Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Enhancing the Therapeutic Potential of Nanomedicines by Modifying Surface Characteristics

Author(s): Nisha Gulati, Kamal Dua and Harish Dureja*

Volume 20, Issue 8, 2023

Published on: 01 August, 2022

Page: [1031 - 1036] Pages: 6

DOI: 10.2174/1567201819666220508175434

Price: $65

conference banner
Abstract

Nanomedicines have been used over time because of their significant impact on human health care for the prevention, early detection, diagnosis, treatment, and follow-up of a wide range of illnesses. Nanomedicines must be adequately characterized in order to develop well-defined nanomedicines with therapeutic value. The surface charge of nanomedicines plays an important role to determine how they interact with biological components where the zeta potential is a useful tool for describing the chemical composition of particle surfaces, such as functional groups, adsorption/desorption, and so on. The main goal of this review is to present an overview of the impact of nanomedicines' surface charges on absorption, distribution, metabolism, and in vivo drug release, for example negatively charged nanoparticles diffuse well through mucus for mucosal drug delivery, whereas positively charged nanoparticles are preferred for transvascular transport, tumor penetration, and cellular absorption. In this review, we also highlight how to improve nanomedicines' therapeutic potential by altering their surface characteristics with the help of various polymers. Future research should be focused on enhancing the therapeutic efficiency of nanomedicines by changing their surface properties, as well as conducting in-depth mechanistic studies by changing the surface properties of nanomedicines for the efficient treatment of diseases with low or no nanomedicine toxicity.

Keywords: Zeta potential, Surface charge, Nanomedicines, Bioavailability, Polymers, Bio-distribution.

Next »
[1]
Huang, H.; Feng, W.; Chen, Y.; Shi, J. Inorganic nanoparticles in clinical trials and translations. Nano Today, 2020, 35, 100972.
[http://dx.doi.org/10.1016/j.nantod.2020.100972]
[2]
Shen, Z.; Nieh, M.P.; Li, Y. Decorating nanoparticle surface for targeted drug delivery: Opportunities and challenges. Polymers (Basel), 2016, 8(3), 1-18.
[http://dx.doi.org/10.3390/polym8030083] [PMID: 30979183]
[3]
Rasmussen, M.K.; Pedersen, J.N.; Marie, R. Size and surface charge characterization of nanoparticles with a salt gradient. Nat. Commun., 2020, 11(1), 2337.
[http://dx.doi.org/10.1038/s41467-020-15889-3] [PMID: 32393750]
[4]
Grisham, D.R.; Nanda, V. Zeta potential prediction from protein structure in general aqueous electrolyte solutions. Langmuir, 2020, 36(46), 13799-13803.
[http://dx.doi.org/10.1021/acs.langmuir.0c02031] [PMID: 33186035]
[5]
Lv, H.; Guo, S.; Zhang, G.; He, W.; Wu, Y.; Yu, D.G. Electrospun structural hybrids of acyclovir-polyacrylonitrile at acyclovir for modifying drug release. Polymers (Basel), 2021, 13(24), 4286.
[http://dx.doi.org/10.3390/polym13244286]] [PMID: 34960834]
[6]
Bhattacharjee, S. DLS and zeta potential - What they are and what they are not? J. Control. Release, 2016, 235, 337-351.
[http://dx.doi.org/10.1016/j.jconrel.2016.06.017] [PMID: 27297779]
[7]
Marín, R.R.R.; Babick, F.; Hillemann, L. Zeta potential measurements for non-spherical colloidal particles - Practical issues of characterisation of interfacial properties of nanoparticles. Colloids Surf. A Physicochem. Eng. Asp., 2017, 532, 516-521.
[http://dx.doi.org/10.1016/j.colsurfa.2017.04.010]
[8]
Czuba, E.; Diop, M.; Mura, C.; Schaschkow, A.; Langlois, A.; Bietiger, W.; Neidl, R.; Virciglio, A.; Auberval, N.; Julien-David, D.; Maillard, E.; Frere, Y.; Marchioni, E.; Pinget, M.; Sigrist, S. Oral insulin delivery, the challenge to increase insulin bioavailability: Influence of surface charge in nanoparticle system. Int. J. Pharm., 2018, 542(1-2), 47-55.
[http://dx.doi.org/10.1016/j.ijpharm.2018.02.045] [PMID: 29501738]
[9]
Jo, D.H.; Kim, J.H.; Lee, T.G.; Kim, J.H. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine , 2015, 11(7), 1603-1611.
[http://dx.doi.org/10.1016/j.nano.2015.04.015] [PMID: 25989200]
[10]
Terstappen, G.C.; Meyer, A.H.; Bell, R.D.; Zhang, W. Strategies for delivering therapeutics across the blood-brain barrier. Nat. Rev. Drug Discov., 2021, 20(5), 362-383.
[http://dx.doi.org/10.1038/s41573-021-00139-y] [PMID: 33649582]
[11]
Lockman, P.R.; Koziara, J.M.; Mumper, R.J.; Allen, D.D. Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J. Drug Target., 2004, 12(9-10), 635-641.
[http://dx.doi.org/10.1080/10611860400015936]] [PMID: 15621689]
[12]
Meng, T.; Kulkarni, V.; Simmers, R.; Brar, V.; Xu, Q. Therapeutic implications of nanomedicine for ocular drug delivery. Drug Discov. Today, 2019, 24(8), 1524-1538.
[http://dx.doi.org/10.1016/j.drudis.2019.05.006]] [PMID: 31102733]
[13]
Huang, X.; Chau, Y. Investigating impacts of surface charge on intraocular distribution of intravitreal lipid nanoparticles. Exp. Eye Res., 2019, 186, 107711.
[http://dx.doi.org/10.1016/j.exer.2019.107711] [PMID: 31238078]
[14]
Gulati, N.; Chellappan, D.K.; MacLoughlin, R.; Dua, K.; Dureja, H. Inhaled nano-based therapeutics for inflammatory lung diseases: Recent advances and future prospects. Life Sci., 2021, 285, 119969.
[http://dx.doi.org/10.1016/j.lfs.2021.119969] [PMID: 34547339]
[15]
Wang, H.; George, G.; Islam, N. Nicotine-loaded chitosan nanoparticles for dry powder inhaler (DPI) formulations - impact of nanoparticle surface charge on powder aerosolization. Adv. Powder Technol., 2018, 29(12), 3079-3086.
[http://dx.doi.org/10.1016/j.apt.2018.08.011]
[16]
Vamsi, V.; Venuganti, K. Advanced materials for drug delivery across mucosal barriers. Acta Biomater., 2021, 119, 13-29.
[PMID: 33141051]
[17]
Bonengel, S.; Prüfert, F.; Perera, G.; Schauer, J.; Bernkop-Schnürch, A. Polyethylene imine-6-phosphogluconic acid nanoparticles--a novel zeta potential changing system. Int. J. Pharm., 2015, 483(1-2), 19-25.
[http://dx.doi.org/10.1016/j.ijpharm.2015.01.041] [PMID: 25623492]
[18]
Feng, C.; Li, J.; Kong, M.; Liu, Y.; Cheng, X.J.; Li, Y.; Park, H.J.; Chen, X.G. Surface charge effect on mucoadhesion of chitosan based nanogels for local anti-colorectal cancer drug delivery. Colloids Surf. B Biointerfaces, 2015, 128, 439-447.
[http://dx.doi.org/10.1016/j.colsurfb.2015.02.042] [PMID: 25769283]
[19]
Ulldemolins, A.; Seras-Franzoso, J.; Andrade, F.; Rafael, D.; Abasolo, I.; Gener, P.; Schwartz, S., Jr Perspectives of nano-carrier drug delivery systems to overcome cancer drug resistance in the clinics. Cancer Drug Resist., 2021, 4(1), 44-68.
[http://dx.doi.org/10.20517/cdr.2020.59]
[20]
Zare, M.; Norouzi Roshan, Z.; Assadpour, E.; Jafari, S.M. Improving the cancer prevention/treatment role of carotenoids through various nano-delivery systems. Crit. Rev. Food Sci. Nutr., 2021, 61(3), 522-534.
[http://dx.doi.org/10.1080/10408398.2020.1738999] [PMID: 32180434]
[21]
Wang, H.X.; Zuo, Z.Q.; Du, J.Z.; Wang, Y.C.; Sun, R.; Cao, Z.T.; Ye, X.D.; Wang, J.L.; Leong, K.W.; Wang, J. Surface charge critically affects tumor penetration and therapeutic efficacy of cancer nanomedicines. Nano Today, 2016, 11(2), 133-144.
[http://dx.doi.org/10.1016/j.nantod.2016.04.008]
[22]
Nazir, I.; Fürst, A.; Lupo, N.; Hupfauf, A.; Gust, R.; Bernkop-Schnürch, A. Zeta potential changing self-emulsifying drug delivery systems: A promising strategy to sequentially overcome mucus and epithelial barrier. Eur. J. Pharm. Biopharm., 2019, 144, 40-49.
[http://dx.doi.org/10.1016/j.ejpb.2019.09.007] [PMID: 31505225]
[23]
Begum, A.A.; Toth, I.; Hussein, W.M.; Moyle, P.M. Advances in targeted gene delivery. Curr. Drug Deliv., 2019, 16(7), 588-608.
[http://dx.doi.org/10.2174/1567201816666190529072914] [PMID: 31142250]
[24]
Griesser, J.; Hetényi, G.; Federer, C.; Steinbring, C.; Ellemunter, H.; Niedermayr, K.; Bernkop-Schnürch, A. Highly mucus permeating and zeta potential changing self-emulsifying drug delivery systems: A potent gene delivery model for causal treatment of cystic fibrosis. Int. J. Pharm., 2019, 557, 124-134.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.048] [PMID: 30594687]
[25]
Huang, W.F.; Tsui, C.P.; Tang, C.Y.; Yang, M.; Gu, L. Surface charge switchable and pH-responsive chitosan/polymer core-shell composite nanoparticles for drug delivery application. Compos., Part B Eng., 2017, 121, 83-91.
[http://dx.doi.org/10.1016/j.compositesb.2017.03.028]
[26]
Zhao, K.; Li, D.; Shi, C.; Ma, X.; Rong, G.; Kang, H.; Wang, X.; Sun, B. Biodegradable polymeric nanoparticles as the delivery carrier for drug. Curr. Drug Deliv., 2016, 13(4), 494-499.
[http://dx.doi.org/10.2174/156720181304160521004609] [PMID: 27230997]
[27]
Gulati, N.; Dua, K.; Dureja, H. Role of chitosan based nanomedicines in the treatment of chronic respiratory diseases. Int. J. Biol. Macromol., 2021, 185, 20-30.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.06.035] [PMID: 34116092]
[28]
Sathasivam, T.; Gugler, M.C.; Janarthanan, P. Polymers in Nanomedicine. Nantechnology in Medicine; Arivarasan, V.K.; Loganathan, K; Janarthanan, P., Ed.; Springer: Cham, 2021, pp. 175-198.
[http://dx.doi.org/10.1007/978-3-030-61021-0_10]
[29]
Sharma, A.; Hawthorne, S.; Jha, S.K.; Jha, N.K.; Kumar, D.; Girgis, S.; Goswami, V.K.; Gupta, G.; Singh, S.; Dureja, H.; Chellappan, D.K.; Dua, K. Effects of curcumin-loaded poly(lactic-co-glycolic acid) nanoparticles in MDA-MB231 human breast cancer cells. Nanomedicine (Lond.), 2021, 16(20), 1763-1773.
[http://dx.doi.org/10.2217/nnm-2021-0066]] [PMID: 34296625]
[30]
Sahoo, N.; Sahoo, R.K.; Biswas, N.; Guha, A.; Kuotsu, K. Recent advancement of gelatin nanoparticles in drug and vaccine delivery. Int. J. Biol. Macromol., 2015, 81, 317-331.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.08.006]] [PMID: 26277745]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy