Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Genetic Markers as Predictors for Response to Treatment and Possible Therapeutic Targets in Medulloblastoma

Author(s): Perla-Lidia Pérez-Pineda, Rocío Ortiz-Butrón, Juan-Carlos Pérez-De Marcos, Laura M. Hernández-Regino, Marta-Margarita Zapata-Tarrés and Luz-María Torres-Espíndola*

Volume 22, Issue 5, 2023

Published on: 15 June, 2022

Page: [634 - 642] Pages: 9

DOI: 10.2174/1871527321666220509141030

open access plus

Abstract

Background: Medulloblastomas (MB) are the most common malignant brain tumors in the pediatric age. In 2021, WHO categorized medulloblastomas into two groups: molecularly defined and histologically defined medulloblastomas. Molecularly defined medulloblastomas are divided into WNTactivated medulloblastoma, SHH-activated and TP53-wildtype medulloblastoma, SHH-activated, and TP53-mutant and non-WNT/non-SHH medulloblastoma, which include Group 3 (MYC) and Group 4 (CDK6 and MYCN). In this paper, we will focus on molecularly defined medulloblastomas.

Objective: This paper aims to review the literature in order to describe the molecular structure of the medulloblastoma groups and to emphasize the importance of genetic predictors in medulloblastoma that can be used in clinical practice, either as a prognostic tool or as a therapeutic target in the future.

Results: Each molecular subtype of medulloblastoma presents a different prognosis, and the molecular subtype with the best prognosis is medulloblastoma-activated WNT. It has even been observed that a reduction in the intensity of the combined treatment does not modify the prognosis of the patients, resulting in even fewer adverse effects due to the treatment. On the other hand, it was observed that the subtypes with the worst prognosis are medulloblastomas with activated MYC and medulloblastomas with activated SHH and mutated TP53, due to their high capacity to metastasize or to their radio-resistance. However, a new target therapy has emerged that could help improve the prognosis in these patients.

Conclusion: The deeper knowledge of the molecular pathways involved in the appearance and progression of medulloblastomas will allow us to offer a prognosis at the time of diagnosis and more specific treatments through the development of the targeted therapy.

Keywords: Medulloblastoma, sonic hedgehog, wingless, MYC, MYCN, therapy.

Graphical Abstract

[1]
Polivka J, Polivka J Jr, Krakorova K, Peterka M, Topolcan O. Current status of biomarker research in neurology. EPMA J 2016; 7(1): 14.
[http://dx.doi.org/10.1186/s13167-016-0063-5] [PMID: 27379174]
[2]
Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: A summary. 5th ed. Lyon (France): International Agency for Research on Cancer 2021. Available from: https://publications.iarc.fr/601
[3]
Weizmann Institute of Science. GeneCards. Available from: https://www.genecards.org/cgi-bin/carddisp.pl?gene=MYCN&keywords=mycn (Accessed on: Jul 28, 2021).
[4]
Skoda AM, Simovic D, Karin V, Kardum V, Vranic S, Serman L. The role of the Hedgehog signaling pathway in cancer: A comprehensive review. Bosn J Basic Med Sci 2018; 18(1): 8-20.
[http://dx.doi.org/10.17305/bjbms.2018.2756] [PMID: 29274272]
[5]
Klinger PH, Andrade AF, Delsin LE, et al. Inhibition of SHH pathway mechanisms by arsenic trioxide in pediatric medulloblastomas: A comprehensive literature review. Genet Mol Res 2017; 16(1): 10-22.
[http://dx.doi.org/10.4238/gmr16019412] [PMID: 28218785]
[6]
Ramaswamy V, Nör C, Taylor MD. Erratum: P53 and Medulloblastoma. Cold Spring Harb Perspect Med 2016; 6(4): a029579.
[http://dx.doi.org/10.1101/cshperspect.a029579] [PMID: 27037421]
[7]
DeSouza RM, Jones BR, Lowis SP, Kurian KM. Pediatric medulloblastoma - update on molecular classification driving targeted therapies. Front Oncol 2014; 4: 176.
[http://dx.doi.org/10.3389/fonc.2014.00176] [PMID: 25101241]
[8]
Jiang T, Zhang Y, Wang J, et al. A retrospective study of progression-free and overall survival in pediatric medulloblastoma based on molecular subgroup classification: A single-institution experience. Front Neurol 2017; 8: 198.
[http://dx.doi.org/10.3389/fneur.2017.00198] [PMID: 28553259]
[9]
Liang L, Coudière-Morrison L, Tatari N, et al. Werbowetski- Ogilvie TE. CD271+ cells are diagnostic and prognostic and exhibit elevated MAPK activity in SHH medulloblastoma. Cancer Res 2018; 78(16): 4745-59.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-0027] [PMID: 29930101]
[10]
Li Y, Song Q, Day BW. Phase I and phase II sonidegib and vismodegib clinical trials for the treatment of paediatric and adult MB patients: A systemic review and meta-analysis. Acta Neuropathol Commun 2019; 7(1): 123.
[http://dx.doi.org/10.1186/s40478-019-0773-8] [PMID: 31362788]
[11]
National Library of Medicine (US), National Center for Biotechnology Information. Available from: https://www.ncbi.nlm.nih.gov/gene/ (Accessed on: Jun 30, 2021).
[12]
Dang CV. MYC on the path to cancer. Cell 149(1): 22-35.
[http://dx.doi.org/10.1016/j.cell.2012.03.003]
[13]
Raisch J, Côté-Biron A, Rivard N. A role for the WNT co-receptor LRP6 in pathogenesis and therapy of epithelial cancers. Cancers (Basel) 2019; 11(8): 1162.
[http://dx.doi.org/10.3390/cancers11081162] [PMID: 31412666]
[14]
Pei Y, Moore CE, Wang J, et al. An animal model of MYC-driven medulloblastoma. Cancer Cell 2012; 21(2): 155-67.
[http://dx.doi.org/10.1016/j.ccr.2011.12.021] [PMID: 22340590]
[15]
Chaturvedi NK, Mahapatra S, Kesherwani V, et al. Role of protein arginine methyltransferase 5 in group 3 (MYC-driven) Medulloblastoma. BMC Cancer 2019; 19(1): 1056.
[http://dx.doi.org/10.1186/s12885-019-6291-z] [PMID: 31694585]
[16]
Natsumeda M, Liu Y, Nakata S, et al. Inhibition of enhancer of zest homologue 2 is a potential therapeutic target for high-MYC medulloblastoma. Neuropathology 2019; 39(2): 71-7.
[http://dx.doi.org/10.1111/neup.12534] [PMID: 30632221]
[17]
Lee C, Rudneva VA, Erkek S, et al. Lsd1 as a therapeutic target in Gfi1-activated medulloblastoma. Nat Commun 2019; 10(1): 332.
[http://dx.doi.org/10.1038/s41467-018-08269-5] [PMID: 30659187]
[18]
Hussain MS, Baig SM, Neumann S, et al. CDK6 associates with the centrosome during mitosis and is mutated in a large Pakistani family with primary microcephaly. Hum Mol Genet 2013; 22(25): 5199-214.
[http://dx.doi.org/10.1093/hmg/ddt374] [PMID: 23918663]
[19]
Richards MW, Burgess SG, Poon E, et al. Structural basis of N-Myc binding by Aurora-A and its destabilization by kinase inhibitors. Proc Natl Acad Sci USA 2016; 113(48): 13726-31.
[http://dx.doi.org/10.1073/pnas.1610626113] [PMID: 27837025]
[20]
Shrestha S, Morcavallo A, Gorrini C, Chesler L. Biological role of MYCN in medulloblastoma: Novel therapeutic opportunities and challenges ahead. Front Oncol 2021; 11: 694320.
[http://dx.doi.org/10.3389/fonc.2021.694320] [PMID: 34195095]
[21]
Hutter S, Bolin S, Weishaupt H, Swartling FJ. Modeling and targeting MYC genes in childhood brain tumors. Genes (Basel) 2017; 8(4): 107.
[http://dx.doi.org/10.3390/genes8040107] [PMID: 28333115]
[22]
Di Giulio S, Colicchia V, Pastorino F, et al. A combination of PARP and CHK1 inhibitors efficiently antagonizes MYCN-driven tumors. Oncogene 2021; 40(43): 6143-52.
[http://dx.doi.org/10.1038/s41388-021-02003-0] [PMID: 34508175]
[23]
Raleigh DR, Choksi PK, Krup AL, Mayer W, Santos N, Reiter JF. Hedgehog signaling drives medulloblastoma growth via CDK6. J Clin Invest 2018; 128(1): 120-4.
[http://dx.doi.org/10.1172/JCI92710] [PMID: 29202464]
[24]
Bejsovec A. Wingless Signaling: A genetic journey from morphogenesis to metastasis. Genetics 2018; 208(4): 1311-36.
[http://dx.doi.org/10.1534/genetics.117.300157] [PMID: 29618590]
[25]
Schunk SJ, Floege J, Fliser D, Speer T. WNT-β-catenin signalling - a versatile player in kidney injury and repair. Nat Rev Nephrol 2021; 17(3): 172-84.
[http://dx.doi.org/10.1038/s41581-020-00343-w] [PMID: 32989282]
[26]
Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 2017; 169(6): 985-99.
[27]
Eid AM, Heabah NAE. Medulloblastoma: Clinicopathological parameters, risk stratification, and survival analysis of immunohistochemically validated molecular subgroups. J Egypt Natl Canc Inst 2021; 33(1): 6.
[http://dx.doi.org/10.1186/s43046-021-00060-w] [PMID: 33555447]
[28]
Manoranjan B, Venugopal C, Bakhshinyan D, et al. Wnt activation as a therapeutic strategy in medulloblastoma. Nat Commun 2020; 11(1): 4323.
[29]
Gajjar A, Pfister SM, Taylor MD, Gilbertson RJ. Molecular insights into pediatric brain tumors have the potential to transform therapy. Clin Cancer Res 2014; 20(22): 5630-40.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0833] [PMID: 25398846]
[30]
Menyhárt O, Győrffy B. Molecular stratifications, biomarker candidates and new therapeutic options in current medulloblastoma treatment approaches. Cancer Metastasis Rev 2020; 39(1): 211-33.
[http://dx.doi.org/10.1007/s10555-020-09854-1] [PMID: 31970590]
[31]
Korshunov A, Sahm F, Zheludkova O, et al. DNA methylation profiling is a method of choice for molecular verification of pediatric WNT-activated medulloblastomas. Neuro-oncol 2019; 21(2): 214-21.
[http://dx.doi.org/10.1093/neuonc/noy155] [PMID: 30252101]

© 2024 Bentham Science Publishers | Privacy Policy