote synaptic vesicle docking in mouse hippocampal neurons. eLife 2021; 10: e67261.
[http://dx.doi.org/10.7554/eLife.67261] [PMID: 34543184]
[67]
Barthet G, Jordà-Siquier T, Rumi-Masante J, Bernadou F, Müller U, Mulle C. Presenilin-mediated cleavage of APP regulates synaptotagmin-7 and presynaptic plasticity. Nat Commun 2018; 9(1): 4780.
[http://dx.doi.org/10.1038/s41467-018-06813-x] [PMID: 30429473]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy