Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Structure-Activity Relationship Insight of Naturally Occurring Bioactive Molecules and Their Derivatives Against Non-Small Cell Lung Cancer: A Comprehensive Review

Author(s): Subham Das, Shubham Roy, Seikh Batin Rahaman, Saleem Akbar, Bahar Ahmed*, Debojyoti Halder, Anu Kunnath Ramachandran and Alex Joseph*

Volume 29, Issue 39, 2022

Published on: 15 August, 2022

Page: [6030 - 6062] Pages: 33

DOI: 10.2174/0929867329666220509112423

Price: $65

Abstract

Background: Non-small cell lung cancer (NSCLC) is a deadly disease that affects millions globally and its treatment includes surgery, chemotherapy, and radiotherapy. Chemotherapy and radiotherapy have many disadvantages, which include potential harmful side effects. Due to the widespread use of drugs in lung cancer, drug treatment becomes challenging due to multidrug resistance and adverse reactions. According to the recent findings, natural products (NPs) and their derivatives are being used to inhibit and suppress cancer cells.

Objective: Our objective is to highlight the importance of phytochemicals for treating NSCLC by focusing on the structural features essential for the desired activity with fewer side effects compared to synthetic molecules.

Methods: This review incorporated data from the most recent literature, including in vitro, in vivo, nanoformulation-based recent advancements, and clinical trials, as well as the structure-activity relationship (SAR), described for a variety of possible natural bioactive molecules in the treatment of NSCLC.

Results: The analysis of data from recent in vitro, in vivo studies and ongoing clinical trials are highlighted. The SAR studies of potential NPs signify the presence of several common structural features that can be used to guide future drug design and development.

Conclusion: The role of NPs in the battle against NSCLC can be effective, as evidenced by their structural diversity and affinity toward various molecular targets. The main purpose of the review is to gather information about NPs used in the treatment of NSCLC.

Keywords: Lung cancer, natural products, treatments, chemotherapy, SAR, machine learning, medicinal chemistry.

[1]
Sun, L.; Yim, W.S.; Fahey, P.; Wang, S.; Zhu, X.; Qiao, J.; Lai, H.; Lin, L. Investigation on advanced non-small-cell lung cancer among elderly patients treated with Chinese herbal medicine versus chemotherapy: A pooled analysis of individual data. Evid. Based Complement. Alternat. Med., 2019, 2019, 1898345.
[2]
Zappa, C.; Mousa, S.A. Non-small cell lung cancer: Current treatment and future advances. Transl. Lung Cancer Res., 2016, 5(3), 288-300.
[http://dx.doi.org/10.21037/tlcr.2016.06.07] [PMID: 27413711]
[3]
Surien, O.; Ghazali, A.R.; Masre, S.F. Lung cancers and the roles of natural compounds as potential chemotherapeutic and chemopreventive agents. Biomed. Pharmacol. J., 2019, 12, 85-98.
[http://dx.doi.org/10.13005/bpj/1617]
[4]
Yuan, M.; Huang, L-L.; Chen, J-H.; Wu, J.; Xu, Q. The emerging treatment landscape of targeted therapy in non-small-cell lung cancer. Signal Transduct. Target. Ther., 2019, 4(1), 61.
[http://dx.doi.org/10.1038/s41392-019-0099-9] [PMID: 31871778]
[5]
Sato, M.; Shames, D.S.; Gazdar, A.F.; Minna, J.D. A translational view of the molecular pathogenesis of lung cancer. J. Thorac. Oncol., 2007, 2(4), 327-343.
[http://dx.doi.org/10.1097/01.JTO.0000263718.69320.4c] [PMID: 17409807]
[6]
Sasaki, T.; Rodig, S.J.; Chirieac, L.R.; Jänne, P.A. The biology and treatment of EML4-ALK non-small cell lung cancer. Eur. J. Cancer, 2010, 46(10), 1773-1780.
[http://dx.doi.org/10.1016/j.ejca.2010.04.002] [PMID: 20418096]
[7]
Challenges, F. Nature outlook: Targeting mutations that drive lung cancer. Nature, 2020.
[8]
Barnard, W.G. The nature of the “oat-celled sarcoma” of the mediastinum. J. Pathol. Bacteriol., 1926, 29(3), 241-244.
[http://dx.doi.org/10.1002/path.1700290304]
[9]
Azzopardi, J.G. Oat-cell carcinoma of the bronchus. J. Pathol. Bacteriol., 1959, 78(2), 513-519.
[http://dx.doi.org/10.1002/path.1700780218] [PMID: 13795444]
[10]
Watson, W.L.; Berg, J.W. Oat cell lung cancer. Cancer, 1962, 15(4), 759-768.
[http://dx.doi.org/10.1002/1097-0142(196207/08)15:4<759::AID-CNCR2820150410>3.0.CO;2-6] [PMID: 14005321]
[11]
Huang, M.; Lu, J.J.; Ding, J. Natural products in cancer therapy: Past, present and future. Nat. Prod. Bioprospect., 2021, 11(1), 5-13.
[http://dx.doi.org/10.1007/s13659-020-00293-7] [PMID: 33389713]
[12]
Rebuzzi, S.E.; Zullo, L.; Rossi, G.; Grassi, M.; Murianni, V.; Tagliamento, M.; Prelaj, A.; Coco, S.; Longo, L.; Dal Bello, M.G.; Alama, A.; Dellepiane, C.; Bennicelli, E.; Malapelle, U.; Genova, C. Novel emerging molecular targets in non-small cell lung cancer. Int. J. Mol. Sci., 2021, 22(5), 1-25.
[http://dx.doi.org/10.3390/ijms22052625] [PMID: 33807876]
[13]
Zheng, S. MTOR kinase mutations and methods of use thereof. US010551384B2, 2020.
[14]
Jane, V. Macrocyclic peptides and derivatives thereof with opioid activity. US20200109168A1, 2020.
[15]
Glenn, C. Novel steroids and methods of manufacture. US20200199171A1, 2020.
[16]
Apcher, Sébastien; Pierson, Alison; Boulpicante, Mathilde; Dolor, Renko Zafiarisoa; Alami, Mouad Compounds, composition and uses thereof for treating cancer. US20200297741A1, 2020.
[17]
Fu, Jiping; Lou, Yan Tetrahydro-1h-Cyclopenta[Cd]Indene derivatives as hypoxia inducible factor-2(alpha) inhibitors. US20200361855A1, 2020.
[18]
Shengwu, HUANG; Huang, Ting Uses of ergosterol combined with gefitinib, preparation methods of liposome and freeze-dried powder thereof. US20210046090A1, 2021.
[19]
Derek Shieh Tan, A. V. Spiroketals and uses thereof. US20210069082A1, 2021.
[20]
Clet Niyikiza, V. M. M. Gamma polyglutamated methotrexate and uses thereof. US20210154196A1, 2021.
[21]
Kwon, Y. J.; Lugin, M. Multimodal Cancer Therapy Comprising Chimeric Viral/Nonviral Nanoparticles and Anticancer Agents. US011021545B2, 2021.
[22]
Miller, Y.E. Pathogenesis of lung cancer: 100 year report. Am. J. Respir. Cell Mol. Biol., 2005, 33(3), 216-223.
[http://dx.doi.org/10.1165/rcmb.2005-0158OE] [PMID: 16107574]
[23]
Doll, R. On the etiology of lung cancer. J. Natl. Cancer Inst., 1950, 11(3), 638-640.
[PMID: 14824923]
[24]
Wynder, E.L.; Louis, S. Tobacco smoking as a possible etiologic factor. In: Bronchiogenic carcinoma a study of six hundred and eighty-four proved cases that the incidence of bronchiogenic carcinoma has greatly increased in the last half-century; Statistical Studies at the Charity, 2015.
[25]
Stayner, L.; Kuempel, E.; Gilbert, S.; Hein, M.; Dement, J. An epidemiological study of the role of chrysotile asbestos fibre dimensions in determining respiratory disease risk in exposed workers. 2008, 613-619.
[http://dx.doi.org/10.1136/oem.2007.035584]
[26]
Loon, A.J.M.; Van, ; Kant, I.J.; Swaen, G.M.H.; Goldbohm, R.A. Occupational exposure to carcinogens and risk of lung cancer: Results from the Netherlands cohort study. 1997, 817-824.
[27]
Spyratos, D.; Zarogoulidis, P.; Porpodis, K.; Tsakiridis, K.; Machairiotis, N.; Katsikogiannis, N.; Kougioumtzi, I.; Dryllis, G.; Kallianos, A.; Rapti, A.; Li, C. Occupational exposure and lung cancer. Mini-Review Artic., 2013, (13), S440.
[http://dx.doi.org/10.3978/j.issn.2072-1439.2013.07.09]
[28]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[29]
Tan, W.T.; Huq, S. Non-Small Cell Lung Cancer (NSCLC): Practice Essentials, Background, Pathophysiology. Available from: https://emedicine.medscape.com/article/279960-overview (accessed Apr 9, 2021).
[30]
Linnoila, I. Pathology of non-small cell lung cancer. New diagnostic approaches. Hematol. Oncol. Clin. North Am., 1990, 4(6), 1027-1051.
[PMID: 1962774]
[31]
Shi, Y.X.; Sheng, D.Q.; Cheng, L.; Song, X.Y. Current landscape of epigenetics in lung cancer: Focus on the mechanism and application. J. Oncol., 2019, 2019, 8107318.
[http://dx.doi.org/10.1155/2019/8107318] [PMID: 31889956]
[32]
Ansari, J.; Shackelford, R.E.; El-Osta, H. Epigenetics in non-small cell lung cancer: From basics to therapeutics. Transl. Lung Cancer Res., 2016, 5(2), 155-171.
[http://dx.doi.org/10.21037/tlcr.2016.02.02] [PMID: 27186511]
[33]
American Cancer Society. Lung cancer guide | what you need to know. Available from: https://www.cancer.org/cancer/lung-cancer.html
[34]
Lung cancer - non-small cell: risk factors and prevention. Available from: https://www.cancer.net/cancer-types/lung-cancer-non-small-cell/risk-factors-and-prevention
[35]
Chen, X.; Xu, B.; Li, Q.; Xu, X.; Li, X.; You, X.; Yu, Z. Genetic profile of non-small cell lung cancer (NSCLC): A hospital-based survey in Jinhua. Mol. Genet. Genomic Med., 2020, 8(9), e1398.
[http://dx.doi.org/10.1002/mgg3.1398] [PMID: 32657049]
[36]
Molina, J.R.; Yang, P.; Cassivi, S.D.; Schild, S.E.; Adjei, A.A. Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship. Mayo Clin. Proc., 2008, 83(5), 584-594.
[http://dx.doi.org/10.1016/S0025-6196(11)60735-0] [PMID: 18452692]
[37]
Künzli, N.; Tager, I.B. Air pollution: From lung to heart. Swiss Med. Wkly., 2005, 135(47-48), 697-702.
[PMID: 16511705]
[38]
Vineis, P.; Husgafvel-Pursiainen, K. Air pollution and cancer: Biomarker studies in human populations. Carcinogenesis, 2005, 26(11), 1846-1855.
[http://dx.doi.org/10.1093/carcin/bgi216] [PMID: 16123121]
[39]
Boffetta, P. Epidemiology of environmental and occupational cancer. Oncogene, 2004, 23(38), 6392-6403.
[http://dx.doi.org/10.1038/sj.onc.1207715] [PMID: 15322513]
[40]
Lung cancer stages: Survival rate, prognosis, and more. 2004.
[41]
Lung cancer - non-small cell: Stages. Cancer. Net., 2021.
[42]
Howington, J.A.; Blum, M.G.; Chang, A.C.; Balekian, A.A.; Murthy, S.C. Treatment of Stage I and II Non-Small Cell Lung Cancer : Diagnosis and Management of Lung Cancer, 3rd Ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest, 2013, 143(5), e278S-e313S.
[http://dx.doi.org/10.1378/chest.12-2359]
[43]
Ramalingam, S.; Belani, C. Systemic chemotherapy for advanced non-small cell lung cancer: Recent advances and future directions. Oncologist, 2008, 13(S1)(Suppl. 1), 5-13.
[http://dx.doi.org/10.1634/theoncologist.13-S1-5] [PMID: 18263769]
[44]
Masters, G.A.; Temin, S.; Azzoli, C.G.; Giaccone, G.; Baker, S., Jr; Brahmer, J.R.; Ellis, P.M.; Gajra, A.; Rackear, N.; Schiller, J.H.; Smith, T.J.; Strawn, J.R.; Trent, D.; Johnson, D.H.; Cancer, J.; Rackear, N.; Against, U.; Lauderdale, F.; Joan, H.; Johnson, D.H. Systemic therapy for stage IV non-small-cell lung cancer: American society of clinical oncology clinical practice guideline update. J. Clin. Oncol., 2015, 33(30), 3488-3515.
[http://dx.doi.org/10.1200/JCO.2015.62.1342] [PMID: 26324367]
[45]
Kelly, K.; Crowley, J.; Bunn, P.A., Jr; Presant, C.A.; Grevstad, P.K.; Moinpour, C.M.; Ramsey, S.D.; Wozniak, A.J.; Weiss, G.R.; Moore, D.F.; Israel, V.K.; Livingston, R.B.; Gandara, D.R. Randomized phase III trial of paclitaxel plus carboplatin versus vinorelbine plus cisplatin in the treatment of patients with advanced non--small-cell lung cancer: A Southwest Oncology Group trial. J. Clin. Oncol., 2001, 19(13), 3210-3218.
[http://dx.doi.org/10.1200/JCO.2001.19.13.3210] [PMID: 11432888]
[46]
Scagliotti, G.V.; De Marinis, F.; Rinaldi, M.; Crinò, L.; Gridelli, C.; Ricci, S.; Matano, E.; Boni, C.; Marangolo, M.; Failla, G.; Altavilla, G.; Adamo, V.; Ceribelli, A.; Clerici, M.; Di Costanzo, F.; Frontini, L.; Tonato, M.; Cancer, L. Phase III randomized trial comparing three platinum-based doublets in advanced non-small-cell lung cancer. J. Clin. Oncol., 2002, 20(21), 4285-4291.
[http://dx.doi.org/10.1200/JCO.2002.02.068] [PMID: 12409326]
[47]
Schiller, J.H.; Harrington, D.; Belani, C.P.; Langer, C.; Sandler, A.; Krook, J.; Zhu, J.; Johnson, D.H. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N. Engl. J. Med., 2002, 346(2), 92-98.
[http://dx.doi.org/10.1056/NEJMoa011954] [PMID: 11784875]
[48]
Fossella, F.; Pereira, J.R.; von Pawel, J.; Pluzanska, A.; Gorbounova, V.; Kaukel, E.; Mattson, K.V.; Ramlau, R.; Szczesna, A.; Fidias, P.; Millward, M.; Belani, C.P. Randomized, multinational, phase III study of docetaxel plus platinum combinations versus vinorelbine plus cisplatin for advanced non-small-cell lung cancer: The TAX 326 study group. J. Clin. Oncol., 2003, 21(16), 3016-3024.
[http://dx.doi.org/10.1200/JCO.2003.12.046] [PMID: 12837811]
[49]
Gridelli, C.; Ardizzoni, A.; Le Chevalier, T.; Manegold, C.; Perrone, F.; Thatcher, N.; van Zandwijk, N.; Di Maio, M.; Martelli, O.; De Marinis, F. Treatment of advanced non-small-cell lung cancer patients with ECOG performance status 2: Results of an European Experts Panel. Ann. Oncol., 2004, 15(3), 419-426.
[http://dx.doi.org/10.1093/annonc/mdh087] [PMID: 14998843]
[50]
Amini, A.; Yeh, N.; Gaspar, L.E.; Kavanagh, B.; Karam, S.D. Stereotactic body radiation therapy (SBRT) for lung cancer patients previously treated with conventional radiotherapy: A review. Radiat. Oncol., 2014, 9(1), 210.
[http://dx.doi.org/10.1186/1748-717X-9-210] [PMID: 25239200]
[51]
Grutters, J.P.C.; Kessels, A.G.H.; Pijls-Johannesma, M.; De Ruysscher, D.; Joore, M.A.; Lambin, P. Comparison of the effectiveness of radiotherapy with photons, protons and carbon-ions for non-small cell lung cancer: A meta-analysis. Radiother. Oncol., 2010, 95(1), 32-40.
[http://dx.doi.org/10.1016/j.radonc.2009.08.003] [PMID: 19733410]
[52]
Fakiris, A.J.; McGarry, R.C.; Yiannoutsos, C.T.; Papiez, L.; Williams, M.; Henderson, M.A.; Timmerman, R. Stereotactic body radiation therapy for early-stage non-small-cell lung carcinoma: Four-year results of a prospective phase II study. Int. J. Radiat. Oncol. Biol. Phys., 2009, 75(3), 677-682.
[http://dx.doi.org/10.1016/j.ijrobp.2008.11.042] [PMID: 19251380]
[53]
Timmerman, R.; Paulus, R.; Galvin, J.; Michalski, J.; Straube, W.; Bradley, J.; Fakiris, A.; Bezjak, A.; Videtic, G.; Johnstone, D.; Fowler, J.; Gore, E.; Choy, H. Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA, 2010, 303(11), 1070-1076.
[http://dx.doi.org/10.1001/jama.2010.261] [PMID: 20233825]
[54]
Inamura, K.; Takeuchi, K.; Togashi, Y.; Hatano, S.; Ninomiya, H.; Motoi, N.; Mun, M.Y.; Sakao, Y.; Okumura, S.; Nakagawa, K.; Soda, M.; Choi, Y.L.; Mano, H.; Ishikawa, Y. EML4-ALK lung cancers are characterized by rare other mutations, a TTF-1 cell lineage, an acinar histology, and young onset. Mod. Pathol., 2009, 22(4), 508-515.
[http://dx.doi.org/10.1038/modpathol.2009.2] [PMID: 19234440]
[55]
Kwak, E.L.; Bang, Y.J.; Camidge, D.R.; Shaw, A.T.; Solomon, B.; Maki, R.G.; Ou, S.H.; Dezube, B.J.; Jänne, P.A.; Costa, D.B.; Varella-Garcia, M.; Kim, W.H.; Lynch, T.J.; Fidias, P.; Stubbs, H.; Engelman, J.A.; Sequist, L.V.; Tan, W.; Gandhi, L.; Mino-Kenudson, M.; Wei, G.C.; Shreeve, S.M.; Ratain, M.J.; Settleman, J.; Christensen, J.G.; Haber, D.A.; Wilner, K.; Salgia, R.; Shapiro, G.I.; Clark, J.W.; Iafrate, A.J. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med., 2010, 363(18), 1693-1703.
[http://dx.doi.org/10.1056/NEJMoa1006448] [PMID: 20979469]
[56]
Togashi, Y.; Soda, M.; Sakata, S.; Sugawara, E.; Hatano, S.; Asaka, R.; Nakajima, T.; Mano, H.; Takeuchi, K. KLC1-ALK: A novel fusion in lung cancer identified using a formalin-fixed paraffin-embedded tissue only. PLoS One, 2012, 7(2), e31323.
[http://dx.doi.org/10.1371/journal.pone.0031323] [PMID: 22347464]
[57]
Steiling, K.; Ryan, J.; Brody, J.S.; Spira, A. The field of tissue injury in the lung and airway. Cancer Prev. Res. (Phila.), 2008, 1(6), 396-403.
[http://dx.doi.org/10.1158/1940-6207.CAPR-08-0174] [PMID: 19138985]
[58]
Brandes, J.C.; Ph, D.; Amin, A.R.M.R.; Ph, D.; Khuri, F.; Shin, D.M. Prevention of lung cancer : Future perspective with natural compounds. Tuberc. Respir. Dis. (Seoul), 2010, 69(1), 1-15.
[http://dx.doi.org/10.4046/trd.2010.69.1.1]
[59]
Sharif, T.; Emhemmed, F.; Fuhrmann, G. Towards new anticancer strategies by targeting cancer stem cells with phytochemical compounds. In: Cancer stem cells: The cutting age; , 2011; 23, pp. 431-454.
[60]
Linseisen, J.; Boshuizen, H.C.; Kiemeney, L.A.L.M.; Bu, F.L.; Ros, M.M.; Overvad, K.; Hansen, L.; Tjonneland, A.; Touillaud, M.; Kaaks, R.; Rohrmann, S.; Boeing, H.; No, U.; Trichopoulou, A.; Zylis, D.; Dilis, V.; Palli, D.; Sieri, S.; Vineis, P.; Tumino, R.; Panico, S.; Peeters, P.H.M.; Van Gils, C.H.; Lund, E.; Gram, I.T.; Braaten, T.; Martinez, C.; Manjer, J.; Wirfa, E.; Agudo, A.; Arriola, L.; Ardanaz, E.; Navarro, C.; Hallmans, G.; Rasmuson, T.; Key, T.J.; Roddam, A.W.; Bingham, S.; Slimani, N.; Bofetta, P.; Byrnes, G.; Norat, T.; Michaud, D.; Riboli, E. Fruits and vegetables consumption and the risk of histological subtypes of lung cancer in the european prospective investigation into cancer and nutrition; EPIC, 2010, pp. 357-371.
[http://dx.doi.org/10.1007/s10552-009-9468-y]
[61]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod., 2020, 83(3), 770-803.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01285] [PMID: 32162523]
[62]
Gorlova, O.Y.; Weng, S.F.; Zhang, Y.; Amos, C.I.; Spitz, M.R. Aggregation of cancer among relatives of never-smoking lung cancer patients. Int. J. Cancer, 2007, 121(1), 111-118.
[http://dx.doi.org/10.1002/ijc.22615] [PMID: 17304511]
[63]
Catelinois, O.; Rogel, A.; Laurier, D.; Billon, S.; Hemon, D.; Verger, P.; Tirmarche, M. Lung cancer attributable to indoor radon exposure in france: Impact of the risk models and uncertainty analysis. Environ. Health Perspect., 2006, 114(9), 1361-1366.
[http://dx.doi.org/10.1289/ehp.9070] [PMID: 16966089]
[64]
Bröker, L.E.; Giaccone, G. The role of new agents in the treatment of non-small cell lung cancer. Eur. J. Cancer, 2002, 38(18), 2347-2361.
[http://dx.doi.org/10.1016/S0959-8049(02)00457-4] [PMID: 12460778]
[65]
Visca, P.; Sebastiani, V.; Botti, C.; Diodoro, M.G.; Lasagni, R.P.; Romagnoli, F.; Brenna, A.; De Joannon, B.C.; Donnorso, R.P.; Lombardi, G.; Alo, P.L. Fatty acid synthase (FAS) is a marker of increased risk of recurrence in lung carcinoma. Anticancer Res., 2004, 24(6), 4169-4173.
[PMID: 15736468]
[66]
Hirsch, F.R.; Scagliotti, G.V.; Langer, C.J.; Varella-Garcia, M.; Franklin, W.A. Epidermal growth factor family of receptors in preneoplasia and lung cancer: Perspectives for targeted therapies. Lung Cancer, 2003, 41(Suppl. 1), S29-S42.
[http://dx.doi.org/10.1016/S0169-5002(03)00137-5] [PMID: 12867060]
[67]
Zhong, W.-L.; Qin, Y.; Chen, S.; Sun, T. Antitumor effect of natural product molecules against lung cancer. In: A Global Scientific VisionPrevention, Diagnosis, and Treatment of Lung Cancer; , 2017; p. 201.
[68]
Yang, Y.C.; Hsu, H.K.; Hwang, J.H.; Hong, S.J. Enhancement of glucose uptake in 3T3-L1 adipocytes by Toona sinensis leaf extract. Kaohsiung J. Med. Sci., 2003, 19(7), 327-333.
[http://dx.doi.org/10.1016/S1607-551X(09)70433-4] [PMID: 12926517]
[69]
Das, S.; Akbar, S.; Ahmed, B.; Dewangan, R.P.; Iqubal, A.; Pottoo, F.H.; Joseph, A. Structural Activity relationship-based medicinal perspectives of pyrimidine derivatives as anti-alzheimer’s agent: A comprehensive review. CNS Neurol. Disord. Drug Targets, 2022, 21(10), 926-939.
[http://dx.doi.org/10.2174/1871527320666210804161400] [PMID: 34348636]
[70]
Das, S.; Akbar, S.; Ahmed, B.; Dewangan, R.P.; Iqubal, M.K.; Iqubal, A.; Chawla, P.; Pottoo, F.H.; Joseph, A. Recent advancement of pyrazole scaffold based neuroprotective agents: A review. CNS Neurol. Disord. Drug Targets, 2022, 21(10), 940-951.
[http://dx.doi.org/10.2174/1871527320666210602152308] [PMID: 34080970]
[71]
Manoj, A.; Das, S.; Kunnath Ramachandran, A.; Alex, A.T.; Joseph, A. SGLT2 inhibitors, an accomplished development in field of medicinal chemistry: An extensive review. Future Med. Chem., 2020, 12(21), 1961-1990.
[http://dx.doi.org/10.4155/fmc-2020-0154] [PMID: 33124462]
[72]
Liu, Y.; You, Y.; Lu, J.; Chen, X.; Yang, Z. Recent advances in synthesis, bioactivity, and pharmacokinetics of pterostilbene, an important analog of resveratrol. Molecules, 2020, 25(21), 1-20.
[http://dx.doi.org/10.3390/molecules25215166] [PMID: 33171952]
[73]
Roberti, M.; Pizzirani, D.; Simoni, D.; Rondanin, R.; Baruchello, R.; Bonora, C.; Buscemi, F.; Grimaudo, S.; Tolomeo, M. Synthesis and biological evaluation of resveratrol and analogues as apoptosis-inducing agents. J. Med. Chem., 2003, 46(16), 3546-3554.
[http://dx.doi.org/10.1021/jm030785u] [PMID: 12877593]
[74]
Kausar, H.; Munagala, R.; Bansal, S.S.; Aqil, F.; Vadhanam, M.V.; Gupta, R.C.; Cucurbitacin, B. Cucurbitacin B potently suppresses non-small-cell lung cancer growth: Identification of intracellular thiols as critical targets. Cancer Lett., 2013, 332(1), 35-45.
[http://dx.doi.org/10.1016/j.canlet.2013.01.008] [PMID: 23340170]
[75]
Ge, W.; Chen, X.; Han, F.; Liu, Z.; Wang, T.; Wang, M.; Chen, Y.; Ding, Y.; Zhang, Q. Synthesis of cucurbitacin B derivatives as potential anti-hepatocellular carcinoma agents. Molecules, 2018, 23(12), 3345.
[http://dx.doi.org/10.3390/molecules23123345] [PMID: 30567327]
[76]
Pongrakhananon, V.; Nimmannit, U.; Luanpitpong, S.; Rojanasakul, Y.; Chanvorachote, P. Curcumin sensitizes non-small cell lung cancer cell anoikis through reactive oxygen species-mediated Bcl-2 downregulation. Apoptosis, 2010, 15(5), 574-585.
[http://dx.doi.org/10.1007/s10495-010-0461-4] [PMID: 20127174]
[77]
Ohori, H.; Yamakoshi, H.; Tomizawa, M.; Shibuya, M.; Kakudo, Y.; Takahashi, A.; Takahashi, S.; Kato, S.; Suzuki, T.; Ishioka, C.; Iwabuchi, Y.; Shibata, H. Synthesis and biological analysis of new curcumin analogues bearing an enhanced potential for the medicinal treatment of cancer. Mol. Cancer Ther., 2006, 5(10), 2563-2571.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0174] [PMID: 17041101]
[78]
He, L.; Bi, J.J.; Guo, Q.; Yu, Y.; Ye, X.F. Effects of emodin extracted from Chinese herbs on proliferation of non-small cell lung cancer and underlying mechanisms. Asian Pac. J. Cancer Prev., 2012, 13(4), 1505-1510.
[http://dx.doi.org/10.7314/APJCP.2012.13.4.1505] [PMID: 22799356]
[79]
Thimmegowda, N.R.; Park, C.; Shwetha, B.; Sakchaisri, K.; Liu, K.; Hwang, J.; Lee, S.; Jeong, S.J.; Soung, N.K.; Jang, J.H.; Ryoo, I.J.; Ahn, J.S.; Erikson, R.L.; Kim, B.Y. Synthesis and antitumor activity of natural compound aloe emodin derivatives. Chem. Biol. Drug Des., 2015, 85(5), 638-644.
[http://dx.doi.org/10.1111/cbdd.12448] [PMID: 25323822]
[80]
Lin, Y.; Xu, J.; Liao, H.; Li, L.; Pan, L. Piperine induces apoptosis of lung cancer A549 cells via p53-dependent mitochondrial signaling pathway. Tumour Biol., 2014, 35(4), 3305-3310.
[http://dx.doi.org/10.1007/s13277-013-1433-4] [PMID: 24272201]
[81]
Umadevi, P.; Deepti, K.; Venugopal, D.V.R. Synthesis, anticancer and antibacterial activities of piperine analogs. Med. Chem. Res., 2013, 22(11), 5466-5471.
[http://dx.doi.org/10.1007/s00044-013-0541-4]
[82]
Liu, J.; Yang, Z.; Kong, Y.; He, Y.; Xu, Y.; Cao, X. Antitumor activity of alantolactone in lung cancer cell lines NCI-H1299 and Anip973. J. Food Biochem., 2019, 43(9), e12972.
[http://dx.doi.org/10.1111/jfbc.12972] [PMID: 31489665]
[83]
Kumar, A.; Kumar, D.; Maurya, A.K.; Padwad, Y.S.; Agnihotri, V.K. Synthesis of new heterocyclic amino derivatives of alantolactone and their cytotoxic activity. J. Heterocycl. Chem., 2018, 55(12), 2715-2721.
[http://dx.doi.org/10.1002/jhet.3328]
[84]
Miao, F.; Yang, X.J.; Zhou, L.; Hu, H.J.; Zheng, F.; Ding, X.D.; Sun, D.M.; Zhou, C.D.; Sun, W. Structural modification of sanguinarine and chelerythrine and their antibacterial activity. Nat. Prod. Res., 2011, 25(9), 863-875.
[http://dx.doi.org/10.1080/14786419.2010.482055] [PMID: 21491327]
[85]
Tang, Z.H.; Cao, W.X.; Wang, Z.Y.; Lu, J.H.; Liu, B.; Chen, X.; Lu, J.J. Induction of reactive oxygen species-stimulated distinctive autophagy by chelerythrine in non-small cell lung cancer cells. Redox Biol., 2017, 12(March), 367-376.
[http://dx.doi.org/10.1016/j.redox.2017.03.009] [PMID: 28288416]
[86]
Halim, H.; Chunhacha, P.; Suwanborirux, K.; Chanvorachote, P. Anticancer and antimetastatic activities of Renieramycin M, a marine tetrahydroisoquinoline alkaloid, in human non-small cell lung cancer cells. Anticancer Res., 2011, 31(1), 193-201.
[PMID: 21273598]
[87]
Liu, W.; Dong, W.; Liao, X.; Yan, Z.; Guan, B.; Wang, N.; Liu, Z. Bioorganic & medicinal chemistry letters synthesis and cytotoxicity of (À) -Renieramycin G analogs. Bioorg. Med. Chem. Lett., 2011, 21(5), 1419-1421.
[http://dx.doi.org/10.1016/j.bmcl.2011.01.025] [PMID: 21295980]
[88]
Gomathinayagam, R.; Sowmyalakshmi, S.; Mardhatillah, F.; Kumar, R.; Akbarsha, M.A.; Damodaran, C. Anticancer mechanism of plumbagin, a natural compound, on non-small cell lung cancer cells. Anticancer Res., 2008, 28(2A), 785-792.
[PMID: 18507021]
[89]
Dandawate, P.; Khan, E.; Padhye, S.; Gaba, H.; Sinha, S.; Deshpande, J.; Venkateswara Swamy, K.; Khetmalas, M.; Ahmad, A.; Sarkar, F.H. Synthesis, characterization, molecular docking and cytotoxic activity of novel plumbagin hydrazones against breast cancer cells. Bioorg. Med. Chem. Lett., 2012, 22(9), 3104-3108.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.060] [PMID: 22483392]
[90]
Shen, J.; Ma, H.; Zhang, T.; Liu, H.; Yu, L.; Li, G.; Li, H.; Hu, M. Magnololinhibits the growth of non-small cell lung cancer via inhibiting microtubule polymerization. Cell. Physiol. Biochem., 2017, 42(5), 1789-1801.
[http://dx.doi.org/10.1159/000479458] [PMID: 28746938]
[91]
Maioli, M.; Basoli, V.; Carta, P.; Fabbri, D.; Dettori, M.A.; Cruciani, S.; Serra, P.A.; Delogu, G. Synthesis of magnolol and honokiol derivatives and their effect against hepatocarcinoma cells. PLoS One, 2018, 13(2), e0192178.
[http://dx.doi.org/10.1371/journal.pone.0192178] [PMID: 29415009]
[92]
Hu, Y.; Li, X.; Lin, L.; Liang, S.; Yan, J. Puerarin inhibits non-small cell lung cancer cell growth via the induction of apoptosis. Oncol. Rep., 2018, 39(4), 1731-1738.
[http://dx.doi.org/10.3892/or.2018.6234] [PMID: 29393465]
[93]
Li, X.F.; Yuan, T.; Xu, H.; Xin, X.; Zhao, G.; Wu, H.; Xiao, X. Whole-cell catalytic synthesis of puerarin monoesters and analysis of their antioxidant activities. J. Agric. Food Chem., 2019, 67(1), 299-307.
[http://dx.doi.org/10.1021/acs.jafc.8b05805] [PMID: 30558414]
[94]
Wei, J.; Yan, Y.; Chen, X.; Qian, L.; Zeng, S.; Li, Z.; Dai, S.; Gong, Z.; Xu, Z. The roles of plant-derived triptolide on non-small cell lung cancer. Oncol. Reesearch, 2019, 27(7), 849-858.
[http://dx.doi.org/10.3727/096504018X15447833065047] [PMID: 30982492]
[95]
Xu, H.; Tang, H.; Feng, H.; Li, Y. Design, synthesis and anticancer activity evaluation of novel C14 heterocycle substituted epi-triptolide. Eur. J. Med. Chem., 2014, 73, 46-55.
[http://dx.doi.org/10.1016/j.ejmech.2013.11.044] [PMID: 24378709]
[96]
Tang, W.J.; Wang, J.; Tong, X.; Shi, J.B.; Liu, X.H.; Li, J. Design and synthesis of celastrol derivatives as anticancer agents. Eur. J. Med. Chem., 2015, 95, 166-173.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.039] [PMID: 25812966]
[97]
Liu, Z.; Ma, L.; Wen, Z.S.; Hu, Z.; Wu, F.Q.; Li, W.; Liu, J.; Zhou, G.B. Cancerous inhibitor of PP2A is targeted by natural compound celastrol for degradation in non-small-cell lung cancer. Carcinogenesis, 2014, 35(4), 905-914.
[http://dx.doi.org/10.1093/carcin/bgt395] [PMID: 24293411]
[98]
Dao, V.T.; Gaspard, C.; Mayer, M.; Werner, G.H.; Nguyen, S.N.; Michelot, R.J. Synthesis and cytotoxicity of gossypol related compounds. Eur. J. Med. Chem., 2000, 35(9), 805-813.
[http://dx.doi.org/10.1016/S0223-5234(00)00165-3] [PMID: 11006482]
[99]
Wang, Y.; Lai, H.; Fan, X.; Luo, L.; Duan, F.; Jiang, Z.; Wang, Q.; Leung, E.L.H.; Liu, L.; Yao, X. Gossypol inhibits non-small cell lung cancer cells proliferation by targeting EGFRL858R/T790M. Front. Pharmacol., 2018, 9(JUL), 728.
[http://dx.doi.org/10.3389/fphar.2018.00728] [PMID: 30038571]
[100]
Yao, H.; Xu, F.; Wang, G.; Xie, S.; Li, W.; Yao, H.; Ma, C.; Zhu, Z.; Xu, J.; Xu, S. Design, synthesis, and biological evaluation of truncated deguelin derivatives as Hsp90 inhibitors. Eur. J. Med. Chem., 2019, 167, 485-498.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.014] [PMID: 30784881]
[101]
Li, W.; Gao, F.; Ma, X.; Wang, R.; Dong, X.; Wang, W. Deguelin inhibits non-small cell lung cancer via down-regulating Hexokinases II-mediated glycolysis. Oncotarget, 2017, 8(20), 32586-32599.
[http://dx.doi.org/10.18632/oncotarget.15937] [PMID: 28427230]
[102]
Zhang, S.; Li, X.; Zhang, F.; Yang, P.; Gao, X.; Song, Q. Preparation of yuanhuacine and relative daphne diterpene esters from Daphne genkwa and structure-activity relationship of potent inhibitory activity against DNA topoisomerase I. Bioorg. Med. Chem., 2006, 14(11), 3888-3895.
[http://dx.doi.org/10.1016/j.bmc.2006.01.055] [PMID: 16488610]
[103]
Kang, J.I.; Hong, J.Y.; Lee, H.J.; Bae, S.Y.; Jung, C.; Park, H.J.; Lee, S.K. Anti-tumor activity of yuanhuacine by regulating ampk/mtor signaling pathway and actin cytoskeleton organization in non-small cell lung cancer cells. PLoS One, 2015, 10(12), e0144368.
[http://dx.doi.org/10.1371/journal.pone.0144368] [PMID: 26656173]
[104]
Tanase, T.; Nagatsu, A.; Murakami, N.; Nagai, S.; Ueda, T.; Sakakibara, J.; Ando, H.; Hotta, Y.; Takeya, K.; Asano, M. Studies on cardiac ingredients of plants. XI. synthesis of new bufotoxin homologues utilizing scillarenin (the genuine aglycone of proscillaridin), and their biological activities. Chem. Pharm. Bull. (Tokyo), 1994, 42(11), 2256-2262.
[http://dx.doi.org/10.1248/cpb.42.2256]
[105]
Li, R.Z.; Fan, X.X.; Duan, F.G.; Jiang, Z.B.; Pan, H.D.; Luo, L.X.; Zhou, Y.L.; Li, Y.; Yao, Y.J.; Yao, X.J.; Leung, E.L.H.; Liu, L.; Proscillaridin, A. Proscillaridin A induces apoptosis and suppresses non-small-cell lung cancer tumor growth via calcium-induced DR4 upregulation. Cell Death Dis., 2018, 9(6), 696.
[http://dx.doi.org/10.1038/s41419-018-0733-4] [PMID: 29899551]
[106]
Iimura, S.; Uoto, K.; Ohsuki, S.; Chiba, J.; Yoshino, T.; Iwahana, M.; Jimbo, T.; Terasawa, H.; Soga, T. Orally active docetaxel analogue: Synthesis of 10-deoxy-10-C-morpholinoethyl docetaxel analogues. Bioorg. Med. Chem. Lett., 2001, 11(3), 407-410.
[http://dx.doi.org/10.1016/S0960-894X(00)00682-X] [PMID: 11212122]
[107]
Belani, C.P.; Eckardt, J. Development of docetaxel in advanced non-small-cell lung cancer. Lung Cancer, 2004, 46(Suppl. 2), S3-S11.
[http://dx.doi.org/10.1016/S0169-5002(04)80036-9] [PMID: 15698529]
[108]
Kingston, D.G.I.; Chaudhary, A.G.; Chordia, M.D.; Gharpure, M.; Gunatilaka, A.A.L.; Higgs, P.I.; Rimoldi, J.M.; Samala, L.; Jagtap, P.G.; Giannakakou, P.; Jiang, Y.Q.; Lin, C.M.; Hamel, E.; Long, B.H.; Fairchild, C.R.; Johnston, K.A. Synthesis and biological evaluation of 2-acyl analogues of paclitaxel (Taxol). J. Med. Chem., 1998, 41(19), 3715-3726.
[http://dx.doi.org/10.1021/jm980229d] [PMID: 9733497]
[109]
Ramalingam, S.; Belani, C.P. Paclitaxel for non-small cell lung cancer. Expert Opin. Pharmacother., 2004, 5(8), 1771-1780.
[http://dx.doi.org/10.1517/14656566.5.8.1771] [PMID: 15264992]
[110]
Shafiee, M.; Mohamadzade, E.; ShahidSales, S.; Khakpouri, S.; Maftouh, M.; Parizadeh, S.A.; Hasanian, S.M.; Avan, A. Current status and perspectives regarding the therapeutic potential of targeting egfr pathway by curcumin in lung cancer. Curr. Pharm. Des., 2017, 23(13), 2002-2008.
[http://dx.doi.org/10.2174/1381612823666170123143648] [PMID: 28117012]
[111]
Chen, P.; Huang, H-P.; Wang, Y.; Jin, J.; Long, W-G.; Chen, K.; Zhao, X-H.; Chen, C-G.; Li, J. Curcumin overcome primary gefitinib resistance in non-small-cell lung cancer cells through inducing autophagy-related cell death. J. Exp. Clin. Cancer Res., 2019, 38(1), 254.
[http://dx.doi.org/10.1186/s13046-019-1234-8] [PMID: 31196210]
[112]
Jin, H.; Qiao, F.; Wang, Y.; Xu, Y.; Shang, Y. Curcumin inhibits cell proliferation and induces apoptosis of human non-small cell lung cancer cells through the upregulation of miR-192-5p and suppression of PI3K/Akt signaling pathway. Oncol. Rep., 2015, 34(5), 2782-2789.
[http://dx.doi.org/10.3892/or.2015.4258] [PMID: 26351877]
[113]
Bracht, J.W.P.; Karachaliou, N.; Berenguer, J.; Pedraz-Valdunciel, C.; Filipska, M.; Codony-Servat, C.; Codony-Servat, J.; Rosell, R.; Rosell, R. Osimertinib and pterostilbene in EGFR-mutation-positive non-small cell lung cancer (NSCLC). Int. J. Biol. Sci., 2019, 15(12), 2607-2614.
[http://dx.doi.org/10.7150/ijbs.32889] [PMID: 31754333]
[114]
Liu, P.; Xiang, Y.; Liu, X.; Zhang, T.; Yang, R.; Chen, S.; Xu, L.; Yu, Q.; Zhao, H.; Zhang, L.; Liu, Y.; Si, Y.; Cucurbitacin, B. Cucurbitacin B induces the lysosomal degradation of EGFR and suppresses the CIP2A/PP2A/Akt signaling axis in gefitinib-resistant non-small cell lung cancer. Molecules, 2019, 24(3), 647.
[http://dx.doi.org/10.3390/molecules24030647] [PMID: 30759826]
[115]
Wang, Y.J.; Lin, J.F.; Cheng, L.H.; Chang, W.T.; Kao, Y.H.; Chang, M.M.; Wang, B.J.; Cheng, H.C. Pterostilbene prevents AKT-ERK axis-mediated polymerization of surface fibronectin on suspended lung cancer cells independently of apoptosis and suppresses metastasis. J. Hematol. Oncol., 2017, 10(1), 72.
[http://dx.doi.org/10.1186/s13045-017-0441-z] [PMID: 28327179]
[116]
Garg, S.; Kaul, S.; Wadhwa, R. Cucurbitacin B and Cancer Intervention: Chemistry, Biology and Mechanisms. Int. J. Oncol., 2018, 52(1), 19-37.
[http://dx.doi.org/10.3892/ijo.2017.4203] [PMID: 29138804]
[117]
Xu, X.; Zhang, X.; Zhang, Y.; Wang, Z. Curcumin suppresses the malignancy of non-small cell lung cancer by modulating the circ-PRKCA/miR-384/ITGB1 pathway. Biomed. Pharmacother., 2021, 138, 111439.
[http://dx.doi.org/10.1016/j.biopha.2021.111439] [PMID: 33684690]
[118]
Li, M.; Jin, S.; Cao, Y.; Xu, J.; Zhu, S.; Li, Z. Emodin regulates cell cycle of non-small lung cancer (NSCLC) cells through hyaluronan synthase 2 (HA2)-HA-CD44/receptor for hyaluronic acid-mediated motility (RHAMM) interaction-dependent signaling pathway. Cancer Cell Int., 2021, 21(1), 19.
[http://dx.doi.org/10.1186/s12935-020-01711-z] [PMID: 33407495]
[119]
Su, J.; Yan, Y.; Qu, J.; Xue, X.; Liu, Z.; Cai, H. Emodin induces apoptosis of lung cancer cells through ER stress and the TRIB3/NF-κB pathway. Oncol. Rep., 2017, 37(3), 1565-1572.
[http://dx.doi.org/10.3892/or.2017.5428] [PMID: 28184934]
[120]
Wang, J.; Zhang, Y.; Liu, X.; Wang, J.; Li, B.; Liu, Y.; Wang, J. Alantolactone enhances gemcitabine sensitivity of lung cancer cells through the reactive oxygen species-mediated endoplasmic reticulum stress and Akt/GSK3β pathway. Int. J. Mol. Med., 2019, 44(3), 1026-1038.
[http://dx.doi.org/10.3892/ijmm.2019.4268] [PMID: 31524219]
[121]
Ma, D.; Li, S.; Cui, Y.; Li, L.; Liu, H.; Chen, Y.; Zhou, X. Paclitaxel increases the sensitivity of lung cancer cells to lobaplatin via PI3K/Akt pathway. Oncol. Lett., 2021, 21(3), 219.
[http://dx.doi.org/10.3892/ol.2021.12480] [PMID: 33613708]
[122]
Li, M.; Li, X.; Li, J.C. Possible mechanisms of trichosanthin-induced apoptosis of tumor cells. Anat. Rec. (Hoboken), 2010, 293(6), 986-992.
[http://dx.doi.org/10.1002/ar.21142] [PMID: 20225201]
[123]
Hsu, Y.L.; Kuo, P.L.; Liu, C.F.; Lin, C.C. Acacetin-induced cell cycle arrest and apoptosis in human non-small cell lung cancer A549 cells. Cancer Lett., 2004, 212(1), 53-60.
[http://dx.doi.org/10.1016/j.canlet.2004.02.019] [PMID: 15246561]
[124]
Sadava, D.; Still, D.W.; Mudry, R.R.; Kane, S.E. Effect of Ganoderma on drug-sensitive and multidrug-resistant small-cell lung carcinoma cells. Cancer Lett., 2009, 277(2), 182-189.
[http://dx.doi.org/10.1016/j.canlet.2008.12.009] [PMID: 19188016]
[125]
Sadava, D.; Ahn, J.; Zhan, M.; Pang, M.L.; Ding, J.; Kane, S.E. Effects of four Chinese herbal extracts on drug-sensitive and multidrug-resistant small-cell lung carcinoma cells. Cancer Chemother. Pharmacol., 2002, 49(4), 261-266.
[http://dx.doi.org/10.1007/s00280-002-0427-5] [PMID: 11914903]
[126]
Thomas, S.L.; Zhao, J.; Li, Z.; Lou, B.; Du, Y.; Purcell, J.; Snyder, J.P.; Khuri, F.R.; Liotta, D.; Fu, H. Activation of the p38 pathway by a novel monoketone curcumin analog, EF24, suggests a potential combination strategy. Biochem. Pharmacol., 2010, 80(9), 1309-1316.
[http://dx.doi.org/10.1016/j.bcp.2010.06.048] [PMID: 20615389]
[127]
Xu, M.; Sheng, L.H.; Zhu, X.H.; Zeng, S.B.; Zhang, G.J. Reversal effect of Stephania tetrandra-containing Chinese herb formula SENL on multidrug resistance in lung cancer cell line SW1573/2R120. Am. J. Chin. Med., 2010, 38(2), 401-413.
[http://dx.doi.org/10.1142/S0192415X10007932] [PMID: 20387234]
[128]
Huang, C.Y.; Ju, D.T.; Chang, C.F.; Muralidhar Reddy, P.; Velmurugan, B.K. A review on the effects of current chemotherapy drugs and natural agents in treating non-small cell lung cancer. Biomedicine (Taipei), 2017, 7(4), 23.
[http://dx.doi.org/10.1051/bmdcn/2017070423] [PMID: 29130448]
[129]
Chen, R.J.; Tsai, S.J.; Ho, C.T.; Pan, M.H.; Ho, Y.S.; Wu, C.H.; Wang, Y.J. Chemopreventive effects of pterostilbene on urethane-induced lung carcinogenesis in mice via the inhibition of EGFR-mediated pathways and the induction of apoptosis and autophagy. J. Agric. Food Chem., 2012, 60(46), 11533-11541.
[http://dx.doi.org/10.1021/jf302778a] [PMID: 23113763]
[130]
de Oliveira Pepino, R.; Coelho, F.; Janku, T.A.B.; Alencar, D.P.; de Azevedo, W.F.; Canduri, F. Overview of PCTK3/CDK18: A cyclin-dependent kinase involved in specific functions in post-mitotic cells. Curr. Med. Chem., 2021, 28(33), 6846-6865.
[http://dx.doi.org/10.2174/0929867328666210329122147] [PMID: 33781185]
[131]
Levin, N.M.B.; Pintro, V.O.; de Avila, M.B.; de Mattos, B.B.; De Azevedo, W.F., Jr Understanding the structural basis for inhibition of cyclin-dependent kinases. New pieces in the molecular puzzle. Curr. Drug Targets, 2017, 18(9), 1104-1111.
[http://dx.doi.org/10.2174/1389450118666161116130155] [PMID: 27848884]
[132]
Shukla, S.; Khan, S.; Kumar, S.; Sinha, S.; Farhan, M.; Bora, H.K.; Maurya, R.; Meeran, S.M.; Cucurbitacin, B. Cucurbitacin B alters the expression of tumor-related genes by epigenetic modifications in NSCLC and inhibits NNK-induced lung tumorigenesis. Cancer Prev. Res. (Phila.), 2015, 8(6), 552-562.
[http://dx.doi.org/10.1158/1940-6207.CAPR-14-0286] [PMID: 25813524]
[133]
Alexandrow, M.G.; Song, L.J.; Altiok, S.; Gray, J.; Haura, E.B.; Kumar, N.B. Curcumin: A novel Stat3 pathway inhibitor for chemoprevention of lung cancer. Eur. J. Cancer Prev., 2012, 21(5), 407-412.
[http://dx.doi.org/10.1097/CEJ.0b013e32834ef194] [PMID: 22156994]
[134]
Zhao, P.; Pan, Z.; Luo, Y.; Zhang, L.; Li, X.; Zhang, G.; Zhang, Y.; Cui, R.; Sun, M.; Zhang, X. Alantolactone induces apoptosis and cell cycle arrest on lung squamous cancer SK-MES-1 cells. J. Biochem. Mol. Toxicol., 2015, 29(5), 199-206.
[http://dx.doi.org/10.1002/jbt.21685] [PMID: 25597476]
[135]
Wang, W.; Xi, M.; Duan, X.; Wang, Y.; Kong, F. Delivery of baicalein and paclitaxel using self-assembled nanoparticles: Synergistic antitumor effect in vitro and in vivo. Int. J. Nanomedicine, 2015, 10, 3737-3750.
[http://dx.doi.org/10.2147/IJN.S80297] [PMID: 26045664]
[136]
Liu, Y.; Sun, J.; Cao, W.; Yang, J.; Lian, H.; Li, X.; Sun, Y.; Wang, Y.; Wang, S.; He, Z. Dual targeting folate-conjugated hyaluronic acid polymeric micelles for paclitaxel delivery. Int. J. Pharm., 2011, 421(1), 160-169.
[http://dx.doi.org/10.1016/j.ijpharm.2011.09.006] [PMID: 21945183]
[137]
Li, X.T.; Zhou, Z.Y.; Jiang, Y.; He, M.L.; Jia, L.Q.; Zhao, L.; Cheng, L.; Jia, T.Z. PEGylated VRB plus quinacrine cationic liposomes for treating non-small cell lung cancer. J. Drug Target., 2015, 23(3), 232-243.
[http://dx.doi.org/10.3109/1061186X.2014.979829] [PMID: 25417934]
[138]
Kong, L.; Cai, F.Y.; Yao, X.M.; Jing, M.; Fu, M.; Liu, J.J.; He, S.Y.; Zhang, L.; Liu, X.Z.; Ju, R.J.; Li, X.T. RPV-modified epirubicin and dioscin co-delivery liposomes suppress non-small cell lung cancer growth by limiting nutrition supply. Cancer Sci., 2020, 111(2), 621-636.
[http://dx.doi.org/10.1111/cas.14256] [PMID: 31777993]
[139]
Liu, J.J.; Tang, W.; Fu, M.; Gong, X.Q.; Kong, L.; Yao, X.M.; Jing, M.; Cai, F.Y.; Li, X.T.; Ju, R.J. Development of R8 modified epirubicin-dihydroartemisinin liposomes for treatment of non-small-cell lung cancer. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1947-1960.
[http://dx.doi.org/10.1080/21691401.2019.1615932] [PMID: 31079495]
[140]
Song, Z.; Shi, Y.; Han, Q.; Dai, G. Endothelial growth factor receptor-targeted and reactive oxygen species-responsive lung cancer therapy by docetaxel and resveratrol encapsulated lipid-polymer hybrid nanoparticles. Biomed. Pharmacother., 2018, 105(28), 18-26.
[http://dx.doi.org/10.1016/j.biopha.2018.05.095] [PMID: 29843041]
[141]
Perepelyuk, M.; Maher, C.; Lakshmikuttyamma, A.; Shoyele, S.A. Aptamer-hybrid nanoparticle bioconjugate efficiently delivers miRNA-29b to non-small-cell lung cancer cells and inhibits growth by downregulating essential oncoproteins. Int. J. Nanomedicine, 2016, 11, 3533-3544.
[http://dx.doi.org/10.2147/IJN.S110488] [PMID: 27555773]
[142]
Zheng, Y.; Zhang, J.; Zhang, R.; Luo, Z.; Wang, C.; Shi, S. Gold nano particles synthesized from Magnolia officinalis and anticancer activity in A549 lung cancer cells. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 3101-3109.
[http://dx.doi.org/10.1080/21691401.2019.1645152] [PMID: 31343369]
[143]
Xia, Y.; Chen, Y.; Hua, L.; Zhao, M.; Xu, T.; Wang, C.; Li, Y.; Zhu, B. Functionalized selenium nanoparticles for targeted delivery of doxorubicin to improve non-small-cell lung cancer therapy. Int. J. Nanomedicine, 2018, 13, 6929-6939.
[http://dx.doi.org/10.2147/IJN.S174909] [PMID: 30464451]
[144]
Kapp, T.G.; Rechenmacher, F.; Neubauer, S.; Maltsev, O.V.; Cavalcanti-Adam, E.A.; Zarka, R.; Reuning, U.; Notni, J.; Wester, H.J.; Mas-Moruno, C.; Spatz, J.; Geiger, B.; Kessler, H. A comprehensive evaluation of the activity and selectivity profile of ligands for RGD-binding integrins. Sci. Rep., 2016, 2017(7), 1-13.
[http://dx.doi.org/10.1038/srep39805] [PMID: 28074920]
[145]
Zeinali, M.; Abbaspour-Ravasjani, S.; Ghorbani, M.; Babazadeh, A.; Soltanfam, T.; Santos, A.C.; Hamishehkar, H.; Hamblin, M.R. Nanovehicles for co-delivery of anticancer agents. Drug Discov. Today, 2020, 25(8), 1416-1430.
[http://dx.doi.org/10.1016/j.drudis.2020.06.027] [PMID: 32622880]
[146]
Zhang, R.; Ru, Y.; Gao, Y.; Li, J.; Mao, S. Layer-by-layer nanoparticles co-loading gemcitabine and platinum (IV) prodrugs for synergistic combination therapy of lung cancer. Drug Des. Devel. Ther., 2017, 11, 2631-2642.
[http://dx.doi.org/10.2147/DDDT.S143047] [PMID: 28919713]
[147]
Xiong, Y.; Zhao, Y.; Miao, L.; Lin, C.M.; Huang, L. Co-delivery of polymeric metformin and cisplatin by self-assembled core-membrane nanoparticles to treat non-small cell lung cancer. J. Control. Release, 2016, 244(Pt A), 63-73.
[http://dx.doi.org/10.1016/j.jconrel.2016.11.005] [PMID: 27840166]
[148]
Wu, C.; Xu, J.; Hao, Y.; Zhao, Y.; Qiu, Y.; Jiang, J.; Yu, T.; Ji, P.; Liu, Y. Application of a lipid-coated hollow calcium phosphate nanoparticle in synergistic co-delivery of doxorubicin and paclitaxel for the treatment of human lung cancer A549 cells. Int. J. Nanomedicine, 2017, 12, 7979-7992.
[http://dx.doi.org/10.2147/IJN.S140957] [PMID: 29184399]
[149]
Zhang, Y.; Kim, W.Y.; Huang, L. Systemic delivery of gemcitabine triphosphate via LCP nanoparticles for NSCLC and pancreatic cancer therapy. Biomaterials, 2013, 34(13), 3447-3458.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.063] [PMID: 23380359]
[150]
Yang, Y.; Hu, Y.; Wang, Y.; Li, J.; Liu, F.; Huang, L. Nanoparticle delivery of pooled siRNA for effective treatment of non-small cell lung cancer. Mol. Pharm., 2012, 9(8), 2280-2289.
[http://dx.doi.org/10.1021/mp300152v] [PMID: 22686936]
[151]
Abdelaziz, H.M.; Gaber, M.; Abd-Elwakil, M.M.; Mabrouk, M.T.; Elgohary, M.M.; Kamel, N.M.; Kabary, D.M.; Freag, M.S.; Samaha, M.W.; Mortada, S.M.; Elkhodairy, K.A.; Fang, J.Y.; Elzoghby, A.O. Inhalable particulate drug delivery systems for lung cancer therapy: Nanoparticles, microparticles, nanocomposites and nanoaggregates. J. Control. Release, 2018, 269(269), 374-392.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.036] [PMID: 29180168]
[152]
Ferrari, S.; Pettenazzo, A.; Garbati, N.; Zacchello, F.; Behr, J.P.; Scarpa, M. Polyethylenimine shows properties of interest for cystic fibrosis gene therapy. Biochim. Biophys. Acta, 1999, 1447(2-3), 219-225.
[http://dx.doi.org/10.1016/S0167-4781(99)00153-0] [PMID: 10542318]
[153]
Koshkina, N.V.; Knight, V.; Gilbert, B.E.; Golunski, E.; Roberts, L.; Waldrep, J.C. Improved respiratory delivery of the anticancer drugs, camptothecin and paclitaxel, with 5% CO2-enriched air: Pharmacokinetic studies. Cancer Chemother. Pharmacol., 2001, 47(5), 451-456.
[http://dx.doi.org/10.1007/s002800000230] [PMID: 11391862]
[154]
Long, J.T.; Cheang, T.Y.; Zhuo, S.Y.; Zeng, R.F.; Dai, Q.S.; Li, H.P.; Fang, S. Anticancer drug-loaded multifunctional nanoparticles to enhance the chemotherapeutic efficacy in lung cancer metastasis. J. Nanobiotechnol.,, 2014, 12(37), 37.
[http://dx.doi.org/10.1186/s12951-014-0037-5] [PMID: 25266303]
[155]
Videira, M.; Almeida, A.J.; Fabra, A. Preclinical evaluation of a pulmonary delivered paclitaxel-loaded lipid nanocarrier antitumor effect. Nanomedicine, 2012, 8(7), 1208-1215.
[http://dx.doi.org/10.1016/j.nano.2011.12.007] [PMID: 22206945]
[156]
Arbain, N.H.; Salim, N.; Masoumi, H.R.F.; Wong, T.W.; Basri, M.; Abdul Rahman, M.B. In vitro evaluation of the inhalable quercetin loaded nanoemulsion for pulmonary delivery. Drug Deliv. Transl. Res., 2019, 9(2), 497-507.
[http://dx.doi.org/10.1007/s13346-018-0509-5] [PMID: 29541999]
[157]
Ma, Z.; Yang, Y.; Di, S.; Feng, X.; Liu, D.; Jiang, S.; Hu, W.; Qin, Z.; Li, Y.; Lv, J.; Fan, C.; Yan, X.; Li, X. Pterostilbene exerts anticancer activity on non-small-cell lung cancer via activating endoplasmic reticulum stress. Sci. Rep., 2017, 7(1), 8091.
[http://dx.doi.org/10.1038/s41598-017-08547-0] [PMID: 28808300]
[158]
Patlolla, J.M.R.; Qian, L.; Biddick, L.; Zhang, Y.; Desai, D.; Amin, S.; Lightfoot, S.; Rao, C.V. β-Escin inhibits NNK-induced lung adenocarcinoma and ALDH1A1 and RhoA/Rock expression in A/J mice and growth of H460 human lung cancer cells. Cancer Prev. Res. (Phila.), 2013, 6(10), 1140-1149.
[http://dx.doi.org/10.1158/1940-6207.CAPR-13-0216] [PMID: 23963803]
[159]
Hsu, P.C.; Tian, B.; Yang, Y.L.; Wang, Y.C.; Liu, S.; Urisman, A.; Yang, C.T.A.; Xu, Z.; Jablons, D.M.; You, L.; Cucurbitacin, E. Cucurbitacin E inhibits the Yes-associated protein signaling pathway and suppresses brain metastasis of human non-small cell lung cancer in a murine model. Oncol. Rep., 2019, 42(2), 697-707.
[http://dx.doi.org/10.3892/or.2019.7207] [PMID: 31233205]
[160]
Peng, S.; Wang, J.; Lu, C.; Xu, Z.; Chai, J.J.; Ke, Q.; Deng, X.Z. Emodin enhances cisplatin sensitivity in non-small cell lung cancer through Pgp downregulation. Oncol. Lett., 2021, 21(3), 230.
[http://dx.doi.org/10.3892/ol.2021.12491] [PMID: 33613719]
[161]
Selvendiran, K.; Banu, S.M.; Sakthisekaran, D. Protective effect of piperine on benzo(a)pyrene-induced lung carcinogenesis in Swiss albino mice. Clin. Chim. Acta, 2004, 350(1-2), 73-78.
[http://dx.doi.org/10.1016/j.cccn.2004.07.004] [PMID: 15530462]
[162]
Tsai, J.R.; Liu, P.L.; Chen, Y.H.; Chou, S.H.; Cheng, Y.J.; Hwang, J.J.; Chong, I.W. Curcumin inhibits non-small cell lung cancer cells metastasis through the adiponectin/NF-κb/MMPs signaling pathway. PLoS One, 2015, 10(12), e0144462.
[http://dx.doi.org/10.1371/journal.pone.0144462] [PMID: 26656720]
[163]
Singh, T.; Katiyar, S.K. Honokiol inhibits non-small cell lung cancer cell migration by targeting PGE2-mediated activation of β-catenin signaling. PLoS One, 2013, 8(4), e60749.
[http://dx.doi.org/10.1371/journal.pone.0060749] [PMID: 23580348]
[164]
Zhang, Y.Z.; Chen, X.; Fan, X.X.; He, J.X.; Huang, J.; Xiao, D.K.; Zhou, Y.L.; Zheng, S.Y.; Xu, J.H.; Yao, X.J.; Liu, L.; Leung, E.L.; Liu, L. Compound library screening identified cardiac glycoside digitoxin as an effective growth inhibitor of gefitinib-resistant non-small cell lung cancer via downregulation of α-Tubulin and inhibition of microtubule formation. Molecules, 2016, 21(3), 374.
[http://dx.doi.org/10.3390/molecules21030374] [PMID: 26999101]
[165]
Zhang, Q.; Pan, J.; Lubet, R.A.; Wang, Y.; You, M. Targeting the insulin-like growth factor-1 receptor by picropodophyllin for lung cancer chemoprevention. Mol. Carcinog., 2015, 54(S1)(Suppl. 1), E129-E137.
[http://dx.doi.org/10.1002/mc.22206] [PMID: 25163779]
[166]
Xue, R.; Han, N.; Xia, M.; Ye, C.; Hao, Z.; Wang, L.; Wang, Y.; Yang, J.; Saiki, I.; Yin, J. TXA9, a cardiac glycoside from Streptocaulon juventas, exerts a potent anti-tumor activity against human non-small cell lung cancer cells in vitro and in vivo. Steroids, 2015, 94, 51-59.
[http://dx.doi.org/10.1016/j.steroids.2014.12.015] [PMID: 25555472]
[167]
Mimoto, J.; Kiura, K.; Matsuo, K.; Yoshino, T.; Takata, I.; Ueoka, H.; Kataoka, M.; Harada, M. (-)-Epigallocatechin gallate can prevent cisplatin-induced lung tumorigenesis in A/J mice. Carcinogenesis, 2000, 21(5), 915-919.
[http://dx.doi.org/10.1093/carcin/21.5.915] [PMID: 10783312]
[168]
Li, Y.C.; He, S.M.; He, Z.X.; Li, M.; Yang, Y.; Pang, J.X.; Zhang, X.; Chow, K.; Zhou, Q.; Duan, W.; Zhou, Z.W.; Yang, T.; Huang, G.H.; Liu, A.; Qiu, J.X.; Liu, J.P.; Zhou, S.F. Plumbagin induces apoptotic and autophagic cell death through inhibition of the PI3K/Akt/mTOR pathway in human non-small cell lung cancer cells. Cancer Lett., 2014, 344(2), 239-259.
[http://dx.doi.org/10.1016/j.canlet.2013.11.001] [PMID: 24280585]
[169]
Hashemzadeh, H.; Shojaeilangari, S.; Allahverdi, A.; Rothbauer, M.; Ertl, P.; Naderi-Manesh, H. A combined microfluidic deep learning approach for lung cancer cell high throughput screening toward automatic cancer screening applications. Sci. Rep., 2021, 11(1), 9804.
[http://dx.doi.org/10.1038/s41598-021-89352-8] [PMID: 33963232]
[170]
Woodburn, J.R. The epidermal growth factor receptor and its inhibition in cancer therapy. Pharmacol. Ther., 1999, 82(2-3), 241-250.
[http://dx.doi.org/10.1016/S0163-7258(98)00045-X] [PMID: 10454201]
[171]
Wakeling, A.E.; Guy, S.P.; Woodburn, J.R.; Ashton, S.E.; Curry, B.J.; Barker, A.J.; Gibson, K.H. ZD1839 (Iressa): An orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res., 2002, 62(20), 5749-5754.
[PMID: 12384534]
[172]
Sirotnak, F.M.; Zakowski, M.F.; Miller, V.A.; Scher, H.I.; Kris, M.G. Efficacy of cytotoxic agents against human tumor xenografts is markedly enhanced by coadministration of ZD1839 (Iressa), an inhibitor of EGFR tyrosine kinase. Clin. Cancer Res., 2000, 6(12), 4885-4892.
[PMID: 11156248]
[173]
Pathak, A.K.; Bhutani, M.; Mohan, A.; Guleria, R.; Bal, S.; Kochupillai, V. Non small cell lung cancer (NSCLC): Current status and future prospects. Indian J. Chest Dis. Allied Sci., 2004, 46(3), 191-203.
[PMID: 15553208]
[174]
Rajendran, P.; Maheshwari, U.; Muthukrishnan, A.; Muthuswamy, R.; Anand, K.; Ravindran, B.; Dhanaraj, P.; Balamuralikrishnan, B.; Chang, S.W.; Chung, W.J. Myricetin: Versatile plant based flavonoid for cancer treatment by inducing cell cycle arrest and ROS-reliant mitochondria-facilitated apoptosis in A549 lung cancer cells and in silico prediction. Mol. Cell. Biochem., 2021, 476(1), 57-68.
[http://dx.doi.org/10.1007/s11010-020-03885-6] [PMID: 32851589]
[175]
Zhang, M.; Wang, R.; Tian, J.; Song, M.; Zhao, R.; Liu, K.; Zhu, F.; Shim, J.H.; Dong, Z.; Lee, M.H. Targeting LIMK1 with luteolin inhibits the growth of lung cancer in vitro and in vivo. J. Cell. Mol. Med., 2021, 25(12), 5560-5571.
[http://dx.doi.org/10.1111/jcmm.16568] [PMID: 33982869]
[176]
Suplatov, D.; Švedas, V. Study of functional and allosteric sites in protein superfamilies. Acta Nat. (Engl. Ed.), 2015, 7(4), 34-45.
[http://dx.doi.org/10.32607/20758251-2015-7-4-34-45] [PMID: 26798490]
[177]
Greener, J.G.; Sternberg, M.J. Structure-based prediction of protein allostery. Curr. Opin. Struct. Biol., 2018, 50, 1-8.
[http://dx.doi.org/10.1016/j.sbi.2017.10.002] [PMID: 29080471]
[178]
Gagic, Z.; Ruzic, D.; Djokovic, N.; Djikic, T.; Nikolic, K. In silico methods for design of kinase inhibitors as anticancer drugs. Front Chem., 2020, 7, 873.
[http://dx.doi.org/10.3389/fchem.2019.00873] [PMID: 31970149]
[179]
Swaminathan, V.; Btrodzi, N.A.; Kumar, S. Computational pharmacokinetic and docking analysis of curcumin and piperine as inhibitors of E3 ubiquitin ligases for lung cancer. Ann. Rom. Soc. Cell Biol., 2021, 25(1), 4885-4894.
[180]
Maity, S.; Pai, K.S.R.; Nayak, Y. Advances in targeting EGFR allosteric site as anti-NSCLC therapy to overcome the drug resistance. Pharmacol. Rep., 2020, 72(4), 799-813.
[http://dx.doi.org/10.1007/s43440-020-00131-0] [PMID: 32666476]
[181]
Kakarala, K.K.; Jamil, K. Identification of novel allosteric binding sites and multi-targeted allosteric inhibitors of receptor and non-receptor tyrosine kinases using a computational approach. J. Biomol. Struct. Dyn., 2021, 0(0), 1-22.
[http://dx.doi.org/10.1080/07391102.2021.1891140] [PMID: 33682622]
[182]
RCSB PDB. 7A2A: Crystal structure of EGFR-T790M/V948R in complex with spebrutinib and EAI001. Available from: https://www.rcsb.org/structure/7A2A (accessed Jun 17, 2021).
[183]
7JU5: Structure of RET protein tyrosine kinase in complex with pralsetinib. Available from: https://www.rcsb.org/structure/7JU5 (accessed Jun 17, 2021).
[184]
RCSB PDB. 6SM8: Human jak1 kinase domain in complex with inhibitor Available from: https://www.rcsb.org/structure/6SM8
[185]
RCSB PDB. 6SLG: Human ERK2 with ERK1/2 inhibitor, AZD0364. Available from: https://www.rcsb.org/structure/6SLG
[186]
RCSB PDB. 6MX8: Crystal structure of anaplastic lymphoma kinase (ALK) bound by Brigatinib. Available from: https://www.rcsb.org/structure/6MX8 (accessed Jun 17, 2021).
[187]
RCSB PDB. 5YE4: Crystal structure of the complex of di-acetylated histone H4 and 1A9D7 Fab fragment. Available from: https://www.rcsb.org/structure/5YE4
[188]
5YE3: Crystal structure of the complex of di-acetylated histone H4 and 2A7D9 Fab fragment Available from: https://www.rcsb.org/structure/5YE3 (accessed Jun 17, 2021).
[189]
RCSB PDB. 5YU9: Crystal structure of EGFR 696-1022 T790M in complex with Ibrutinib. Available from: https://www.rcsb.org/structure/5YU9 (accessed Jun 17, 2021).
[190]
RCSB PDB. 5GNK: Crystal structure of EGFR 696-988 T790M in complex with LXX-6-34 Available from: https://www.rcsb.org/structure/5GNK (accessed Jun 17, 2021).
[191]
RCSB PDB. 5UGA: Crystal structure of the EGFR kinase domain (L858R, T790M, V948R) in complex with 4-(4-{[2-{[(3S)-1-acetylpyrrolidin-3-yl]amino}-9-(propan- 2-yl)-9H-purin-6-yl]amino}phenyl)-1-methylpiperazin-1-ium. Available from: https://www.rcsb.org/structure/5UGA
[192]
RCSB PDB. 5UGC: Crystal structure of the EGFR kinase domain (L858R, T790M, V948R) in complex with a covalent inhibitor N-[(3R,4R)-4-fluoro-1-{6-[(3- methoxy-1-methyl-1H-pyrazol-4-yl)amino]-9-methyl-9H-purin-2-yl} pyrrolidin-3-yl]propanamide. Available from: https://www.rcsb.org/structure/5UGC (accessed Jun 17, 2021).
[193]
RCSB PDB. 5UG8: Crystal structure of the EGFR kinase domain (L858R, T790M, V948R) in complex with a covalent inhibitor N-[(3R,4R)-4-fluoro-1-{6-[(1-methyl- 1H-pyrazol-4-yl)amino]-9-(propan-2-yl)-9H-purin-2-yl}pyrrolidin-3-yl]propanamide. Available from: https://www.rcsb.org/structure/5UG8 (accessed Jun 17, 2021).
[194]
RCSB PDB. 5UG9: Crystal structure of the EGFR kinase domain (L858R, T790M, V948R) in complex with a covalent inhibitor N-[(3R,4R)-4-fluoro-1-{6-[(3- methoxy-1-methyl-1H-pyrazol-4-yl)amino]-9-(propan-2-yl)-9H-purin-2-yl}pyrrolidin-3-yl]propanamide. Available from: https://www.rcsb.org/structure/5UG9
[195]
RCSB PDB. 5HLW: Crystal structure of c-Met mutant Y1230H in complex with compound 14. Available from: https://www.rcsb.org/structure/5HLW (accessed Jun 17, 2021).
[196]
RCSB PDB. 5HO6: Crystal structure of CMET in complex with cmpd. Available from: https://www.rcsb.org/structure/5HO6 (accessed Jun 17, 2021).
[197]
RCSB PDB. 5HNI: CRYSTAL STRUCTURE OF CMET WT with compound 3 Available from: https://www.rcsb.org/structure/5HNI
[198]
RCSB PDB. 5FTQ: Crystal structure of the ALK kinase domain in complex with Cmpd 17 Available from: https://www.rcsb.org/structure/5FTQ (accessed Jun 17, 2021).
[199]
RCSB PDB. 5HG5: EGFR (L858R, T790M, V948R) in complex with N-{3-[(2-{[4-(4-methylpiperazin-1-yl) phenyl]amino}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)oxy] phenyl}prop-2-enamide Available from: https://www.rcsb.org/structure/5HG5 (accessed Jun 17, 2021).
[200]
RCSB PDB. 5HG8: EGFR (L858R, T790M, V948R) in complex with N-[3-({2-[(1-methyl-1H-pyrazol-4-yl)amino]-7H-pyrrolo[2,3-d]pyrimidin-4-yl}oxy)phenyl]prop-2-enamide Available from: https://www.rcsb.org/structure/5HG8
[201]
RCSB PDB. 5HG7: EGFR (L858R, T790M, V948R) in complex with 1-{(3R,4R)-3-[5-Chloro-2-(1-methyl-1H-pyrazol-4-ylamino)-7H-pyrrolo[2,3-d]pyrimidin-4-yloxymethyl]-4-methoxy-pyrrolidin-1-yl}propenone (PF-06459988) Available from: https://www.rcsb.org/structure/5HG7
[202]
RCSB PDB. 4RQR: Crystal Structure of Human Glutaredoxin with MESNA Available from: https://www.rcsb.org/structure/4RQR (accessed Jun 17, 2021).

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy