Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Mini-Review Article

Recent Updates on Folate Targeted Drug Delivery Systems in Cancer: A Mini Review

Author(s): Deepika Sharma, Manu Sharma and Gopal Singh Bisht*

Volume 19, Issue 1, 2023

Published on: 19 December, 2022

Page: [2 - 12] Pages: 11

DOI: 10.2174/1573394718666220508181053

Price: $65

Abstract

Targeted drug delivery systems that selectively deliver anticancer drugs to tumour cells have always been a field of interest in reducing side effects associated with chemotherapy in cancer patients. Cancer cells require nutrients for their multiplication; folic acid is one such nutrient. The expression of folate receptors is negligible in normal cells, whereas they are overexpressed in a variety of cancer cells. A number of studies have shown that selective targeting of folate receptors in cancer is a beneficial approach, as folate targeted anticancer conjugates are selective towards cancer cells, thereby sparing non-cancerous cells. In this review, we have discussed folate receptor, folic acid as a cancer targeting moiety, different folate targeted anticancer drug conjugates, and different folate conjugated nanodelivery systems. This summarized information may turn out to be valuable for researchers to design novel folate targeted anticancer drug delivery systems that can potentially reduce the drawbacks associated with conventional cancer therapeutics.

Keywords: Folic acid, cancer, folate receptor, chemotherapy, targeted drug delivery, nanodelivery, and overexpression.

Graphical Abstract

[1]
Ojima I. Guided molecular missiles for tumor-targeting chemotherapy-case studies using the second-generation taxoids as warheads. Acc Chem Res 2008; 41(1): 108-19.
[http://dx.doi.org/10.1021/ar700093f] [PMID: 17663526]
[2]
Singh Y, Palombo M, Sinko PJ. Recent trends in targeted anticancer prodrug and conjugate design. Curr Med Chem 2008; 15(18): 1802-26.
[http://dx.doi.org/10.2174/092986708785132997] [PMID: 18691040]
[3]
Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100(1): 57-70.
[http://dx.doi.org/10.1016/S0092-8674(00)81683-9] [PMID: 10647931]
[4]
Huang J, Plass C, Gerhauser C. Cancer chemoprevention by targeting the epigenome. Curr Drug Targets 2011; 12(13): 1925-56.
[http://dx.doi.org/10.2174/138945011798184155] [PMID: 21158707]
[5]
Russell JG, McTavish K, McEwan J, Rice J, Nowotnik D. Vitamin-mediated targeting as a potential mechanism to increase drug uptake by tumours. J Inorg Biochem 2004; 98(10): 1625-33.
[http://dx.doi.org/10.1016/j.jinorgbio.2004.07.009] [PMID: 15458825]
[6]
Wang AZ, Gu F, Zhang L, et al. Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opin Biol Ther 2008; 8(8): 1063-70.
[http://dx.doi.org/10.1517/14712598.8.8.1063] [PMID: 18613759]
[7]
Dubowchik GM, Walker MA. Receptor-mediated and enzyme-dependent targeting of cytotoxic anticancer drugs. Pharmacol Ther 1999; 83(2): 67-123.
[http://dx.doi.org/10.1016/S0163-7258(99)00018-2] [PMID: 10511457]
[8]
Weitman SD, Lark RH, Coney LR, et al. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res 1992; 52(12): 3396-401.
[PMID: 1596899]
[9]
Leamon CP, Jackman AL. Exploitation of the folate receptor in the management of cancer and inflammatory disease. Vitam Horm 2008; 79: 203-33.
[http://dx.doi.org/10.1016/S0083-6729(08)00407-X] [PMID: 18804696]
[10]
Ross JF, Wang H, Behm FG, et al. Folate receptor type beta is a neutrophilic lineage marker and is differentially expressed in myeloid leukemia. Cancer 1999; 85(2): 348-57.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19990115)85:2<348:-AID-CNCR12>3.0.CO;2-4] [PMID: 10023702]
[11]
Leamon CP, Low PS. Delivery of macromolecules into living cells: A method that exploits folate receptor endocytosis. Proc Natl Acad Sci USA 1991; 88(13): 5572-6.
[http://dx.doi.org/10.1073/pnas.88.13.5572] [PMID: 2062838]
[12]
Bailey SW, Ayling JE. The extremely slow and variable activity of dihydrofolate reductase in human liver and its implications for high folic acid intake. Proc Natl Acad Sci USA 2009; 106(36): 15424-9.
[http://dx.doi.org/10.1073/pnas.0902072106] [PMID: 19706381]
[13]
Xia W, Hilgenbrink AR, Matteson EL, Lockwood MB, Cheng JX, Low PS. A functional folate receptor is induced during macrophage activation and can be used to target drugs to activated macrophages. Blood 2009; 113(2): 438-46.
[http://dx.doi.org/10.1182/blood-2008-04-150789] [PMID: 18952896]
[14]
Reddy JA, Dorton R, Westrick E, et al. Preclinical evaluation of EC145, a folate-vinca alkaloid conjugate. Cancer Res 2007; 67(9): 4434-42.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0033] [PMID: 17483358]
[15]
Leamon CP, You F, Santhapuram HK, Fan M, Vlahov IR. Properties influencing the relative binding affinity of pteroate derivatives and drug conjugates thereof to the folate receptor. Pharm Res 2009; 26(6): 1315-23.
[http://dx.doi.org/10.1007/s11095-009-9840-3] [PMID: 19189203]
[16]
Sudimack J, Lee RJ. Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 2000; 41(2): 147-62.
[http://dx.doi.org/10.1016/S0169-409X(99)00062-9] [PMID: 10699311]
[17]
Jaracz S, Chen J, Kuznetsova LV, Ojima I. Recent advances in tumor-targeting anticancer drug conjugates. Bioorg Med Chem 2005; 13(17): 5043-54.
[http://dx.doi.org/10.1016/j.bmc.2005.04.084] [PMID: 15955702]
[18]
Kigawa J, Minagawa Y, Kanamori Y, et al. Glutathione concentration may be a useful predictor of response to second-line chemotherapy in patients with ovarian cancer. Cancer 1998; 82(4): 697-702.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19980215)-82:4<-697:AID-CNCR12>3.0.CO;2-T] [PMID: 9477102]
[19]
Ladino CA, Chari RV, Bourret LA, Kedersha NL, Goldmacher VS. Folate-maytansinoids: Target-selective drugs of low molecular weight. Int J Cancer 1997; 73(6): 859-64.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19971210)73:6<859:AID-IJC16>3.0.CO;2-#] [PMID: 9399666]
[20]
Reddy JA, Westrick E, Vlahov I, Howard SJ, Santhapuram HK, Leamon CP. Folate receptor specific anti-tumor activity of folate-mitomycin conjugates. Cancer Chemother Pharmacol 2006; 58(2): 229-36.
[http://dx.doi.org/10.1007/s00280-005-0151-z] [PMID: 16331500]
[21]
Lee JW, Lu JY, Low PS, Fuchs PL. Synthesis and evaluation of taxol-folic acid conjugates as targeted antineoplastics. Bioorg Med Chem 2002; 10(7): 2397-414.
[http://dx.doi.org/10.1016/S0968-0896(02)00019-6] [PMID: 11983537]
[22]
Aronov O, Horowitz AT, Gabizon A, Gibson D. Folate-targeted PEG as a potential carrier for carboplatin analogs. Synthesis and in vitro studies. Bioconjug Chem 2003; 14(3): 563-74.
[http://dx.doi.org/10.1021/bc025642l] [PMID: 12757380]
[23]
Steinberg G, Borch RF. Synthesis and evaluation of pteroic acid-conjugated nitroheterocyclic phosphoramidates as folate receptor-targeted alkylating agents. J Med Chem 2001; 44(1): 69-73.
[http://dx.doi.org/10.1021/jm000306g] [PMID: 11141089]
[24]
Leamon CP, Reddy JA, Vetzel M, et al. Folate targeting enables durable and specific antitumor responses from a therapeutically null tubulysin B analogue. Cancer Res 2008; 68(23): 9839-44.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2341] [PMID: 19047164]
[25]
Reddy JA, Dorton R, Dawson A, et al. In vivo structural activity and optimization studies of folate-tubulysin conjugates. Mol Pharm 2009; 6(5): 1518-25.
[http://dx.doi.org/10.1021/mp900086w] [PMID: 19630399]
[26]
Leamon CP, Reddy JA, Vlahov IR, et al. Preclinical antitumor activity of a novel folate-targeted dual drug conjugate. Mol Pharm 2007; 4(5): 659-67.
[http://dx.doi.org/10.1021/mp070049c] [PMID: 17874843]
[27]
Etrych T, Strohalm J, Kovar L, Kabesova M, Rihova B, Ulbrich K. HPMA copolymer conjugates with reduced anti-CD20 antibody for cell-specific drug targeting. I. Synthesis and in vitro evaluation of binding efficacy and cytostatic activity. J Control Release 2009; 140(1): 18-26.
[28]
Ulbrich K, Etrych T, Chytil P, Jelinkova M, Rihova B. HPMA copolymers with pH-controlled release of doxorubicin: In vitro cytotoxicity and in vivo antitumor activity. J Controll Release 2003; 87(1-3): 33-47.
[29]
Ulbrich K, Etrych T, Chytil P, Pechar M, Jelinkova M, Rihova B. Polymeric anticancer drugs with pH-controlled activation. Int J Pharm 2004; 277(1-2): 63-72.
[http://dx.doi.org/10.1016/j.ijpharm.2003.02.001] [PMID: 15158969]
[30]
Krakovicova H, Etrych T, Ulbrich K. HPMA-based polymer conjugates with drug combination. Eur J Pharm Sci 2009; 37(3-4): 405-12.
[31]
Prabaharan M, Grailer JJ, Pilla S, Steeber DA, Gong S. Folate-conjugated amphiphilic hyperbranched block copolymers based on Boltorn H40, poly(L-lactide) and poly(ethylene glycol) for tumor-targeted drug delivery. Biomaterials 2009; 30(16): 3009-19.
[http://dx.doi.org/10.1016/j.biomaterials.2009.02.011] [PMID: 19250665]
[32]
Prabaharan M, Grailer JJ, Pilla S, Steeber DA, Gong S. Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery. Biomaterials 2009; 30(30): 6065-75.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.048] [PMID: 19674777]
[33]
Du C, Deng D, Shan L, et al. A pH-sensitive doxorubicin prodrug based on folate-conjugated BSA for tumor-targeted drug delivery. Biomaterials 2013; 34(12): 3087-97.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.041] [PMID: 23374705]
[34]
Henne WA, Doorneweerd DD, Hilgenbrink AR, Kularatne SA, Low PS. Synthesis and activity of a folate peptide camptothecin prodrug. Bioorg Med Chem Lett 2006; 16(20): 5350-5.
[http://dx.doi.org/10.1016/j.bmcl.2006.07.076] [PMID: 16901694]
[35]
Nukolova NV, Oberoi HS, Cohen SM, Kabanov AV, Bronich TK. Folate-decorated nanogels for targeted therapy of ovarian cancer. Biomaterials 2011; 32(23): 5417-26.
[http://dx.doi.org/10.1016/j.biomaterials.2011.04.006] [PMID: 21536326]
[36]
Zhang C, Zhao L, Dong Y, Zhang X, Lin J, Chen Z. Folate-mediated poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) nanoparticles for targeting drug delivery. Eur J Pharm Biopharm 2010; 76(1): 10-6.
[37]
Bhattacharya S, Franz A, Li X, Jasti B. Synthesis of folate-conjugated amphiphiles for tumor-targeted drug delivery. J Drug Target 2008; 16(10): 780-9.
[http://dx.doi.org/10.1080/10611860802475639] [PMID: 18985509]
[38]
Paranjpe PV, Chen Y, Kholodovych V, Welsh W, Stein S, Sinko PJ. Tumor-targeted bioconjugate based delivery of camptothecin: Design, synthesis and in vitro evaluation. J Controll Release 2004; 100(2): 275-92.
[39]
Ak G, Sanlıer SH. Synthesis of folate receptor-targeted and doxorubicin-coupled chemotherapeutic nanoconjugate and research into its medical applications. Prep Biochem Biotechnol 2012; 42(6): 551-63.
[http://dx.doi.org/10.1080/10826068.2012.662926] [PMID: 23030466]
[40]
Yu MK, Lee DY, Kim YS, et al. Antiangiogenic and apoptotic properties of a novel amphiphilic folate-heparin-lithocholate derivative having cellular internality for cancer therapy. Pharm Res 2007; 24(4): 705-14.
[http://dx.doi.org/10.1007/s11095-006-9190-3] [PMID: 17318418]
[41]
Singh P, Gupta U, Asthana A, Jain NK. Folate and folate-PEG-PAMAM dendrimers: Synthesis, characterization, and targeted anticancer drug delivery potential in tumor bearing mice. Bioconjug Chem 2008; 19(11): 2239-52.
[http://dx.doi.org/10.1021/bc800125u] [PMID: 18950215]
[42]
Pasut G, Canal F, Dalla Via L, Arpicco S, Veronese FM, Schiavon O. Antitumoral activity of PEG-gemcitabine prodrugs targeted by folic acid. J Control Release 2008; 127(3): 239-48.
[43]
Cao N, Feng SS. Doxorubicin conjugated to D-alpha-Tocopheryl Polyethylene Glycol 1000 Succinate (TPGS): Conjugation chemistry, characterization, in vitro and in vivo evaluation. Biomaterials 2008; 29(28): 3856-65.
[http://dx.doi.org/10.1016/j.biomaterials.2008.05.016] [PMID: 18606445]
[44]
Anbharasi V, Cao N, Feng SS. Doxorubicin conjugated to D-alpha-tocopheryl polyethylene glycol succinate and folic acid as a prodrug for targeted chemotherapy. J Biomed Mater Res A 2010; 94(3): 730-43.
[PMID: 20225211]
[45]
Liu L, Zheng M, Renette T, Kissel T. Modular synthesis of folate conjugated ternary copolymers: Polyethylenimine-graft-polycaprolactone-block-poly(ethylene glycol)-folate for targeted gene delivery. Bioconjug Chem 2012; 23(6): 1211-20.
[http://dx.doi.org/10.1021/bc300025d] [PMID: 22548308]
[46]
Shiokawa T, Hattori Y, Kawano K, et al. Effect of polyethylene glycol linker chain length of folate-linked microemulsions loading aclacinomycin A on targeting ability and antitumor effect in vitro and in vivo. Clin Cancer Res 2005; 11(5): 2018-25.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1129] [PMID: 15756028]
[47]
Salmaso S, Bersani S, Semenzato A, Caliceti P. New cyclodextrin bioconjugates for active tumour targeting. J Drug Target 2007; 15(6): 379-90.
[http://dx.doi.org/10.1080/10611860701349752] [PMID: 17613656]
[48]
Shi J, Zhang H, Wang L, et al. PEI-derivatized fullerene drug delivery using folate as a homing device targeting to tumor. Biomaterials 2013; 34(1): 251-61.
[http://dx.doi.org/10.1016/j.biomaterials.2012.09.039] [PMID: 23069706]
[49]
Fei XN, Liu Y, Li C. Folate conjugated chitosan grafted thiazole orange derivative with high targeting for early breast cancer cells diagnosis. J Fluoresc 2012; 22(6): 1555-61.
[http://dx.doi.org/10.1007/s10895-012-1094-5] [PMID: 22752402]
[50]
Teow Y, Valiyaveettil S. Active targeting of cancer cells using folic acid-conjugated platinum nanoparticles. Nanoscale 2010; 2(12): 2607-13.
[http://dx.doi.org/10.1039/c0nr00204f] [PMID: 20936240]
[51]
Singh P, Destito G, Schneemann A, Manchester M. Canine parvovirus-like particles, a novel nanomaterial for tumor targeting. J Nanobiotechnology 2006; 4(1): 2.
[http://dx.doi.org/10.1186/1477-3155-4-2] [PMID: 16476163]
[52]
Destito G, Schneemann A, Manchester M. Biomedical nanotechnology using virus-based nanoparticles. Curr Top Microbiol Immunol 2009; 327: 95-122.
[http://dx.doi.org/10.1007/978-3-540-69379-6_5] [PMID: 19198572]
[53]
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007; 2(12): 751-60.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[54]
Manchester M, Singh P. virus-Based Nanoparticles (VNPs): Platform technologies for diagnostic imaging. Adv Drug Deliv Rev 2006; 58(14): 1505-22.
[http://dx.doi.org/10.1016/j.addr.2006.09.014] [PMID: 17118484]
[55]
Silva R, Ferreira H, Cavaco-Paulo A. Sonoproduction of liposomes and protein particles as templates for delivery purposes. Biomacromolecules 2011; 12(10): 3353-68.
[http://dx.doi.org/10.1021/bm200658b] [PMID: 21905662]
[56]
Shi J, Xiao Z, Kamaly N, Farokhzad OC. Self-assembled targeted nanoparticles: Evolution of technologies and bench to bedside translation. Acc Chem Res 2011; 44(10): 1123-34.
[http://dx.doi.org/10.1021/ar200054n] [PMID: 21692448]
[57]
Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F, Nanoencapsulation I, Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine 2006; 2(1): 8-21.
[http://dx.doi.org/10.1016/j.nano.2005.12.003] [PMID: 17292111]
[58]
Tran TT, Tran PH, Wang Y, Li P, Kong L. Nanoparticulate drug delivery to colorectal cancer: Formulation strategies and surface engineering. Curr Pharm Des 2016; 22(19): 2904-12.
[http://dx.doi.org/10.2174/1381612822666160217140932] [PMID: 26898738]
[59]
Saxena V, Naguib Y, Hussain MDJC, Biointerfaces SB. Folate receptor targeted 17-allylamino-17-demethoxygeldanamycin (17-AAG) loaded polymeric nanoparticles for breast cancer. Colloids Surf B Biointerfaces 2012; 94: 274-80.
[60]
Hu L, Pang S, Hu Q, et al. Enhanced antitumor efficacy of folate targeted nanoparticles co-loaded with docetaxel and curcumin. Biomed Pharmacother 2015; 75: 26-32.
[61]
Yallappa S, Manjanna J, Dhananjaya BL, Vishwanatha U, Ravishankar B, Gururaj H. Phytosynthesis of gold nanoparticles using Mappia foetida leaves extract and their conjugation with folic acid for delivery of doxorubicin to cancer cells. J Mater Sci Mater Med 2015; 26(9): 235.
[http://dx.doi.org/10.1007/s10856-015-5567-3] [PMID: 26395360]
[62]
Zheng M, Gong P, Zheng C, et al. Lipid-polymer nanoparticles for folate-receptor targeting delivery of doxorubicin. J Nanosci Nanotechnol 2015; 15(7): 4792-8.
[http://dx.doi.org/10.1166/jnn.2015.9604] [PMID: 26373039]
[63]
Wu B, Yu P, Cui C, et al. Folate-containing reduction-sensitive lipid-polymer hybrid nanoparticles for targeted delivery of doxorubicin. Biomater Sci 2015; 3(4): 655-64.
[http://dx.doi.org/10.1039/C4BM00462K] [PMID: 26222425]
[64]
Wang W, Xi M, Duan X, Wang Y, Kong F. Delivery of baicalein and paclitaxel using self-assembled nanoparticles: Synergistic antitumor effect in vitro and in vivo. Int J Nanomedicine 2015; 10: 3737-50.
[PMID: 26045664]
[65]
Zhang L, Zhu D, Dong X, et al. Folate-modified lipid-polymer hybrid nanoparticles for targeted paclitaxel delivery. Int J Nanomedicine 2015; 10: 2101-14.
[PMID: 25844039]
[66]
Singh R, Kesharwani P, Mehra NK, Singh S, Banerjee S, Jain NK. Development and characterization of folate anchored saquinavir entrapped PLGA nanoparticles for anti-tumor activity. Drug Dev Ind Pharm 2015; 41(11): 1888-901.
[http://dx.doi.org/10.3109/03639045.2015.1019355] [PMID: 25738812]
[67]
Le VM, Wang JJ, Yuan M, et al. An investigation of antitumor efficiency of novel sustained and targeted 5-fluorouracil nanoparticles. Eur J Med Chem 2015; 92: 882-9.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.043] [PMID: 25676729]
[68]
Wang H, Yin H, Yan F, et al. Folate-mediated mitochondrial targeting with doxorubicin-polyrotaxane nanoparticles overcomes multidrug resistance. Oncotarget 2015; 6(5): 2827-42.
[http://dx.doi.org/10.18632/oncotarget.3090] [PMID: 25605018]
[69]
Wang Y, Li P, Chen L, Gao W, Zeng F, Kong LX. Targeted delivery of 5-fluorouracil to HT-29 cells using high efficient folic acid-conjugated nanoparticles. Drug Deliv 2015; 22(2): 191-8.
[http://dx.doi.org/10.3109/10717544.2013.875603] [PMID: 24437926]
[70]
Tavano L, Muzzalupo R. Multi-functional vesicles for cancer therapy: The ultimate magic bullet. Colloids Surf B Biointerfaces 2016; 147: 161-71.
[http://dx.doi.org/10.1016/j.colsurfb.2016.07.060] [PMID: 27500359]
[71]
Kuang H, Ku SH, Kokkoli E. The design of peptide-amphiphiles as functional ligands for liposomal anticancer drug and gene delivery. Adv Drug Deliv Rev 2017; 110-111: 80-101.
[http://dx.doi.org/10.1016/j.addr.2016.08.005] [PMID: 27539561]
[72]
Gao W. Preparation and evaluation of folate receptor mediated targeting liposomes. In: Lu, WL., Qi, XR. (eds) Liposome-Based Drug Delivery Systems. Biomaterial Engineering. Berlin, Heidelberg: Springer 2021; pp. 167–78.
[http://dx.doi.org/10.1007/978-3-662-49320-5_12]
[73]
Li Y, Wu H, Jia M, et al. Therapeutic effect of folate-targeted and PEGylated phytosomes loaded with a mitomycin C-soybean phosphatidyhlcholine complex. Mol Pharm 2014; 11(9): 3017-26.
[http://dx.doi.org/10.1021/mp5001873] [PMID: 25054963]
[74]
Ye P, Zhang W, Yang T, et al. Folate receptor-targeted liposomes enhanced the antitumor potency of imatinib through the combination of active targeting and molecular targeting. Int J Nanomedicine 2014; 9: 2167-78.
[http://dx.doi.org/10.2147/IJN.S60178] [PMID: 24855354]
[75]
Yang G, Yang T, Zhang W, Lu M, Ma X, Xiang G. In vitro and in vivo antitumor effects of folate-targeted ursolic acid stealth liposome. J Agric Food Chem 2014; 62(10): 2207-15.
[http://dx.doi.org/10.1021/jf405675g] [PMID: 24528163]
[76]
Shirbin SJ, Ladewig K, Fu Q, et al. Cisplatin-induced formation of biocompatible and biodegradable polypeptide-based vesicles for targeted anticancer drug delivery. Biomacromolecules 2015; 16(8): 2463-74.
[http://dx.doi.org/10.1021/acs.biomac.5b00692] [PMID: 26166192]
[77]
Kondo K, Klosterman JK, Yoshizawa M. Aromatic micelles as a new class of aqueous molecular flasks. Chemistry 2017; 23(66): 16710-21.
[http://dx.doi.org/10.1002/chem.201702519] [PMID: 28710788]
[78]
Cagel M, Tesan FC, Bernabeu E, et al. Polymeric mixed micelles as nanomedicines: Achievements and perspectives. Eur J Pharm Biopharm 2017; 113: 211-28.
[79]
Wang S, Tan X, Zhou Q, et al. Co-delivery of doxorubicin and SIS3 by folate-targeted polymeric micelles for overcoming tumor multidrug resistance. Drug Deliv Transl Res 2022; 12(1): 167-79.
[80]
Li Y, Zhou Y, De B, Li L. Folate-modified pluronic-polyethylenimine and cholic acid polyion complex micelles as targeted drug delivery system for paclitaxel. J Microencapsul 2014; 31(8): 805-14.
[http://dx.doi.org/10.3109/02652048.2014.940010] [PMID: 25090590]
[81]
Zhang Y, Zhang H, Wu W, et al. Folate-targeted paclitaxel-conjugated polymeric micelles inhibits pulmonary metastatic hepatoma in experimental murine H22 metastasis models. Int J Nanomedicine 2014; 9: 2019-30.
[PMID: 24790440]
[82]
Liu Y, Sun J, Lian H, Cao W, Wang Y, He Z. Folate and CD44 receptors dual-targeting hydrophobized hyaluronic acid paclitaxel-loaded polymeric micelles for overcoming multidrug resistance and improving tumor distribution. J Pharm Sci 2014; 103(5): 1538-47.
[http://dx.doi.org/10.1002/jps.23934] [PMID: 24619562]
[83]
Wu D, Zheng Y, Hu X, Fan Z, Jing X. Anti-tumor activity of folate targeted biodegradable polymer-paclitaxel conjugate micelles on EMT-6 breast cancer model. Mater Sci Eng C 2015; 53: 68-75.
[http://dx.doi.org/10.1016/j.msec.2015.04.012] [PMID: 26042692]
[84]
Li M, Liu Y, Feng L, Liu F, Zhang L, Zhang N. Polymeric complex micelles with double drug-loading strategies for folate-mediated paclitaxel delivery. Colloids Surf B Biointerfaces 2015; 131: 191-201.
[http://dx.doi.org/10.1016/j.colsurfb.2015.04.057] [PMID: 25988283]
[85]
Varshosaz J, Hassanzadeh F, Sadeghi AH, Nayebsadrian M, Banitalebi M, Rostami M. Synthesis and characterization of folate-targeted dextran/retinoic acid micelles for doxorubicin delivery in acute leukemia. BioMed Res Int 2014; 2014525684
[http://dx.doi.org/10.1155/2014/525684] [PMID: 24719872]
[86]
Hami Z, Amini M, Ghazi KM, Rezayat SM, Gilani K. Doxorubicin-conjugated PLA-PEG-Folate based polymeric micelle for tumor-targeted delivery: Synthesis and in vitro evaluation. Daru 2014; 22(1): 30.
[http://dx.doi.org/10.1186/2008-2231-22-30] [PMID: 24602477]
[87]
Amjad MW, Amin MC, Katas H, Butt AM, Kesharwani P, Iyer AK. In vivo antitumor activity of folate-conjugated cholic acid-polyethylenimine micelles for the codelivery of doxorubicin and sirna to colorectal adenocarcinomas. Mol Pharm 2015; 12(12): 4247-58.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00827] [PMID: 26567518]
[88]
Zhao H, Tao L, Yu R, Yuan H, Lan M. Doxorubicin-loaded micelles based on folic acid conjugated pH-dependent thermo-sensitive copolymer: In vitro and in vivo evaluation. J Nanosci Nanotechnol 2015; 15(8): 5553-8.
[http://dx.doi.org/10.1166/jnn.2015.10286] [PMID: 26369116]
[89]
Li X, Yang X, Lin Z, et al. A folate modified pH sensitive targeted polymeric micelle alleviated systemic toxicity of Doxorubicin (DOX) in multi-drug resistant tumor bearing mice. Eur J Pharm Sci 2015; 76: 95-101.
[90]
Zhao Y, Zhou Y, Wang D, et al. pH-responsive polymeric micelles based on poly(2-ethyl-2-oxazoline)-poly(D,L-lactide) for tumor-targeting and controlled delivery of doxorubicin and P-glycoprotein inhibitor. Acta Biomater 2015; 17: 182-92.
[http://dx.doi.org/10.1016/j.actbio.2015.01.010] [PMID: 25612838]
[91]
Taymouri S, Varshosaz J, Hassanzadeh F, Haghjooy Javanmard S, Dana N. Optimisation of processing variables effective on self-assembly of folate targeted synpronic-based micelles for docetaxel delivery in melanoma cells. IET Nanobiotechnol 2015; 9(5): 306-13.
[http://dx.doi.org/10.1049/iet-nbt.2014.0076] [PMID: 26435285]
[92]
Varshosaz J, Taymouri S, Hassanzadeh F, Javanmard SH, Rostami M. Folated synperonic-cholesteryl hemisuccinate polymeric micelles for the targeted delivery of docetaxel in melanoma. BioMed Res Int 2015; 2015746093
[http://dx.doi.org/10.1155/2015/746093] [PMID: 25839040]
[93]
Alonso NM, Abellan PR, Vidal A, et al. Selective interaction of PEGylated polyglutamic acid nanocapsules with cancer cells in a 3D model of a metastatic lymph node. J Nanobiotechnology 2016; 14(1): 51.
[http://dx.doi.org/10.1186/s12951-016-0207-8] [PMID: 27339609]
[94]
Lagarce F, Passirani C. Nucleic-acid delivery using lipid nanocapsules. Curr Pharm Biotechnol 2016; 17(8): 723-7.
[http://dx.doi.org/10.2174/1389201017666160401145206] [PMID: 27033510]
[95]
El-Gogary RI, Rubio N, Wang JTW, et al. Polyethylene glycol conjugated polymeric nanocapsules for targeted delivery of quercetin to folate-expressing cancer cells in vitro and in vivo 2014; 8(2): 1384-401.
[http://dx.doi.org/10.1021/nn405155b]
[96]
Zhang X, Meng L, Lu Q, Fei Z, Dyson PJ. Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials 2009; 30(30): 6041-7.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.025] [PMID: 19643474]
[97]
Yan Y, Wang R, Hu Y, et al. Stacking of doxorubicin on folic acid-targeted multiwalled carbon nanotubes for in vivo chemotherapy of tumors 2018; 25(1): 1607-16.
[http://dx.doi.org/10.1080/10717544.2018.1501120]
[98]
Jiang Y, Stenzel M. Drug delivery vehicles based on albumin-polymer conjugates. Macromol Biosci 2016; 16(6): 791-802.
[http://dx.doi.org/10.1002/mabi.201500453] [PMID: 26947019]
[99]
Dubey RD, Alam N, Saneja A, et al. Development and evaluation of folate functionalized albumin nanoparticles for targeted delivery of gemcitabine. Int J Pharm 2015; 492(1-2): 80-91.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.012] [PMID: 26165611]
[100]
Tang Q, Chen D. Study of the therapeutic effect of 188Re labeled folate targeting albumin nanoparticle coupled with cis-diamminedichloroplatinum cisplatin on human ovarian cancer. Biomed Mater Eng 2014; 24(1): 711-22.
[http://dx.doi.org/10.3233/BME-130859] [PMID: 24211956]
[101]
Alam N, Dubey RD, Kumar A, et al. Reduced toxicological manifestations of cisplatin following encapsulation in folate grafted albumin nanoparticles. Life Sci 2015; 142: 76-85.
[http://dx.doi.org/10.1016/j.lfs.2015.10.019] [PMID: 26482203]
[102]
Martínez A, Olmo R, Iglesias I, Teijón JM, Blanco MD. Folate-targeted nanoparticles based on albumin and albumin/alginate mixtures as controlled release systems of tamoxifen: Synthesis and in vitro characterization. Pharm Res 2014; 31(1): 182-93.
[http://dx.doi.org/10.1007/s11095-013-1151-z] [PMID: 23921489]
[103]
Jiang S, Gong X, Zhao X, Zu Y. Preparation, characterization, and antitumor activities of folate-decorated docetaxel-loaded human serum albumin nanoparticles. Drug Deliv 2015; 22(2): 206-13.
[http://dx.doi.org/10.3109/10717544.2013.879964] [PMID: 24471890]
[104]
Qi L, Guo Y, Luan J, Zhang D, Zhao Z, Luan Y. Folate-modified bexarotene-loaded bovine serum albumin nanoparticles as a promising tumor-targeting delivery system. J Mat Chem B 2014; 2(47): 8361-71.
[http://dx.doi.org/10.1039/C4TB01102C]
[105]
Karponis D, Azzawi M, Seifalian A. An arsenal of magnetic nanoparticles; perspectives in the treatment of cancer. Nanomedicine 2016; 11(16): 2215-32.
[http://dx.doi.org/10.2217/nnm-2016-0113] [PMID: 27480599]
[106]
Cole AJ, Yang VC, David AE. Cancer theranostics: The rise of targeted magnetic nanoparticles. Trends Biotechnol 2011; 29(7): 323-32.
[http://dx.doi.org/10.1016/j.tibtech.2011.03.001] [PMID: 21489647]
[107]
Gunduz U, Keskin T. Tansık G, et al. Pharmacotherapy, idarubicinloaded folic acid conjugated magnetic nanoparticles as a targetable drug delivery system for breast cancer. 2014; 68(6): 729-36.
[108]
Dufès C, Uchegbu IF, Schätzlein AG. Dendrimers in gene delivery. Adv Drug Deliv Rev 2005; 57(15): 2177-202.
[http://dx.doi.org/10.1016/j.addr.2005.09.017] [PMID: 16310284]
[109]
Kannan RM, Nance E, Kannan S, Tomalia DA. Emerging concepts in dendrimer-based nanomedicine: From design principles to clinical applications. J Intern Med 2014; 276(6): 579-617.
[http://dx.doi.org/10.1111/joim.12280] [PMID: 24995512]
[110]
Svenson S, Tomalia DA. Dendrimers in biomedical applications-Reflections on the field. Adv Drug Deliv Rev 2005; 57(15): 2106-29.
[http://dx.doi.org/10.1016/j.addr.2005.09.018] [PMID: 16305813]
[111]
Wolinsky JB, Grinstaff MW. Therapeutic and diagnostic applications of dendrimers for cancer treatment. Adv Drug Deliv Rev 2008; 60(9): 1037-55.
[http://dx.doi.org/10.1016/j.addr.2008.02.012] [PMID: 18448187]
[112]
Thomas TP, Majoros IJ, Kotlyar A, et al. Targeting and inhibition of cell growth by an engineered dendritic nanodevice. J Med Chem 2005; 48(11): 3729-35.
[http://dx.doi.org/10.1021/jm040187v] [PMID: 15916424]
[113]
Pinhassi RI, Assaraf YG, Farber S, et al. Arabinogalactan-folic acid-drug conjugate for targeted delivery and target-activated release of anticancer drugs to folate receptor-overexpressing cells. Biomacromolecules 2010; 11(1): 294-303.
[http://dx.doi.org/10.1021/bm900853z] [PMID: 20014825]
[114]
Shi Y, Su C, Cui W, et al. Gefitinib loaded folate decorated bovine serum albumin conjugated carboxymethyl-beta-cyclodextrin nanoparticles enhance drug delivery and attenuate autophagy in folate receptor-positive cancer cells. J Nanobiotechnology 2014; 12(1): 43.
[http://dx.doi.org/10.1186/s12951-014-0043-7] [PMID: 25358257]
[115]
Seitz JD, Vineberg JG, Herlihy E, Park B, Melief E, Ojima I. Design, synthesis and biological evaluation of a highly-potent and cancer cell selective folate-taxoid conjugate. Bioorg Med Chem 2015; 23(9): 2187-94.
[http://dx.doi.org/10.1016/j.bmc.2015.02.057] [PMID: 25819334]
[116]
Kaur G, Shukla A, Sivakumar S, Verma S. Soft structure formation and cancer cell transport mechanisms of a folic acid-dipeptide conjugate. J Pept Sci 2015; 21(3): 248-55.
[117]
Dcona MM, Sheldon JE, Mitra D, Hartman MC. Light induced drug release from a folic acid-drug conjugate. Bioorg Med Chem Lett 2017; 27(3): 466-9.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.036] [PMID: 28040391]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy