Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Novel Insights into the Molecular Mechanisms Involved in the Neuroprotective Effects of C-Phycocyanin against Brain Ischemia in Rats

Author(s): Javier Marín-Prida, José Luiz Liberato, Alexey Llópiz-Arzuaga, Karina Stringhetta-Padovani, Nancy Pavón-Fuentes, Andréia Machado Leopoldino, Osmany Guirola Cruz, Ignacio Hernández González, Mariela León Pérez, Antoni Camins, Wagner Ferreira dos Santos, Sergio Akira Uyemura, Gilberto L. Pardo-Andreu and Giselle Pentón-Rol*

Volume 28, Issue 14, 2022

Published on: 02 June, 2022

Page: [1187 - 1197] Pages: 11

DOI: 10.2174/1381612828666220506145542

Price: $65

conference banner
Abstract

Background: Ischemic stroke produces a large health impact worldwide, with scarce therapeutic options.

Objective: This study aimed to reveal the role of NADPH oxidase and neuroinflammatory genes in the cerebral anti-ischemic effects of C-Phycocyanin (C-PC), the chief biliprotein of Spirulina platensis.

Methods: Rats with either focal cerebral ischemia/reperfusion (I/R) or acute brain hypoperfusion, received C-PC at different doses, or a vehicle, for up to 6 h post-stroke. Neurological, behavioral and histochemical parameters were assessed in I/R rats at 24 h. Cerebral gene expression and hippocampal neuron viability were evaluated in hypoperfused rats at acute (24 h) or chronic phases (30 days), respectively. A molecular docking analysis of NOX2 and C-PC-derived Phycocyanobilin (PCB) was also performed.

Results: C-PC, obtained with a purity of 4.342, significantly reduced the infarct volume and neurological deficit in a dose-dependent manner, and improved the exploratory activity of I/R rats. This biliprotein inhibited NOX2 expression, a crucial NADPH oxidase isoform in the brain, and the superoxide increase produced by the ischemic event. Moreover, C-PC-derived PCB showed a high binding affinity in silico with NOX2. C-PC downregulated the expression of pro-inflammatory genes (IFN-γ, IL-6, IL-17A, CD74, CCL12) and upregulated immune suppressive genes (Foxp3, IL-4, TGF-β) in hypoperfused brain areas. This compound also decreased chronic neuronal death in the hippocampus of hypoperfused rats.

Conclusion: These results suggest that the inhibition of cerebral NADPH oxidase and the improvement of neuroinflammation are key mechanisms mediating the neuroprotective actions of C-PC against brain ischemia.

Keywords: C-Phycocyanin, ischemic stroke, NADPH oxidase, neuroprotection, neuroinflammation, brain ischemia.

[1]
Neuhaus AA, Couch Y, Hadley G, Buchan AM. Neuroprotection in stroke: The importance of collaboration and reproducibility. Brain 2017; 140(8): 2079-92.
[http://dx.doi.org/10.1093/brain/awx126] [PMID: 28641383]
[2]
Tiwari AK, Tiwari BS. Cyanotherapeutics: An emerging field for future drug discovery. Appl Phycol 2020; 1(1): 44-57.
[http://dx.doi.org/10.1080/26388081.2020.1744480]
[3]
Padyana AK, Bhat VB, Madyastha KM, Rajashankar KR, Ramakumar S. Crystal structure of a light-harvesting protein C-phycocyanin from Spirulina platensis. Biochem Biophys Res Commun 2001; 282(4): 893-8.
[http://dx.doi.org/10.1006/bbrc.2001.4663] [PMID: 11352634]
[4]
Romay C, Armesto J, Remirez D, González R, Ledon N, García I. Antioxidant and anti-inflammatory properties of C-phycocyanin from blue-green algae. Inflamm Res 1998; 47(1): 36-41.
[http://dx.doi.org/10.1007/s000110050256] [PMID: 9495584]
[5]
Bhat VB, Madyastha KM. C-phycocyanin: A potent peroxyl radical scavenger in vivo and in vitro. Biochem Biophys Res Commun 2000; 275(1): 20-5.
[http://dx.doi.org/10.1006/bbrc.2000.3270] [PMID: 10944434]
[6]
Tapia G, Galetovic A, Lemp E, Pino E, Lissi E. Singlet oxygen-mediated photobleaching of the prosthetic group in hemoglobins and c-phycocyanin. Photochem Photobiol 1999; 70(4): 499-504.
[http://dx.doi.org/10.1111/j.1751-1097.1999.tb08244.x] [PMID: 10546547]
[7]
Romay C, González R, Pizarro M, Lissi E. Kinetics of c-phycocyanin reaction with hypochlorite. J Protein Chem 2000; 19(2): 151-5.
[http://dx.doi.org/10.1023/A:1007038801482] [PMID: 10945439]
[8]
Bhat VB, Madyastha KM. Scavenging of peroxynitrite by phycocyanin and phycocyanobilin from Spirulina platensis: Protection against oxidative damage to DNA. Biochem Biophys Res Commun 2001; 285(2): 262-6.
[http://dx.doi.org/10.1006/bbrc.2001.5195] [PMID: 11444835]
[9]
Marín-Prida J, Pentón-Rol G, Rodrigues FP, et al. C-Phycocyanin protects SH-SY5Y cells from oxidative injury, rat retina from transient ischemia and rat brain mitochondria from Ca2+/phosphate-induced impairment. Brain Res Bull 2012; 89(5-6): 159-67.
[http://dx.doi.org/10.1016/j.brainresbull.2012.08.011] [PMID: 22982368]
[10]
Drummond GR, Selemidis S, Griendling KK, Sobey CG. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat Rev Drug Discov 2011; 10(6): 453-71.
[http://dx.doi.org/10.1038/nrd3403] [PMID: 21629295]
[11]
Yoshioka H, Niizuma K, Katsu M, et al. NADPH oxidase mediates striatal neuronal injury after transient global cerebral ischemia. J Cereb Blood Flow Metab 2011; 31(3): 868-80.
[http://dx.doi.org/10.1038/jcbfm.2010.166] [PMID: 20859296]
[12]
Walder CE, Green SP, Darbonne WC, et al. Ischemic stroke injury is reduced in mice lacking a functional NADPH oxidase. Stroke 1997; 28(11): 2252-8.
[http://dx.doi.org/10.1161/01.STR.28.11.2252] [PMID: 9368573]
[13]
Kahles T, Heumueller S, Brandes RP. NADPH oxidases and blood-brain barrier dysfunction in stroke. In: Sauer H, Shah AM, Laurindo FR, Eds. Studies on Cardiovascular DisordersNew York Humana Press. 2010.
[http://dx.doi.org/10.1007/978-1-60761-600-9_11]
[14]
Lo EH. A new penumbra: Transitioning from injury into repair after stroke. Nat Med 2008; 14(5): 497-500.
[http://dx.doi.org/10.1038/nm1735] [PMID: 18463660]
[15]
Fisher M. The ischemic penumbra: A new opportunity for neuroprotection. Cerebrovasc Dis 2006; 21(Suppl. 2): 64-70.
[http://dx.doi.org/10.1159/000091705] [PMID: 16651816]
[16]
Braeuninger S, Kleinschnitz C. Rodent models of focal cerebral ischemia: Procedural pitfalls and translational problems. Exp Transl Stroke Med 2009; 1(1): 8.
[http://dx.doi.org/10.1186/2040-7378-1-8] [PMID: 20150986]
[17]
Farkas E, Luiten PGM, Bari F. Permanent, bilateral common carotid artery occlusion in the rat: A model for chronic cerebral hypoperfusion-related neurodegenerative diseases. Brain Res Brain Res Rev 2007; 54(1): 162-80.
[http://dx.doi.org/10.1016/j.brainresrev.2007.01.003] [PMID: 17296232]
[18]
Patil G, Chethana S, Sridevi AS, Raghavarao KS. Method to obtain C-phycocyanin of high purity. J Chromatogr A 2006; 1127(1-2): 76-81.
[http://dx.doi.org/10.1016/j.chroma.2006.05.073] [PMID: 16782107]
[19]
McGrath JC, Drummond GB, McLachlan EM, Kilkenny C, Wainwright CL. Guidelines for reporting experiments involving animals: The ARRIVE guidelines. Br J Pharmacol 2010; 160(7): 1573-6.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00873.x] [PMID: 20649560]
[20]
Moyanova SG, Kortenska LV, Mitreva RG, Pashova VD, Ngomba RT, Nicoletti F. Multimodal assessment of neuroprotection applied to the use of MK-801 in the endothelin-1 model of transient focal brain ischemia. Brain Res 2007; 1153: 58-67.
[http://dx.doi.org/10.1016/j.brainres.2007.03.070] [PMID: 17466282]
[21]
Garcia JH, Wagner S, Liu KF, Hu XJ. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke 1995; 26(4): 627-34.
[http://dx.doi.org/10.1161/01.STR.26.4.627] [PMID: 7709410]
[22]
Ceulemans A-G, Zgavc T, Kooijman R, Hachimi-Idrissi S, Sarre S, Michotte Y. Mild hypothermia causes differential, time-dependent changes in cytokine expression and gliosis following endothelin-1-induced transient focal cerebral ischemia. J Neuroinflammation 2011; 8(1): 60.
[http://dx.doi.org/10.1186/1742-2094-8-60] [PMID: 21627837]
[23]
Buccafusco JJ, Ed. Methods of behavior analysis in neuroscience. 2nd ed. Boca Raton, FL: CRC Press/Taylor & Francis 2009.
[24]
Paxinos G, Watson C. The rat brain in stereotaxic coordinates. San Diego: Academic Press 1998.
[25]
Plaschke K, Grant M, Weigand MA, Züchner J, Martin E, Bardenheuer HJ. Neuromodulatory effect of propentofylline on rat brain under acute and long-term hypoperfusion. Br J Pharmacol 2001; 133(1): 107-16.
[http://dx.doi.org/10.1038/sj.bjp.0704061] [PMID: 11325800]
[26]
Bustin SA, Benes V, Garson JA, et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin Chem 2009; 55(4): 611-22.
[http://dx.doi.org/10.1373/clinchem.2008.112797] [PMID: 19246619]
[27]
Lech M, Avila-Ferrufino A, Skuginna V, Susanti HE, Anders HJ. Quantitative expression of RIG-like helicase, NOD-like receptor and inflammasome-related mRNAs in humans and mice. Int Immunol 2010; 22(9): 717-28.
[http://dx.doi.org/10.1093/intimm/dxq058] [PMID: 20584763]
[28]
Muller PY, Janovjak H, Miserez AR, Dobbie Z. Processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques 2002; 32(6): 1372-1374, 1376, 1378-1379.
[PMID: 12074169]
[29]
Kim S, Chen J, Cheng T, et al. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res 2021; 49(D1): D1388-95.
[http://dx.doi.org/10.1093/nar/gkaa971] [PMID: 33151290]
[30]
Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 2012; 4(1): 17.
[http://dx.doi.org/10.1186/1758-2946-4-17] [PMID: 22889332]
[31]
Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010; 31(2): 455-61.
[PMID: 19499576]
[32]
Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 2009; 30(16): 2785-91.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[33]
Windle V, Szymanska A, Granter-Button S, et al. An analysis of four different methods of producing focal cerebral ischemia with endothelin-1 in the rat. Exp Neurol 2006; 201(2): 324-34.
[http://dx.doi.org/10.1016/j.expneurol.2006.04.012] [PMID: 16740259]
[34]
Callaway JK, Knight MJ, Watkins DJ, Beart PM, Jarrott B. Delayed treatment with AM-36, a novel neuroprotective agent, reduces neuronal damage after endothelin-1-induced middle cerebral artery occlusion in conscious rats. Stroke 1999; 30(12): 2704-12.
[http://dx.doi.org/10.1161/01.STR.30.12.2704] [PMID: 10583001]
[35]
Moyanova S, Kortenska L, Mitreva R. Endothelin-1-induced cerebral ischemia: Effects of ketanserin and MK-801 on limb placing in rats. Int J Neurosci 2007; 117(9): 1361-81.
[http://dx.doi.org/10.1080/00207450600938847] [PMID: 17654097]
[36]
Nikolova S, Moyanova S, Hughes S, Bellyou-Camilleri M, Lee T-Y, Bartha R. Endothelin-1 induced MCAO: Dose dependency of cerebral blood flow. J Neurosci Methods 2009; 179(1): 22-8.
[http://dx.doi.org/10.1016/j.jneumeth.2009.01.009] [PMID: 19428507]
[37]
Wynne BM, Chiao C-W, Webb RC. Vascular smooth muscle cell signaling mechanisms for contraction to angiotensin II and endothelin-1. J Am Soc Hypertens 2009; 3(2): 84-95.
[http://dx.doi.org/10.1016/j.jash.2008.09.002] [PMID: 20161229]
[38]
Dirnagl U. Pathobiology of injury after stroke: The neurovascular unit and beyond. Ann N Y Acad Sci 2012; 1268(1): 21-5.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06691.x] [PMID: 22994217]
[39]
Tang X, Liu KJ, Ramu J, Chen Q, Li T, Liu W. Inhibition of gp91(phox) contributes towards normobaric hyperoxia afforded neuroprotection in focal cerebral ischemia. Brain Res 2010; 1348: 174-80.
[http://dx.doi.org/10.1016/j.brainres.2010.05.082] [PMID: 20547141]
[40]
Singh NK, Sonani RR, Awasthi A, et al. Phycocyanin moderates aging and proteotoxicity in Caenorhabditis elegans. J Appl Phycol 2016; 28(4): 2407-17.
[http://dx.doi.org/10.1007/s10811-015-0772-5]
[41]
Riss J, Décordé K, Sutra T, et al. Phycobiliprotein C-phycocyanin from Spirulina platensis is powerfully responsible for reducing oxidative stress and NADPH oxidase expression induced by an atherogenic diet in hamsters. J Agric Food Chem 2007; 55(19): 7962-7.
[http://dx.doi.org/10.1021/jf070529g] [PMID: 17696484]
[42]
Zheng J, Inoguchi T, Sasaki S, et al. Phycocyanin and phycocyanobilin from Spirulina platensis protect against diabetic nephropathy by inhibiting oxidative stress. Am J Physiol Regul Integr Comp Physiol 2013; 304(2): R110-20.
[http://dx.doi.org/10.1152/ajpregu.00648.2011] [PMID: 23115122]
[43]
Jesús A. Nox enzymes from fungus to fly to fish and what they tell us about Nox function in mammals. Free Radic Biol Med 2010; 49(9): 1342-53.
[44]
Teufel R, Miyanaga A, Michaudel Q, et al. Flavin-mediated dual oxidation controls an enzymatic Favorskii-type rearrangement. Nature 2013; 503(7477): 552-6.
[http://dx.doi.org/10.1038/nature12643] [PMID: 24162851]
[45]
Debeurme F, Picciocchi A, Dagher MC, et al. Regulation of NADPH oxidase activity in phagocytes: Relationship between FAD/NADPH binding and oxidase complex assembly. J Biol Chem 2010; 285(43): 33197-208.
[http://dx.doi.org/10.1074/jbc.M110.151555] [PMID: 20724480]
[46]
Carbone F, Teixeira PC, Braunersreuther V, Mach F, Vuilleumier N, Montecucco F. Pathophysiology and treatments of oxidative injury in ischemic stroke: Focus on the phagocytic NADPH oxidase 2. Antioxid Redox Signal 2015; 23(5): 460-89.
[http://dx.doi.org/10.1089/ars.2013.5778] [PMID: 24635113]
[47]
Chen H, Kim GS, Okami N, Narasimhan P, Chan PH. NADPH oxidase is involved in post-ischemic brain inflammation. Neurobiol Dis 2011; 42(3): 341-8.
[http://dx.doi.org/10.1016/j.nbd.2011.01.027] [PMID: 21303700]
[48]
Zheng Z, Yenari MA. Post-ischemic inflammation: Molecular mechanisms and therapeutic implications. Neurol Res 2004; 26: 884-92.
[http://dx.doi.org/10.1179/016164104X2357]
[49]
Yilmaz G, Arumugam TV, Stokes KY, Granger DN. Role of T lymphocytes and interferon-γ in ischemic stroke. Circulation 2006; 113(17): 2105-12.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.593046] [PMID: 16636173]
[50]
Gottfried-Blackmore A, Kaunzner UW, Idoyaga J, Felger JC, McEwen BS, Bulloch K. Acute in vivo exposure to interferon-γ enables resident brain dendritic cells to become effective antigen presenting cells. Proc Natl Acad Sci USA 2009; 106(49): 20918-23.
[http://dx.doi.org/10.1073/pnas.0911509106] [PMID: 19906988]
[51]
Anrather J, Iadecola C. Inflammation and stroke: An overview. Neurotherapeutics 2016; 13(4): 661-70.
[http://dx.doi.org/10.1007/s13311-016-0483-x] [PMID: 27730544]
[52]
Rimbau V, Camins A, Pubill D, et al. C-phycocyanin protects cerebellar granule cells from low potassium/serum deprivation-induced apoptosis. Naunyn Schmiedebergs Arch Pharmacol 2001; 364(2): 96-104.
[http://dx.doi.org/10.1007/s002100100437] [PMID: 11534860]
[53]
Pawate S, Shen Q, Fan F, Bhat NR. Redox regulation of glial inflammatory response to lipopolysaccharide and interferongamma. J Neurosci Res 2004; 77(4): 540-51.
[http://dx.doi.org/10.1002/jnr.20180] [PMID: 15264224]
[54]
Haslund-Vinding J, McBean G, Jaquet V, Vilhardt F. NADPH oxidases in oxidant production by microglia: Activating receptors, pharmacology and association with disease. Br J Pharmacol 2017; 174(12): 1733-49.
[http://dx.doi.org/10.1111/bph.13425] [PMID: 26750203]
[55]
Spencer NG, Schilling T, Miralles F, Eder C. Mechanisms underlying interferon-γ-induced priming of microglial reactive oxygen species production. PLoS One 2016; 11(9)e0162497
[http://dx.doi.org/10.1371/journal.pone.0162497] [PMID: 27598576]
[56]
Suzuki S, Tanaka K, Suzuki N. Ambivalent aspects of interleukin-6 in cerebral ischemia: Inflammatory versus neurotrophic aspects. J Cereb Blood Flow Metab 2009; 29(3): 464-79.
[http://dx.doi.org/10.1038/jcbfm.2008.141] [PMID: 19018268]
[57]
Yenari MA, Kauppinen TM, Swanson RA. Microglial activation in stroke: Therapeutic targets. Neurotherapeutics 2010; 7(4): 378-91.
[http://dx.doi.org/10.1016/j.nurt.2010.07.005] [PMID: 20880502]
[58]
Chen JC, Liu KS, Yang TJ, Hwang JH, Chan YC, Lee IT. Spirulina and C-phycocyanin reduce cytotoxicity and inflammation-related genes expression of microglial cells. Nutr Neurosci 2012; 15(6): 252-6.
[http://dx.doi.org/10.1179/1476830512Y.0000000020] [PMID: 22687570]
[59]
Cresswell P. Assembly, transport, and function of MHC class II molecules. Annu Rev Immunol 1994; 12(2): 259-93.
[http://dx.doi.org/10.1146/annurev.iy.12.040194.001355] [PMID: 8011283]
[60]
Felger JC, Abe T, Kaunzner UW, et al. Brain dendritic cells in ischemic stroke: Time course, activation state, and origin. Brain Behav Immun 2010; 24(5): 724-37.
[http://dx.doi.org/10.1016/j.bbi.2009.11.002] [PMID: 19914372]
[61]
Mojsilovic-Petrovic J, Callaghan D, Cui H, Dean C, Stanimirovic DB, Zhang W. Hypoxia-inducible factor-1 (HIF-1) is involved in the regulation of hypoxia-stimulated expression of monocyte chemoattractant protein-1 (MCP-1/CCL2) and MCP-5 (Ccl12) in astrocytes. J Neuroinflammation 2007; 4(1): 12.
[http://dx.doi.org/10.1186/1742-2094-4-12] [PMID: 17474992]
[62]
Yang L, Kong Y, Ren H, et al. Upregulation of CD74 and its potential association with disease severity in subjects with ischemic stroke. Neurochem Int 2017; 107: 148-55.
[http://dx.doi.org/10.1016/j.neuint.2016.11.007] [PMID: 27884769]
[63]
Wang DD, Zhao YF, Wang GY, et al. IL-17 potentiates neuronal injury induced by oxygen-glucose deprivation and affects neuronal IL-17 receptor expression. J Neuroimmunol 2009; 212(1-2): 17-25.
[http://dx.doi.org/10.1016/j.jneuroim.2009.04.007] [PMID: 19457561]
[64]
Gelderblom M, Weymar A, Bernreuther C, et al. Neutralization of the IL-17 axis diminishes neutrophil invasion and protects from ischemic stroke. Blood 2012; 120(18): 3793-802.
[http://dx.doi.org/10.1182/blood-2012-02-412726] [PMID: 22976954]
[65]
Liu T, Han S, Dai Q, et al. IL-17A-mediated excessive autophagy aggravated neuronal ischemic injuries via Src-PP2B-mTOR pathway. Front Immunol 2019; 10: 2952.
[http://dx.doi.org/10.3389/fimmu.2019.02952] [PMID: 31921197]
[66]
Dai Q, Li S, Liu T, et al. Interleukin-17A-mediated alleviation of cortical astrocyte ischemic injuries affected the neurological outcome of mice with ischemic stroke. J Cell Biochem 2019; 120(7): 1-12.
[http://dx.doi.org/10.1002/jcb.28429] [PMID: 30746745]
[67]
Pietrowski E, Bender B, Huppert J, White R, Luhmann HJ, Kuhlmann CRW. Pro-inflammatory effects of interleukin-17A on vascular smooth muscle cells involve NAD(P)H- oxidase derived reactive oxygen species. J Vasc Res 2011; 48(1): 52-8.
[http://dx.doi.org/10.1159/000317400] [PMID: 20606471]
[68]
Vignali DAA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol 2008; 8(7): 523-32.
[http://dx.doi.org/10.1038/nri2343] [PMID: 18566595]
[69]
Liesz A, Suri-Payer E, Veltkamp C, et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med 2009; 15(2): 192-9.
[http://dx.doi.org/10.1038/nm.1927] [PMID: 19169263]
[70]
Dobolyi A, Vincze C, Pál G, Lovas G. The neuroprotective functions of transforming growth factor beta proteins. Int J Mol Sci 2012; 13(7): 8219-58.
[http://dx.doi.org/10.3390/ijms13078219] [PMID: 22942700]
[71]
Akhurst RJ, Hata A. Targeting the TGFβ signalling pathway in disease. Nat Rev Drug Discov 2012; 11(10): 790-811.
[http://dx.doi.org/10.1038/nrd3810] [PMID: 23000686]
[72]
Hu X, Li P, Guo Y, et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 2012; 43(11): 3063-70.
[http://dx.doi.org/10.1161/STROKEAHA.112.659656] [PMID: 22933588]
[73]
Xiong X, Barreto GE, Xu L, Ouyang YB, Xie X, Giffard RG. Increased brain injury and worsened neurological outcome in interleukin-4 knockout mice after transient focal cerebral ischemia. Stroke 2011; 42(7): 2026-32.
[http://dx.doi.org/10.1161/STROKEAHA.110.593772] [PMID: 21597016]
[74]
Bergendi L, Benes L, Duracková Z, Ferencik M. Chemistry, physiology and pathology of free radicals. Life Sci 1999; 65(18-19): 1865-74.
[http://dx.doi.org/10.1016/S0024-3205(99)00439-7] [PMID: 10576429]
[75]
Adibhatla RM, Hatcher JF. Lipid oxidation and peroxidation in CNS health and disease: From molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2010; 12(1): 125-69.
[http://dx.doi.org/10.1089/ars.2009.2668] [PMID: 19624272]
[76]
Dalleau S, Baradat M, Guéraud F, Huc L. Cell death and diseases related to oxidative stress: 4-hydroxynonenal (HNE) in the balance. Cell Death Differ 2013; 20(12): 1615-30.
[http://dx.doi.org/10.1038/cdd.2013.138] [PMID: 24096871]
[77]
Demel SL, Stanton R, Aziz YN, Adeoye O, Khatri P. Reflection on the past, present, and future of thrombolytic therapy for acute ischemic stroke. Neurology 2021; 97(20)(Suppl. 2): S170-7.
[http://dx.doi.org/10.1212/WNL.0000000000012806] [PMID: 34785615]
[78]
Maiser SJ, Georgiadis AL, Suri MF, Vazquez G, Lakshminarayan K, Qureshi AI. Intravenous recombinant tissue plasminogen activator administered after 3 h following onset of ischaemic stroke: A meta-analysis. Int J Stroke 2011; 6(1): 25-32.
[http://dx.doi.org/10.1111/j.1747-4949.2010.00537.x] [PMID: 21205237]
[79]
Fisher M. New approaches to neuroprotective drug development. Stroke 2011; 42(1): S24-7.
[http://dx.doi.org/10.1161/STROKEAHA.110.592394] [PMID: 21164111]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy