Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Research Article

Exploring the Mechanism of Yi-Jing Decoction in Treating Polycystic Ovary Syndrome by Using Network Pharmacology

Author(s): Yue Lin, Liu Xiang, Xianhai Li, Qiang Tang, Fanbo Meng and Wei Chen*

Volume 30, Issue 21, 2023

Published on: 10 June, 2022

Page: [2463 - 2474] Pages: 12

DOI: 10.2174/0929867329666220508180611

Price: $65

Abstract

Background: Yi-Jing decoction (YJD), a traditional Chinese medicine prescription, has been reported to be effective in the treatment of polycystic ovary syndrome (PCOS). However, the underlying mechanisms of YJD in treating PCOS are still unclear.

Objective: In the present work, the effective ingredients of YJD and their treatment mechanisms on PCOS were systematically analyzed.

Methods: The effective ingredients of YJD and targets of PCOS were selected from public databases. The network pharmacology method was used to analyze the ingredients, potential targets, and pathways of YJD for the treatment of PCOS.

Results: One hundred and three active ingredients were identified from YJD, of which 82 were hit by 65 targets associated with PCOS. By constructing the disease-common targetcompound network, five ingredients (quercetin, arachidonate, beta-sitosterol, betacarotene, and cholesterol) were selected out as the key ingredients of YJD, which can interact with the 10 hub genes (VEGFA, AKT1, TP53, ALB, TNF, PIK3CA, IGF1, INS, IL1B, PTEN) against PCOS. These genes are mainly involved in prostate cancer, steroid hormone biosynthesis, and EGFR tyrosine kinase inhibitor resistance pathways. In addition, the results of molecular docking showed that the ingredients of YJD have a good binding affinity with the hub genes.

Conclusion: These results demonstrate that the treatment of PCOS by YJD is through regulating the levels of androgen and insulin and improving the inflammatory microenvironment.

Keywords: Bioinformatics, traditional Chinese medicine, polycystic ovary syndrome, Yi-Jing decoction, network pharmacology, molecular docking.

« Previous
[1]
Ajmal, N.; Khan, S.Z.; Shaikh, R. Polycystic ovary syndrome (PCOS) and genetic predisposition: A review article. Eur. J. Obstet. Gynecol. Reprod. Biol. X, 2019, 3, 100060.
[http://dx.doi.org/10.1016/j.eurox.2019.100060] [PMID: 31403134]
[2]
Lie, F.S.; Douma, A.; Verhaeghe, J. Implementing the international evidence-based guideline of assessment and management of polycystic ovary syndrome (PCOS): how to achieve weight loss in overweight and obese women with PCOS? J. Gynecol. Obstet. Hum. Reprod., 2021, 50(6), 101894.
[http://dx.doi.org/10.1016/j.jogoh.2020.101894] [PMID: 32814159]
[3]
Louwers, Y.V.; Laven, J.S.E. Characteristics of polycystic ovary syndrome throughout life. Ther. Adv. Reprod. Health., 2020, 14, 2633494120911038.
[http://dx.doi.org/10.1177/2633494120911038] [PMID: 32518918]
[4]
Escobar-Morreale, H.F. Polycystic ovary syndrome: Definition, aetiology, diagnosis and treatment. Nat. Rev. Endocrinol., 2018, 14(5), 270-284.
[http://dx.doi.org/10.1038/nrendo.2018.24] [PMID: 29569621]
[5]
Baranova, A.; Tran, T.P.; Birerdinc, A.; Younossi, Z.M. Systematic review: association of polycystic ovary syndrome with metabolic syndrome and non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther., 2011, 33(7), 801-814.
[http://dx.doi.org/10.1111/j.1365-2036.2011.04579.x] [PMID: 21251033]
[6]
Wu, C.C.; Schwartzman, M.L. The role of 20-HETE in androgen-mediated hypertension. Prostaglandins Other Lipid Mediat., 2011, 96(1-4), 45-53.
[http://dx.doi.org/10.1016/j.prostaglandins.2011.06.006] [PMID: 21722750]
[7]
Patel, S. Polycystic ovary syndrome (PCOS), an inflammatory, systemic, lifestyle endocrinopathy. J. Steroid Biochem. Mol. Biol., 2018, 182, 27-36.
[http://dx.doi.org/10.1016/j.jsbmb.2018.04.008] [PMID: 29678491]
[8]
Barrea, L.; Arnone, A.; Annunziata, G.; Muscogiuri, G.; Laudisio, D.; Salzano, C.; Pugliese, G.; Colao, A.; Savastano, S. Adherence to the Mediterranean diet, dietary patterns and body composition in women with Polycystic Ovary Syndrome (PCOS). Nutrients, 2019, 11(10), E2278.
[http://dx.doi.org/10.3390/nu11102278] [PMID: 31547562]
[9]
Khan, M.J.; Ullah, A.; Basit, S. Genetic basis of polycystic ovary syndrome (PCOS): Current perspectives. Appl. Clin. Genet., 2019, 12, 249-260.
[http://dx.doi.org/10.2147/TACG.S200341] [PMID: 31920361]
[10]
Pei, C. Z.; Jin, L.; Baek, K. H. Pathogenetic analysis of polycystic ovary syndrome from the perspective of omics. Biomed. Pharmacother. Biomed. Pharmacother., 2021, 142, 112031.
[11]
Shahgheibi, S.; Seyedoshohadaei, F.; Khezri, D.; Ghasemi, S. Endometrial and follicular development following stair-step and traditional protocols in women with polycystic ovary syndrome: An RCT. Int. J. Reprod. Biomed. (Yazd), 2021, 19(6), 537-544.
[http://dx.doi.org/10.18502/ijrm.v19i6.9375] [PMID: 34401648]
[12]
Deveci, C.D.; Demir, B.; Sengul, O.; Dilbaz, B.; Goktolga, U. Clomiphene citrate ‘stair-step’ protocol vs. traditional protocol in patients with polycystic ovary syndrome: a randomized controlled trial. Arch. Gynecol. Obstet., 2015, 291(1), 179-184.
[http://dx.doi.org/10.1007/s00404-014-3398-y] [PMID: 25078053]
[13]
Jing, Z.; Liang-Zhi, X.; Tai-Xiang, W.; Ying, T.; Yu-Jian, J. The effects of Diane-35 and metformin in treatment of polycystic ovary syndrome: An updated systematic review. Gynecol. Endocrinol., 2008, 24(10), 590-600.
[http://dx.doi.org/10.1080/09513590802288242] [PMID: 19012104]
[14]
Wang, L.; Liang, R.; Tang, Q.; Zhu, L. An overview of systematic reviews of using Chinese medicine to treat polycystic ovary syndrome. Evid. Based Complement. Alternat. Med., 2021, 2021, 9935536.
[http://dx.doi.org/10.1155/2021/9935536] [PMID: 34135988]
[15]
Wan, L.; Huang, J.; Yang, X.; Ding, C. Application of Yijing Decoction of FU Qing-zhu Nvke in the treatment of polycystic ovary. Zhonghua Zhongyiyao Zazhi, 2020, 35(06), 2914-2916.
[16]
Li, X.; Xiang, L.; Lin, Y.; Tang, Q.; Meng, F.; Chen, W. Computational analysis illustrates the mechanism of Qingfei Paidu decoction in blocking the transition of COVID-19 patients from mild to severe stage. Curr. Gene Ther., 2022, 22(3), 277-289.
[PMID: 34493195]
[17]
Xu, Q.; Guo, Q.; Wang, C.X.; Zhang, S.; Wen, C.B.; Sun, T.; Peng, W.; Chen, J.; Li, W.H. Network differentiation: A computational method of pathogenesis diagnosis in traditional Chinese medicine based on systems science. Artif. Intell. Med., 2021, 118, 102134.
[http://dx.doi.org/10.1016/j.artmed.2021.102134] [PMID: 34412850]
[18]
Feng, S.H.; Xie, F.; Yao, H.Y.; Wu, G.B.; Sun, X.Y.; Yang, J. The mechanism of Bushen Huoxue decoction in treating intervertebral disc degeneration based on network pharmacology. Ann. Palliat. Med., 2021, 10(4), 3783-3792.
[http://dx.doi.org/10.21037/apm-20-2586] [PMID: 33752429]
[19]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6, 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[20]
Li, X.; Tang, H.; Tang, Q.; Chen, W. Decoding the mechanism of Huanglian Jiedu decoction in treating pneumonia based on network pharmacology and molecular docking. Front. Cell Dev. Biol., 2021, 9, 638366.
[http://dx.doi.org/10.3389/fcell.2021.638366] [PMID: 33681222]
[21]
Xu, H.Y.; Zhang, Y.Q.; Liu, Z.M.; Chen, T.; Lv, C.Y.; Tang, S.H.; Zhang, X.B.; Zhang, W.; Li, Z.Y.; Zhou, R.R.; Yang, H.J.; Wang, X.J.; Huang, L.Q. ETCM: An encyclopaedia of traditional Chinese medicine. Nucleic Acids Res., 2019, 47(D1), D976-D982.
[http://dx.doi.org/10.1093/nar/gky987] [PMID: 30365030]
[22]
Keiser, M.J.; Roth, B.L.; Armbruster, B.N.; Ernsberger, P.; Irwin, J.J.; Shoichet, B.K. Relating protein pharmacology by ligand chemistry. Nat. Biotechnol., 2007, 25(2), 197-206.
[http://dx.doi.org/10.1038/nbt1284] [PMID: 17287757]
[23]
Gong, B.; Kao, Y.; Zhang, C.; Zhao, H.; Sun, F.; Gong, Z. Exploring the pharmacological mechanism of the herb pair “HuangLian-GanJiang” against colorectal cancer based on network pharmacology. Evid. Based Complement. Alternat. Med., 2019, 2019, 2735050.
[http://dx.doi.org/10.1155/2019/2735050] [PMID: 31871473]
[24]
UniProt C. UniProt. A hub for protein information. Nucleic Acids Res., 2015, 43, D204-D212.
[PMID: 25348405]
[25]
Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res., 2017, 45(D1), D362-D368.
[http://dx.doi.org/10.1093/nar/gkw937] [PMID: 27924014]
[26]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[27]
Chin, C.H.; Chen, S.H.; Wu, H.H.; Ho, C.W.; Ko, M.T.; Lin, C.Y. CytoHubba: Identifying hub objects and subnetworks from complex interactome. BMC Syst. Biol., 2014, 8(Suppl. 4), S11.
[28]
Meng, Z.; Liu, X.; Wu, J.; Zhou, W.; Wang, K.; Jing, Z.; Liu, S.; Ni, M.; Zhang, X. Mechanisms of compound Kushen injection for the treatment of lung cancer based on network pharmacology. Evid. Based Complement. Alternat. Med., 2019, 2019, 4637839.
[http://dx.doi.org/10.1155/2019/4637839] [PMID: 31275410]
[29]
Kanehisa, M.; Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 2000, 28(1), 27-30.
[http://dx.doi.org/10.1093/nar/28.1.27] [PMID: 10592173]
[30]
Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; Harris, M.A.; Hill, D.P.; Issel-Tarver, L.; Kasarskis, A.; Lewis, S.; Matese, J.C.; Richardson, J.E.; Ringwald, M.; Rubin, G.M.; Sherlock, G. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet., 2000, 25(1), 25-29.
[http://dx.doi.org/10.1038/75556] [PMID: 10802651]
[31]
Lauretta, R.; Lanzolla, G.; Vici, P.; Mariani, L.; Moretti, C.; Appetecchia, M. Insulin-sensitizers, polycystic ovary syndrome and gynaecological cancer risk. Int. J. Endocrinol., 2016, 2016, 8671762.
[http://dx.doi.org/10.1155/2016/8671762] [PMID: 27725832]
[32]
El-Hachem, N.; Haibe-Kains, B.; Khalil, A.; Kobeissy, F.H.; Nemer, G. AutoDock and AutoDockTools for proteinligand docking: Beta-site amyloid precursor protein cleaving enzyme 1(BACE1) as a case study. Methods Mol. Biol., 2017, 1598, 391-403.
[http://dx.doi.org/10.1007/978-1-4939-6952-4_20] [PMID: 28508374]
[33]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[34]
Li, X.; Xu, X.; Wang, J.; Yu, H.; Wang, X.; Yang, H.; Xu, H.; Tang, S.; Li, Y.; Yang, L.; Huang, L.; Wang, Y.; Yang, S. A system-level investigation into the mechanisms of Chinese traditional medicine: Compound danshen formula for cardiovascular disease treatment. PLoS One, 2012, 7(9), e43918.
[http://dx.doi.org/10.1371/journal.pone.0043918] [PMID: 22962593]
[35]
Schoyer, K.D.; Liu, H-C.; Witkin, S.; Rosenwaks, Z.; Spandorfer, S.D. Serum insulin-like growth factor I (IGF-I) and IGF-binding protein 3 (IGFBP-3) in IVF patients with polycystic ovary syndrome: correlations with outcome. Fertil. Steril., 2007, 88(1), 139-144.
[http://dx.doi.org/10.1016/j.fertnstert.2006.11.108] [PMID: 17320874]
[36]
Matsuda, F.; Inoue, N.; Manabe, N.; Ohkura, S. Follicular growth and atresia in mammalian ovaries: regulation by survival and death of granulosa cells. J. Reprod. Dev., 2012, 58(1), 44-50.
[http://dx.doi.org/10.1262/jrd.2011-012] [PMID: 22450284]
[37]
Danforth, D.R.; Arbogast, L.K.; Ghosh, S.; Dickerman, A.; Rofagha, R.; Friedman, C.I. Vascular endothelial growth factor stimulates preantral follicle growth in the rat ovary. Biol. Reprod., 2003, 68(5), 1736-1741.
[http://dx.doi.org/10.1095/biolreprod.101.000679] [PMID: 12606430]
[38]
Araújo, V.R.; Duarte, A.B.; Bruno, J.B.; Pinho Lopes, C.A.; de Figueiredo, J.R. Importance of vascular endothelial growth factor (VEGF) in ovarian physiology of mammals. Zygote, 2013, 21(3), 295-304.
[http://dx.doi.org/10.1017/S0967199411000578] [PMID: 21993013]
[39]
Artini, P.G.; Monti, M.; Cristello, F.; Matteucci, C.; Bruno, S.; Valentino, V.; Genazzani, A.R. Vascular endothelial growth factor in females of reproductive age. Gynecol. Endocrinol., 2003, 17(6), 477-492.
[http://dx.doi.org/10.1080/09513590312331290418] [PMID: 14992167]
[40]
Siddamalla, S.; Reddy, T.V.; Govatati, S.; Guruvaiah, P.; Deenadayal, M.; Shivaji, S.; Bhanoori, M. Influence of tumour suppressor gene (TP53, BRCA1 and BRCA2) polymorphisms on polycystic ovary syndrome in South Indian women. Eur. J. Obstet. Gynecol. Reprod. Biol., 2018, 227, 13-18.
[http://dx.doi.org/10.1016/j.ejogrb.2018.05.027] [PMID: 29860059]
[41]
Abraham Gnanadass, S.; Divakar Prabhu, Y.; Valsala Gopalakrishnan, A. Association of metabolic and inflammatory markers with polycystic ovarian syndrome (PCOS): An update. Arch. Gynecol. Obstet., 2021, 303(3), 631-643.
[http://dx.doi.org/10.1007/s00404-020-05951-2] [PMID: 33439300]
[42]
Rostamtabar, M.; Esmaeilzadeh, S.; Tourani, M.; Rahmani, A.; Baee, M.; Shirafkan, F.; Saleki, K.; Mirzababayi, S.S.; Ebrahimpour, S.; Nouri, H.R. Pathophysiological roles of chronic low-grade inflammation mediators in polycystic ovary syndrome. J. Cell. Physiol., 2021, 236(2), 824-838.
[http://dx.doi.org/10.1002/jcp.29912] [PMID: 32617971]
[43]
Khorshidi, M.; Moini, A.; Alipoor, E.; Rezvan, N.; Gorgani-Firuzjaee, S.; Yaseri, M.; Hosseinzadeh-Attar, M.J. The effects of quercetin supplementation on metabolic and hormonal parameters as well as plasma concentration and gene expression of resistin in overweight or obese women with polycystic ovary syndrome. Phytother. Res., 2018, 32(11), 2282-2289.
[http://dx.doi.org/10.1002/ptr.6166] [PMID: 30062709]
[44]
Marcelino, G.; Machate, D.J.; Freitas, K.C.; Hiane, P.A.; Maldonade, I.R.; Pott, A.; Asato, M.A.; Candido, C.J.; Guimarães, R.C.A. β-Carotene: Preventive role for type 2 diabetes mellitus and obesity: A review. Molecules, 2020, 25(24), E5803.
[http://dx.doi.org/10.3390/molecules25245803] [PMID: 33316948]
[45]
Babu, S.; Krishnan, M.; Rajagopal, P.; Periyasamy, V.; Veeraraghavan, V.; Govindan, R.; Jayaraman, S. Beta-sitosterol attenuates insulin resistance in adipose tissue via IRS-1/Akt mediated insulin signaling in high fat diet and sucrose induced type-2 diabetic rats. Eur. J. Pharmacol., 2020, 873, 173004.
[http://dx.doi.org/10.1016/j.ejphar.2020.173004] [PMID: 32045603]
[46]
Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[47]
Sulaiman, M.A.; Al-Farsi, Y.M.; Al-Khaduri, M.M.; Saleh, J.; Waly, M.I. Polycystic ovarian syndrome is linked to increased oxidative stress in Omani women. Int. J. Womens Health, 2018, 10, 763-771.
[http://dx.doi.org/10.2147/IJWH.S166461] [PMID: 30568513]
[48]
Zaidi, S.K.; Shen, W.J.; Cortez, Y.; Bittner, S.; Bittner, A.; Arshad, S.; Huang, T.T.; Kraemer, F.B.; Azhar, S. SOD2 deficiency-induced oxidative stress attenuates steroidogenesis in mouse ovarian granulosa cells. Mol. Cell. Endocrinol., 2021, 519, 110888.
[http://dx.doi.org/10.1016/j.mce.2020.110888] [PMID: 32717420]
[49]
Zuo, T.; Zhu, M.; Xu, W. Roles of oxidative stress in polycystic ovary syndrome and cancers. Oxid. Med. Cell. Longev., 2016, 2016, 8589318.
[http://dx.doi.org/10.1155/2016/8589318] [PMID: 26770659]
[50]
Gao, L.; Gu, Y.; Yin, X. High serum tumor necrosis factor-alpha levels in women with polycystic ovary syndrome: A meta-analysis. PLoS One, 2016, 11(10), e0164021.
[http://dx.doi.org/10.1371/journal.pone.0164021] [PMID: 27764100]
[51]
Schmidt, J.; Weijdegård, B.; Mikkelsen, A.L.; Lindenberg, S.; Nilsson, L.; Brännström, M. Differential expression of inflammation-related genes in the ovarian stroma and granulosa cells of PCOS women. Mol. Hum. Reprod., 2014, 20(1), 49-58.
[http://dx.doi.org/10.1093/molehr/gat051] [PMID: 23900753]
[52]
Bureau, G.; Longpré, F.; Martinoli, M.G. Resveratrol and quercetin, two natural polyphenols, reduce apoptotic neuronal cell death induced by neuroinflammation. J. Neurosci. Res., 2008, 86(2), 403-410.
[http://dx.doi.org/10.1002/jnr.21503] [PMID: 17929310]
[53]
Xu, D.; Hu, M.J.; Wang, Y.Q.; Cui, Y.L. Antioxidant activities of Quercetin and its complexes for medicinal application. Molecules, 2019, 24(6), E1123.
[http://dx.doi.org/10.3390/molecules24061123] [PMID: 30901869]
[54]
Paniagua-Pérez, R.; Flores-Mondragón, G.; Reyes-Legorreta, C.; Herrera-López, B.; Cervantes-Hernández, I.; Madrigal-Santillán, O.; Morales-González, J.A.; Álvarez-González, I.; Madrigal-Bujaidar, E. Evaluation of the anti-inflammatory capacity of beta-sitosterol in rodent assays. Afr. J. Tradit. Complement. Altern. Med., 2016, 14(1), 123-130.
[http://dx.doi.org/10.21010/ajtcam.v14i1.13] [PMID: 28480389]
[55]
Ponnulakshmi, R.; Shyamaladevi, B.; Vijayalakshmi, P.; Selvaraj, J. In silico and in vivo analysis to identify the antidiabetic activity of beta sitosterol in adipose tissue of high fat diet and sucrose induced type-2 diabetic experimental rats. Toxicol. Mech. Methods, 2019, 29(4), 276-290.
[http://dx.doi.org/10.1080/15376516.2018.1545815] [PMID: 30461321]
[56]
Latief, U.; Ahmad, R. β-carotene inhibits NF-κB and restrains diethylnitrosamine-induced hepatic inflammation in Wistar rats. Int. J. Vitam. Nutr. Res., 2020, 2020, a000665.
[http://dx.doi.org/10.1024/0300-9831/a000665] [PMID: 32686990]
[57]
Lapointe, E.; Boerboom, D. WNT signaling and the regulation of ovarian steroidogenesis. Front. Biosci. (Schol. Ed.), 2011, 3(1), 276-285.
[PMID: 21196376]
[58]
Luo, C. Clinical observation on 30 cases of premature ovarian insufficiency with liver depression and kidney deficiency type treated by Yijing Tang. J. Gansu Univ. Chinese Med., 2020, 37(02), 61-66.
[59]
Ye, W.; Xie, T.; Song, Y.; Zhou, L. The role of androgen and its related signals in PCOS. J. Cell. Mol. Med., 2021, 25(4), 1825-1837.
[http://dx.doi.org/10.1111/jcmm.16205] [PMID: 33369146]
[60]
Astapova, O.; Minor, B.M.N.; Hammes, S.R. Physiological and pathological androgen actions in the ovary. Endocrinology, 2019, 160(5), 1166-1174.
[http://dx.doi.org/10.1210/en.2019-00101] [PMID: 30912811]
[61]
Malini, N.A.; Roy George, K. Evaluation of different ranges of LH:FSH ratios in polycystic ovarian syndrome (PCOS) - Clinical based case control study. Gen. Comp. Endocrinol., 2018, 260, 51-57.
[http://dx.doi.org/10.1016/j.ygcen.2017.12.007] [PMID: 29273352]
[62]
McCartney, C.R.; Eagleson, C.A.; Marshall, J.C. Regulation of gonadotropin secretion: Implications for polycystic ovary syndrome. Semin. Reprod. Med., 2002, 20(4), 317-326.
[http://dx.doi.org/10.1055/s-2002-36706] [PMID: 12536355]
[63]
Kamenov, Z.; Gateva, A. Inositols in PCOS. Molecules, 2020, 25(23), E5566.
[http://dx.doi.org/10.3390/molecules25235566] [PMID: 33260918]
[64]
Ni, X.R.; Sun, Z.J.; Hu, G.H.; Wang, R.H. High concentration of insulin promotes apoptosis of primary cultured rat ovarian granulosa cells via its increase in extracellular HMGB1. Reprod. Sci., 2015, 22(3), 271-277.
[http://dx.doi.org/10.1177/1933719114549852] [PMID: 25228632]
[65]
Moghetti, P.; Tosi, F. Insulin resistance and PCOS: chicken or egg? J. Endocrinol. Invest., 2021, 44(2), 233-244.
[http://dx.doi.org/10.1007/s40618-020-01351-0] [PMID: 32648001]
[66]
Polak, A.M.; Krentowska, A.; Łebkowska, A.; Buczyńska, A.; Adamski, M.; Adamska-Patruno, E.; Fiedorczuk, J.; Krętowski, A.J.; Kowalska, I.; Adamska, A. The association of serum levels of leptin and ghrelin with the dietary fat content in non-obese women with Polycystic Ovary Syndrome. Nutrients, 2020, 12(9), E2753.
[http://dx.doi.org/10.3390/nu12092753] [PMID: 32927680]
[67]
Iwase, A.; Goto, M.; Harata, T.; Takigawa, S.; Nakahara, T.; Suzuki, K.; Manabe, S.; Kikkawa, F. Insulin attenuates the insulin-like growth factor-I (IGF-I)-Akt pathway, not IGF-I-extracellularly regulated kinase pathway, in luteinized granulosa cells with an increase in PTEN. J. Clin. Endocrinol. Metab., 2009, 94(6), 2184-2191.
[http://dx.doi.org/10.1210/jc.2008-1948] [PMID: 19318457]
[68]
Liu, G.; Liu, S.; Xing, G.; Wang, F. lncRNA PVT1/MicroRNA-17-5p/PTEN axis regulates secretion of E2 and P4, proliferation, and apoptosis of ovarian granulosa cells in PCOS. Mol. Ther. Nucleic Acids, 2020, 20, 205-216.
[http://dx.doi.org/10.1016/j.omtn.2020.02.007] [PMID: 32179451]
[69]
Li, Y.Z.; Di Cristofano, A.; Woo, M. Metabolic Role of PTEN in insulin signaling and resistance. Cold Spring Harb. Perspect. Med., 2020, 10(8), a036137.
[http://dx.doi.org/10.1101/cshperspect.a036137] [PMID: 31964643]
[70]
Covey, T.M.; Edes, K.; Fitzpatrick, F.A. Akt activation by arachidonic acid metabolism occurs via oxidation and inactivation of PTEN tumor suppressor. Oncogene, 2007, 26(39), 5784-5792.
[http://dx.doi.org/10.1038/sj.onc.1210391] [PMID: 17369849]
[71]
Premoli, A.C.; Santana, L.F.; Ferriani, R.A.; Moura, M.D.; De Sá, M.F.; Reis, R.M. Growth hormone secretion and insulin-like growth factor-1 are related to hyperandrogenism in nonobese patients with polycystic ovary syndrome. Fertil. Steril., 2005, 83(6), 1852-1855.
[http://dx.doi.org/10.1016/j.fertnstert.2004.10.057] [PMID: 15950665]
[72]
Shafiee, M.N.; Seedhouse, C.; Mongan, N.; Chapman, C.; Deen, S.; Abu, J.; Atiomo, W. Up-regulation of genes involved in the insulin signalling pathway (IGF1, PTEN and IGFBP1) in the endometrium may link polycystic ovarian syndrome and endometrial cancer. Mol. Cell. Endocrinol., 2016, 424, 94-101.
[http://dx.doi.org/10.1016/j.mce.2016.01.019] [PMID: 26802879]
[73]
Velazquez, M.A.; Hermann, D.; Kues, W.A.; Niemann, H. Increased apoptosis in bovine blastocysts exposed to high levels of IGF1 is not associated with downregulation of the IGF1 receptor. Reproduction, 2011, 141(1), 91-103.
[http://dx.doi.org/10.1530/REP-10-0336] [PMID: 20926690]
[74]
Jung, M.; Bu, S.Y.; Tak, K.H.; Park, J.E.; Kim, E. Anticarcinogenic effect of quercetin by inhibition of insulin-like growth factor (IGF)-1 signaling in mouse skin cancer. Nutr. Res. Pract., 2013, 7(6), 439-445.
[http://dx.doi.org/10.4162/nrp.2013.7.6.439] [PMID: 24353828]
[75]
Peitsidis, P.; Agrawal, R. Role of vascular endothelial growth factor in women with PCO and PCOS: A systematic review. Reprod. Biomed. Online, 2010, 20(4), 444-452.
[http://dx.doi.org/10.1016/j.rbmo.2010.01.007] [PMID: 20156703]
[76]
Bahramrezaie, M.; Amidi, F.; Aleyasin, A.; Saremi, A.; Aghahoseini, M.; Brenjian, S.; Khodarahmian, M.; Pooladi, A. Effects of resveratrol on VEGF & HIF1 genes expression in granulosa cells in the angiogenesis pathway and laboratory parameters of polycystic ovary syndrome: a triple-blind randomized clinical trial. J. Assist. Reprod. Genet., 2019, 36(8), 1701-1712.
[http://dx.doi.org/10.1007/s10815-019-01461-6] [PMID: 31327131]
[77]
Wei, J.; Zhao, Y. MiR-185-5p Protects against angiogenesis in polycystic ovary syndrome by targeting VEGFA. Front. Pharmacol., 2020, 11, 1030.
[http://dx.doi.org/10.3389/fphar.2020.01030] [PMID: 32760272]
[78]
Wang, L.; Wu, H.; Xiong, L.; Liu, X.; Yang, N.; Luo, L.; Qin, T.; Zhu, X.; Shen, Z.; Jing, H.; Chen, J. Quercetin Downregulates Cy-clooxygenase-2 expression and HIF-1α/VEGF signaling-related angiogenesis in a mouse model of abdominal aortic aneurysm. BioMed Res. Int., 2020, 2020, 1-11.
[http://dx.doi.org/10.1155/2020/9485398]
[79]
Regidor, P.A.; Mueller, A.; Sailer, M.; Gonzalez Santos, F.; Rizo, J.M.; Egea, F.M. Chronic inflammation in PCOS: The potential benefits of specialized pro-resolving lipid mediators (SPMs) in the improvement of the resolutive response. Int. J. Mol. Sci., 2020, 22(1), E384.
[http://dx.doi.org/10.3390/ijms22010384] [PMID: 33396555]
[80]
Seyyed Ali, M.; Neisi, N.; Darbor, M.; Hassanpour, M.; Makvandi, M.; Solgi, G. β-carotene protects the gastric mucosa against ische-mia-reperfusion injury in rats. Eur. Cytokine Netw., 2012, 23(4), 173-178.
[http://dx.doi.org/10.1684/ecn.2012.0317] [PMID: 23291590]
[81]
Wang, Z.; Zhai, D.; Zhang, D.; Bai, L.; Yao, R.; Yu, J.; Cheng, W.; Yu, C. Quercetin decreases insulin resistance in a polycystic ovary syndrome rat model by improving inflammatory microenvironment. Reprod. Sci., 2017, 24(5), 682-690.
[http://dx.doi.org/10.1177/1933719116667218] [PMID: 27634381]
[82]
Laczko, R.; Chang, A.; Watanabe, L.; Petelo, M.; Kahaleua, K.; Bingham, J.P.; Csiszar, K. Anti-inflammatory activities of Waltheria indica extracts by modulating expression of IL-1B, TNF-α TNFRII and NF-κB in human macrophages. Inflammopharmacology, 2020, 28(2), 525-540.
[http://dx.doi.org/10.1007/s10787-019-00658-6] [PMID: 31686273]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy