Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Natural and Synthetic Micelles for the Delivery of Small Molecule Drugs, Imaging Agents and Nucleic Acids

Author(s): Anwarul Azim Akib, Ragib Shakil, Md. Mahamudul Hasan Rumon, Chanchal Kumar Roy, Ezharul Hoque Chowdhury* and Al-Nakib Chowdhury*

Volume 28, Issue 17, 2022

Published on: 10 June, 2022

Page: [1389 - 1405] Pages: 17

DOI: 10.2174/1381612828666220506135301

Price: $65

conference banner
Abstract

The poor solubility, lack of targetability, quick renal clearance, and degradability of many therapeutic and imaging agents strongly limit their applications inside the human body. Amphiphilic copolymers having self-assembling properties can form core-shell structures called micelles, a promising nanocarrier for hydrophobic drugs, plasmid DNA, oligonucleotides, small interfering RNAs (siRNAs), and imaging agents. Fabrication of micelles loaded with different pharmaceutical agents provides numerous advantages, including therapeutic efficacy, diagnostic sensitivity, and controlled release to the desired tissues. Moreover, their smaller particle size (10-100 nm) and modified surfaces with different functional groups (such as ligands) help them to accumulate easily in the target location, enhancing cellular uptake and reducing unwanted side effects. Furthermore, the release of the encapsulated agents may also be triggered from stimuli-sensitive micelles under different physiological conditions or by an external stimulus. In this review article, we discuss the recent advancements in formulating and targeting of different natural and synthetic micelles, including block copolymer micelles, cationic micelles, and dendrimers-, polysaccharide- and protein-based micelles for the delivery of different therapeutic and diagnostic agents. Finally, their applications, outcomes, and future perspectives have been summarized.

Keywords: Polymer micelle, mixed micelle, drug delivery, active targeting, gene delivery, siRNA, imaging agent.

[1]
Zhou Q, Zhang L, Yang T, Wu H. Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. Int J Nanomedicine 2018; 13: 2921-42.
[http://dx.doi.org/10.2147/IJN.S158696] [PMID: 29849457]
[2]
Das SS, Bharadwaj P, Bilal M, et al. Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis. Polymers (Basel) 2020; 12(6): 1-45.
[http://dx.doi.org/10.3390/polym12061397] [PMID: 32580366]
[3]
Jhaveri AM, Torchilin VP. Multifunctional polymeric micelles for delivery of drugs and siRNA. Front Pharmacol 2014; 5: 77.
[http://dx.doi.org/10.3389/fphar.2014.00077] [PMID: 24795633]
[4]
Imran M, Shah MR. Shafiullah. Amphiphilic block copolymers-based micelles for drug delivery. J Pharm Sci 2018; 365-400.
[http://dx.doi.org/10.1016/B978-0-12-813627-0.00010-7]
[5]
Amin MCIM, Butt AM, Amjad MW, Kesharwani P. Polymeric micelles for drug targeting and delivery. Nanotechnol Approaches Targ Deliv of Drugs Genes 2017; pp. 167-202.
[http://dx.doi.org/10.1016/B978-0-12-809717-5.00006-3]
[6]
Movassaghian S, Merkel OM, Torchilin VP. Applications of polymer micelles for imaging and drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2015; 7(5): 691-707.
[http://dx.doi.org/10.1002/wnan.1332] [PMID: 25683687]
[7]
Nishiyama N, Kataoka K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 2006; 112(3): 630-48.
[http://dx.doi.org/10.1016/j.pharmthera.2006.05.006] [PMID: 16815554]
[8]
Torchilin VP. PEG-based micelles as carriers of contrast agents for different imaging modalities. Adv Drug Deliv Rev 2002; 54(2): 235-52.
[http://dx.doi.org/10.1016/S0169-409X(02)00019-4] [PMID: 11897148]
[9]
Vinogradov SV, Batrakova EV, Li S, Kabanov AV. Mixed polymer micelles of amphiphilic and cationic copolymers for delivery of antisense oligonucleotides. J Drug Target 2004; 12(8): 517-26.
[http://dx.doi.org/10.1080/10611860400011927] [PMID: 15621677]
[10]
Thomas TJ, Tajmir-Riahi HA, Pillai CKS. Biodegradable polymers for gene delivery. Molecules 2019; 24(20): 3744.
[http://dx.doi.org/10.3390/molecules24203744] [PMID: 31627389]
[11]
Zhu JL, Cheng H, Jin Y, Cheng SX, Zhang XZ, Zhuo RX. Novel polycationic micelles for drug delivery and gene transfer. J Mater Chem 2008; 18(37): 4433-41.
[http://dx.doi.org/10.1039/b801249k]
[12]
Wakaskar RR. Polymeric micelles and their properties. J Nanomed Nanotechnol 2017; 08(2): 433.
[http://dx.doi.org/10.4172/2157-7439.1000433]
[13]
Benahmed A, Ranger M, Leroux JC. Novel polymeric micelles based on the amphiphilic diblock copolymer poly(N-vinyl-2-pyrrolidone)-block-poly(D, L-lactide). Pharm Res 2001; 18(3): 323-8.
[http://dx.doi.org/10.1023/A:1011054930439] [PMID: 11442272]
[14]
Topp MDC, Dijkstra PJ, Talsma H, Feijen J. Thermosensitive micelle-forming block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide). Macromolecules 1997; 30(26): 8518-20.
[http://dx.doi.org/10.1021/ma9710803]
[15]
Wang J, Li S, Han Y, et al. Poly(ethylene glycol)-polylactide micelles for cancer therapy. Front Pharmacol 2018; 9: 202.
[http://dx.doi.org/10.3389/fphar.2018.00202] [PMID: 29662450]
[16]
Allen C, Han J, Yu Y, Maysinger D, Eisenberg A. Polycaprolactone-b-poly(ethylene oxide) copolymer micelles as a delivery vehicle for dihydrotestosterone. J Control Release 2000; 63(3): 275-86.
[http://dx.doi.org/10.1016/S0168-3659(99)00200-X] [PMID: 10601723]
[17]
Sun X, Liu X, Li C, et al. Self-assembled micelles prepared from poly(ɛ-caprolactone)-poly(ethylene glycol) and poly(ɛ-caprolactone/glycolide)-poly(ethylene glycol) block copolymers for sustained drug delivery. J Appl Polym Sci 2018; 135(9): 45732.
[http://dx.doi.org/10.1002/app.45732]
[18]
Grayson ACR, Voskerician G, Lynn A, Anderson JM, Cima MJ, Langer R. Differential degradation rates in vivo and in vitro of biocompatible poly(lactic acid) and poly(glycolic acid) homo- and co-polymers for a polymeric drug-delivery microchip. J Biomater Sci Polym Ed 2004; 15(10): 1281-304.
[http://dx.doi.org/10.1163/1568562041959991] [PMID: 15559850]
[19]
Liu Y, Guo LK, Huang L, Deng XM. Preparation and properties of a biodegradable polymer as a novel drug delivery system. J Appl Polym Sci 2003; 90(11): 3150-6.
[http://dx.doi.org/10.1002/app.13061]
[20]
Yang KK, Wang XL, Wang YZ. Poly(p-dioxanone) and its copolymers. J Macromol Sci Part C Polym Rev 2002; 42(3): 373-98.
[http://dx.doi.org/10.1081/MC-120006453]
[21]
Chen C, Yu CH, Cheng YC, Yu PHF, Cheung MK. Biodegradable nanoparticles of amphiphilic triblock copolymers based on poly(3-hydroxybutyrate) and poly(ethylene glycol) as drug carriers. Biomaterials 2006; 27(27): 4804-14.
[http://dx.doi.org/10.1016/j.biomaterials.2006.04.039] [PMID: 16740306]
[22]
Min KH, Kim J-H, Bae SM, Shin H, Kim MS, Park S. Tumoral acidic pH-responsive MPEG-poly (β-amino ester) polymeric micelles for cancer targeting therapy. J Control Release 2010; 144(2): 259-66.
[http://dx.doi.org/10.1016/j.jconrel.2010.02.024]
[23]
Chiappetta DA, Sosnik A. Poly(ethylene oxide)-poly(propylene oxide) block copolymer micelles as drug delivery agents: Improved hydrosolubility, stability and bioavailability of drugs. Eur J Pharm Biopharm 2007; 66(3): 303-17.
[http://dx.doi.org/10.1016/j.ejpb.2007.03.022] [PMID: 17481869]
[24]
Bae Y, Kataoka K. Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Adv Drug Deliv Rev 2009; 61(10): 768-84.
[http://dx.doi.org/10.1016/j.addr.2009.04.016] [PMID: 19422866]
[25]
Jeong YI, Seo SJ, Park IK, et al. Cellular recognition of paclitaxel-loaded polymeric nanoparticles composed of poly(γ-benzyl L-glutamate) and poly(ethylene glycol) diblock copolymer endcapped with galactose moiety. Int J Pharm 2005; 296(1-2): 151-61.
[http://dx.doi.org/10.1016/j.ijpharm.2005.02.027] [PMID: 15885467]
[26]
Sant VP, Smith D, Leroux JC. Enhancement of oral bioavailability of poorly water-soluble drugs by poly(ethylene glycol)-block-poly(alkyl acrylate-co-methacrylic acid) self-assemblies. J Control Release 2005; 104(2): 289-300.
[http://dx.doi.org/10.1016/j.jconrel.2005.02.010] [PMID: 15907580]
[27]
Zhai J, Zhou B, An Y, Lu B, Fan Y, Li J. Galactosamine-conjugating zwitterionic block copolymer for reduction-responsive release and active targeted delivery of doxorubicin to hepatic carcinoma cells. J Nanomater 2020; 2020: 1-11.
[http://dx.doi.org/10.1155/2020/7863709]
[28]
Biswas S, Kumari P, Lakhani PM, Ghosh B. Recent advances in polymeric micelles for anti-cancer drug delivery. Eur J Pharm Sci 2016; 83: 184-202.
[http://dx.doi.org/10.1016/j.ejps.2015.12.031] [PMID: 26747018]
[29]
Cong Y, Zhou Q, Rao Z, Zhai W, Yu J. Multicompartment self-assemblies of triblock copolymer for drug delivery. Colloid J 2021; 83(1): 70-8.
[http://dx.doi.org/10.1134/S1061933X2101004X]
[30]
Costa DF, Torchilin VP. Micelle-like nanoparticles as siRNA and miRNA carriers for cancer therapy. Biomed Microdevices 2018; 20(3): 59.
[http://dx.doi.org/10.1007/s10544-018-0298-0] [PMID: 29998417]
[31]
Gu L, Faig A, Abdelhamid D, Uhrich K. Sugar-based amphiphilic polymers for biomedical applications: From nanocarriers to therapeutics. Acc Chem Res 2014; 47(10): 2867-77.
[http://dx.doi.org/10.1021/ar4003009] [PMID: 25141069]
[32]
Navarro G, Pan J, Torchilin VP. Micelle-like nanoparticles as carriers for DNA and siRNA. Mol Pharm 2015; 12(2): 301-13.
[http://dx.doi.org/10.1021/mp5007213] [PMID: 25557580]
[33]
Wang H, Ding S, Zhang Z, Wang L, You Y. Cationic micelle: A promising nanocarrier for gene delivery with high transfection efficiency. J Gene Med 2019; 21(7): e3101.
[http://dx.doi.org/10.1002/jgm.3101] [PMID: 31170324]
[34]
Gao QQ, Zhang CM, Zhang EX, et al. Zwitterionic pH-responsive hyaluronic acid polymer micelles for delivery of doxorubicin. Colloids Surf B Biointerfaces 2019; 178: 412-20.
[http://dx.doi.org/10.1016/j.colsurfb.2019.03.007] [PMID: 30903980]
[35]
Jiang J, Li J, Zhou B, et al. Fabrication of polymer micelles with zwitterionic shell and biodegradable core for reductively responsive release of doxorubicin. Polymers (Basel) 2019; 11(6): 1019.
[http://dx.doi.org/10.3390/polym11061019] [PMID: 31181866]
[36]
Zheng C, Zheng M, Gong P, et al. Polypeptide cationic micelles mediated co-delivery of docetaxel and siRNA for synergistic tumor ther-apy. Biomaterials 2013; 34(13): 3431-8.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.053] [PMID: 23375952]
[37]
Shi S, Shi K, Tan L, et al. The use of cationic MPEG-PCL-g-PEI micelles for co-delivery of Msurvivin T34A gene and doxorubicin. Biomaterials 2014; 35(15): 4536-47.
[http://dx.doi.org/10.1016/j.biomaterials.2014.02.010] [PMID: 24582554]
[38]
Zhu C, Jung S, Luo S, et al. Co-delivery of siRNA and paclitaxel into cancer cells by biodegradable cationic micelles based on PDMAE-MA-PCL-PDMAEMA triblock copolymers. Biomaterials 2010; 31(8): 2408-16.
[http://dx.doi.org/10.1016/j.biomaterials.2009.11.077] [PMID: 19963269]
[39]
Li Y, Lei X, Dong H, Ren T. Sheddable, degradable, cationic micelles enabling drug and gene delivery. RSC Advances 2014; 4(16): 8165-76.
[http://dx.doi.org/10.1039/c3ra46756b]
[40]
Loh XJ, Ong SJ, Tung YT, Choo HT. Co-delivery of drug and DNA from cationic dual-responsive micelles derived from poly(DMAEMA-co-PPGMA). Mater Sci Eng C 2013; 33(8): 4545-50.
[http://dx.doi.org/10.1016/j.msec.2013.07.011] [PMID: 24094158]
[41]
Chen L, Ji F, Bao Y, et al. Biocompatible cationic pullulan-g-desoxycholic acid-g-PEI micelles used to co-deliver drug and gene for can-cer therapy. Mater Sci Eng C 2017; 70(Pt 1): 418-29.
[http://dx.doi.org/10.1016/j.msec.2016.09.019] [PMID: 27770912]
[42]
Wu L, Ni C, Zhang L, Shi G. Preparation of pH-sensitive zwitterionic nano micelles and drug controlled release for enhancing cellular uptake. J Biomater Sci Polym Ed 2016; 27(7): 643-56.
[http://dx.doi.org/10.1080/09205063.2016.1147797] [PMID: 26813767]
[43]
Gandhi S, Roy I. Doxorubicin-loaded casein nanoparticles for drug delivery: Preparation, characterization and in vitro evaluation. Int J Biol Macromol 2019; 121: 6-12.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.005] [PMID: 30290258]
[44]
Bar-Zeev M, Assaraf YG, Livney YD. β-casein nanovehicles for oral delivery of chemotherapeutic drug combinations overcoming P-glycoprotein-mediated multidrug resistance in human gastric cancer cells. Oncotarget 2016; 7(17): 23322-34.
[http://dx.doi.org/10.18632/oncotarget.8019] [PMID: 26989076]
[45]
El-Far SW, Helmy MW, Khattab SN, Bekhit AA, Hussein AA, Elzoghby AO. Folate conjugated vs PEGylated phytosomal casein nanocarriers for codelivery of fungal- and herbal-derived anticancer drugs. Nanomedicine (Lond) 2018; 13(12): 1463-80.
[http://dx.doi.org/10.2217/nnm-2018-0006] [PMID: 29957120]
[46]
Sahu A, Kasoju N, Bora U. Fluorescence study of the curcumin-casein micelle complexation and its application as a drug nanocarrier to cancer cells. Biomacromolecules 2008; 9(10): 2905-12.
[http://dx.doi.org/10.1021/bm800683f] [PMID: 18785706]
[47]
Wu Y, Shih EK, Ramanathan A, Vasudevan S, Weil T. Nano-sized albumin-copolymer micelles for efficient doxorubicin delivery. Biointerphases 2012; 7(1-4): 5.
[http://dx.doi.org/10.1007/s13758-011-0005-7] [PMID: 22589048]
[48]
Zhang L, Lu Z, Li X, et al. Methoxy poly(ethylene glycol) conjugated denatured bovine serum albumin micelles for effective delivery of camptothecin. Polym Chem 2012; 3(8): 1958-61.
[http://dx.doi.org/10.1039/c2py20201h]
[49]
Wu JL, Tian GX, Yu WJ, Jia GT, Sun TY, Gao ZQ. pH-responsive hyaluronic acid-based mixed micelles for the hepatoma-targeting delivery of doxorubicin. Int J Mol Sci 2016; 17(4): 364.
[http://dx.doi.org/10.3390/ijms17040364] [PMID: 27043540]
[50]
Li Q, Hao X, Lv J, et al. Mixed micelles obtained by co-assembling comb-like and grafting copolymers as gene carriers for efficient gene delivery and expression in endothelial cells. J Mater Chem B Mater Biol Med 2017; 5(8): 1673-87.
[http://dx.doi.org/10.1039/C6TB02212J] [PMID: 32263940]
[51]
Zhao J, Xu Y, Wang C, et al. Soluplus/TPGS mixed micelles for dioscin delivery in cancer therapy. Drug Dev Ind Pharm 2017; 43(7): 1197-204.
[http://dx.doi.org/10.1080/03639045.2017.1304956] [PMID: 28300426]
[52]
Chen Y, Sha X, Zhang W, et al. Pluronic mixed micelles overcoming methotrexate multidrug resistance: In vitro and in vivo evaluation. Int J Nanomedicine 2013; 8: 1463-76.
[http://dx.doi.org/10.2147/IJN.S42368] [PMID: 23620663]
[53]
Zhao D, Wu J, Li C, Zhang H, Li Z, Luan Y. Precise ratiometric loading of PTX and DOX based on redox-sensitive mixed micelles for cancer therapy. Colloids Surf B Biointerfaces 2017; 155: 51-60.
[http://dx.doi.org/10.1016/j.colsurfb.2017.03.056] [PMID: 28407531]
[54]
Luo Y, Yin X, Yin X, et al. Dual ph/redox-responsive mixed polymeric micelles for anticancer drug delivery and controlled release. Pharmaceutics 2019; 11(4): 176.
[http://dx.doi.org/10.3390/pharmaceutics11040176] [PMID: 30978912]
[55]
Butt AM, Amin MCIM, Katas H, Sarisuta N, Witoonsaridsilp W, Benjakul R. In vitro characterization of pluronic F127 and D-α-tocopheryl polyethylene glycol 1000 succinate mixed micelles as nanocarriers for targeted anticancer-drug delivery. J Nanomater 2012; 2012: 11.
[http://dx.doi.org/10.1155/2012/916573]
[56]
Liu Y, Sun J, Cao W, et al. Dual targeting folate-conjugated hyaluronic acid polymeric micelles for paclitaxel delivery. Int J Pharm 2011; 421(1): 160-9.
[http://dx.doi.org/10.1016/j.ijpharm.2011.09.006] [PMID: 21945183]
[57]
Curcio M, Diaz-Gomez L, Cirillo G, Nicoletta FP, Leggio A, Iemma F. Dual-targeted hyaluronic acid/albumin micelle-like nanoparticles for the vectorization of doxorubicin. Pharmaceutics 2021; 13(3): 1-16.
[http://dx.doi.org/10.3390/pharmaceutics13030304] [PMID: 33652648]
[58]
Raveendran R, Bhuvaneshwar GS, Sharma CP. Hemocompatible curcumin-dextran micelles as pH sensitive pro-drugs for enhanced therapeutic efficacy in cancer cells. Carbohydr Polym 2016; 137: 497-507.
[http://dx.doi.org/10.1016/j.carbpol.2015.11.017] [PMID: 26686156]
[59]
Chen L, Wang X, Ji F, et al. New bifunctional-pullulan-based micelles with good biocompatibility for efficient co-delivery of cancer-suppressing p53 gene and doxorubicin to cancer cells. RSC Advances 2015; 5(115): 94719-31.
[http://dx.doi.org/10.1039/C5RA17139C]
[60]
Sarika PR, James NR, Nishna N, Anil Kumar PR, Raj DK. Galactosylated pullulan-curcumin conjugate micelles for site specific anti-cancer activity to hepatocarcinoma cells. Colloids Surf B Biointerfaces 2015; 133: 347-55.
[http://dx.doi.org/10.1016/j.colsurfb.2015.06.020] [PMID: 26133239]
[61]
Wang J, Cui S, Bao Y, Xing J, Hao W. Tocopheryl pullulan-based self assembling nanomicelles for anti-cancer drug delivery. Mater Sci Eng C 2014; 43: 614-21.
[http://dx.doi.org/10.1016/j.msec.2014.07.066] [PMID: 25175256]
[62]
Chen L, Qian M, Zhang L, et al. Co-delivery of doxorubicin and shRNA of Beclin1 by folate receptor targeted pullulan-based multifunctional nanomicelles for combinational cancer therapy. RSC Advances 2018; 8(32): 17710-22.
[http://dx.doi.org/10.1039/C8RA01679H]
[63]
Cai LL, Liu P, Li X, et al. RGD peptide-mediated chitosan-based polymeric micelles targeting delivery for integrin-overexpressing tumor cells. Int J Nanomedicine 2011; 6: 3499-508.
[PMID: 22282676]
[64]
Muddineti OS, Shah A, Rompicharla SVK, Ghosh B, Biswas S. Cholesterol-grafted chitosan micelles as a nanocarrier system for drug-siRNA co-delivery to the lung cancer cells. Int J Biol Macromol 2018; 118(Pt A): 857-63.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.114] [PMID: 29953893]
[65]
Park IK, Kim YJ, Tran TH, Huh KM, Lee Y. Water-soluble heparin-PTX conjugates for cancer targeting. Polymer (Guildf) 2010; 51(15): 3387-93.
[http://dx.doi.org/10.1016/j.polymer.2010.05.030]
[66]
Emami J, Kazemi M, Hasanzadeh F, Minaiyan M, Mirian M, Lavasanifar A. Novel pH-triggered biocompatible polymeric micelles based on heparin-α-tocopherol conjugate for intracellular delivery of docetaxel in breast cancer. Pharm Dev Technol 2020; 25(4): 492-509.
[http://dx.doi.org/10.1080/10837450.2019.1711395] [PMID: 31903817]
[67]
Liu J, Li H, Jiang X, Zhang C, Ping Q. Novel pH-sensitive chitosan-derived micelles loaded with paclitaxel. Carbohydr Polym 2010; 82(2): 432-9.
[http://dx.doi.org/10.1016/j.carbpol.2010.04.084]
[68]
Mittal P, Saharan A, Verma R, et al. Dendrimers: A new race of pharmaceutical nanocarriers. BioMed Res Int 2021; 2021: 8844030.
[http://dx.doi.org/10.1155/2021/8844030] [PMID: 33644232]
[69]
Noriega-Luna B, Godínez LA, Rodríguez FJ, et al. Applications of dendrimers in drug delivery agents, diagnosis, therapy, and detection. J Nanomater 2014; 2014: 1-19.
[http://dx.doi.org/10.1155/2014/507273]
[70]
Gillies ER, Fréchet JMJ. Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 2005; 10(1): 35-43.
[http://dx.doi.org/10.1016/S1359-6446(04)03276-3] [PMID: 15676297]
[71]
Liu G, Gao H, Zuo Y, et al. DACHPt-loaded unimolecular micelles based on hydrophilic dendritic block copolymers for enhanced therapy of lung cancer. ACS Appl Mater Interfaces 2017; 9(1): 112-9.
[http://dx.doi.org/10.1021/acsami.6b11917] [PMID: 27966356]
[72]
Akiyoshi K, Kobayashi S, Shichibe S, et al. Self-assembled hydrogel nanoparticle of cholesterol-bearing pullulan as a carrier of protein drugs: Complexation and stabilization of insulin. J Control Release 1998; 54(3): 313-20.
[http://dx.doi.org/10.1016/S0168-3659(98)00017-0] [PMID: 9766251]
[73]
Zhang N, Wardwell PR, Bader RA. Polysaccharide-based micelles for drug delivery. Pharmaceutics 2013; 5(2): 329-52.
[http://dx.doi.org/10.3390/pharmaceutics5020329] [PMID: 24300453]
[74]
Liu Z, Wang Y, Zhang N. Micelle-like nanoassemblies based on polymer-drug conjugates as an emerging platform for drug delivery. Expert Opin Drug Deliv 2012; 9(7): 805-22.
[http://dx.doi.org/10.1517/17425247.2012.689284] [PMID: 22607499]
[75]
Lukowiak MC, Thota BNS, Haag R. Dendritic core-shell systems as soft drug delivery nanocarriers. Biotechnol Adv 2015; 33(6 Pt 3): 1327-41.
[http://dx.doi.org/10.1016/j.biotechadv.2015.03.014] [PMID: 25868804]
[76]
Rehan F, Ahemad N, Gupta M. Casein nanomicelle as an emerging biomaterial-A comprehensive review. Colloids Surf B Biointerfaces 2019; 179: 280-92.
[http://dx.doi.org/10.1016/j.colsurfb.2019.03.051] [PMID: 30981063]
[77]
Lee JE, Kim MG, Jang YL, et al. Self-assembled PEGylated albumin nanoparticles (SPAN) as a platform for cancer chemotherapy and imaging. Drug Deliv 2018; 25(1): 1570-8.
[http://dx.doi.org/10.1080/10717544.2018.1489430] [PMID: 30044159]
[78]
Agwa MM, Abdelmonsif DA, Khattab SN, Sabra S. Self- assembled lactoferrin-conjugated linoleic acid micelles as an orally active tar-geted nanoplatform for Alzheimer’s disease. Int J Biol Macromol 2020; 162: 246-61.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.058] [PMID: 32531361]
[79]
Sabra SA, Elzoghby AO, Sheweita SA, et al. Self-assembled amphiphilic zein-lactoferrin micelles for tumor targeted co-delivery of rapamycin and wogonin to breast cancer. Eur J Pharm Biopharm 2018; 128: 156-69.
[http://dx.doi.org/10.1016/j.ejpb.2018.04.023] [PMID: 29689288]
[80]
Cagel M, Tesan FC, Bernabeu E, et al. Polymeric mixed micelles as nanomedicines: Achievements and perspectives. Eur J Pharm Biopharm 2017; 113: 211-28.
[http://dx.doi.org/10.1016/j.ejpb.2016.12.019] [PMID: 28087380]
[81]
Mondal R, Ghosh N, Mukherjee S. Enhanced binding of phenosafranin to triblock copolymer F127 induced by sodium dodecyl sulfate: A mixed micellar system as an efficient drug delivery vehicle. J Phys Chem B 2016; 120(11): 2968-76.
[http://dx.doi.org/10.1021/acs.jpcb.6b00759] [PMID: 26936205]
[82]
Hao F, Lee RJ, Yang C, et al. Targeted co-delivery of sirna and methotrexate for tumor therapy via mixed micelles. Pharmaceutics 2019; 11(2): 1-19.
[http://dx.doi.org/10.3390/pharmaceutics11020092] [PMID: 30795589]
[83]
Wang L, Tian B, Zhang J, et al. Coordinated pH/redox dual-sensitive and hepatoma-targeted multifunctional polymeric micelle system for stimuli-triggered doxorubicin release: Synthesis, characterization and in vitro evaluation. Int J Pharm 2016; 501(1-2): 221-35.
[http://dx.doi.org/10.1016/j.ijpharm.2016.02.002] [PMID: 26851356]
[84]
Zheng S, Han J, Jin Z, et al. Dual tumor-targeted multifunctional magnetic hyaluronic acid micelles for enhanced MR imaging and combined photothermal-chemotherapy. Colloids Surf B Biointerfaces 2018; 164: 424-35.
[http://dx.doi.org/10.1016/j.colsurfb.2018.02.005] [PMID: 29433060]
[85]
Bae Y, Jang WD, Nishiyama N, Fukushima S, Kataoka K. Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol Biosyst 2005; 1(3): 242-50.
[http://dx.doi.org/10.1039/b500266d] [PMID: 16880988]
[86]
Ghalehkhondabi V, Soleymani M, Fazlali A. Folate-targeted nanomicelles containing silibinin as an active drug delivery system for liver cancer therapy. J Drug Deliv Sci Technol 2021; 61: 102157.
[http://dx.doi.org/10.1016/j.jddst.2020.102157]
[87]
Nosrati H, Barzegari P, Danafar H, Kheiri Manjili H. Biotin-functionalized copolymeric PEG-PCL micelles for in vivo tumour-targeted delivery of artemisinin. Artif Cells Nanomed Biotechnol 2019; 47(1): 104-14.
[http://dx.doi.org/10.1080/21691401.2018.1543199] [PMID: 30663422]
[88]
Chen WH, Luo GF, Lei Q, et al. MMP-2 responsive polymeric micelles for cancer-targeted intracellular drug delivery. Chem Commun (Camb) 2015; 51(3): 465-8.
[http://dx.doi.org/10.1039/C4CC07563C] [PMID: 25327260]
[89]
Yu G, Ning Q, Mo Z, Tang S. Intelligent polymeric micelles for multidrug co-delivery and cancer therapy. Artif Cells Nanomed Biotechnol 2019; 47(1): 1476-87.
[http://dx.doi.org/10.1080/21691401.2019.1601104] [PMID: 31070063]
[90]
Perche F, Patel NR, Torchilin VP. Accumulation and toxicity of antibody-targeted doxorubicin-loaded PEG-PE micelles in ovarian cancer cell spheroid model. J Control Release 2012; 164(1): 95-102.
[http://dx.doi.org/10.1016/j.jconrel.2012.09.003] [PMID: 22974689]
[91]
Ahn J, Miura Y, Yamada N, et al. Antibody fragment-conjugated polymeric micelles incorporating platinum drugs for targeted therapy of pancreatic cancer. Biomaterials 2015; 39: 23-30.
[http://dx.doi.org/10.1016/j.biomaterials.2014.10.069] [PMID: 25477168]
[92]
Theerasilp M, Chalermpanapun P, Sunintaboon P, Sungkarat W, Nasongkla N. Glucose-installed biodegradable polymeric micelles for cancer-targeted drug delivery system: Synthesis, characterization and in vitro evaluation. J Mater Sci Mater Med 2018; 29(12): 177.
[http://dx.doi.org/10.1007/s10856-018-6177-7] [PMID: 30506149]
[93]
Sun P, Xiao Y, Di Q, et al. Transferrin receptor-targeted PEG-PLA polymeric micelles for chemotherapy against glioblastoma multi-forme. Int J Nanomedicine 2020; 15: 6673-88.
[http://dx.doi.org/10.2147/IJN.S257459] [PMID: 32982226]
[94]
Shi J, Liu S, Yu Y, He C, Tan L, Shen YM. RGD peptide-decorated micelles assembled from polymer-paclitaxel conjugates towards gastric cancer therapy. Colloids Surf B Biointerfaces 2019; 180: 58-67.
[http://dx.doi.org/10.1016/j.colsurfb.2019.04.042] [PMID: 31028965]
[95]
Majumder NG, Das N, Das SK. Polymeric micelles for anticancer drug delivery. Ther Deliv 2020; 11(10): 613-35.
[http://dx.doi.org/10.4155/tde-2020-0008] [PMID: 32933425]
[96]
Kim M, Kim DM, Kim KS, Jung W, Kim DE. Applications of cancer cell-specific aptamers in targeted delivery of anticancer therapeutic agents. Molecules 2018; 23(4): 1-20.
[http://dx.doi.org/10.3390/molecules23040830] [PMID: 29617327]
[97]
Sanati S, Taghavi S, Abnous K, et al. Fabrication of anionic dextran-coated micelles for aptamer targeted delivery of camptothecin and survivin-shRNA to colon adenocarcinoma. Gene Ther 2022; 29: 55-68.
[http://dx.doi.org/10.1038/s41434-021-00234-0] [PMID: 33633357]
[98]
Lin WJ, Lee WC, Shieh MJ. Hyaluronic acid conjugated micelles possessing CD44 targeting potential for gene delivery. Carbohydr Polym 2017; 155: 101-8.
[http://dx.doi.org/10.1016/j.carbpol.2016.08.021] [PMID: 27702492]
[99]
Chang MH, Pai CL, Chen YC, Yu HP, Hsu CY, Lai PS. Enhanced antitumor effects of epidermal growth factor receptor targetable cetux-imab-conjugated polymeric micelles for photodynamic therapy. Nanomaterials (Basel) 2018; 8(2): 121.
[http://dx.doi.org/10.3390/nano8020121] [PMID: 29470420]
[100]
Gill KK, Kamal MM, Kaddoumi A, Nazzal S. EGFR targeted delivery of paclitaxel and parthenolide co-loaded in PEG-phospholipid micelles enhance cytotoxicity and cellular uptake in non-small cell lung cancer cells. J Drug Deliv Sci Technol 2016; 36: 150-5.
[http://dx.doi.org/10.1016/j.jddst.2016.10.005]
[101]
Debele TA, Lee KY, Hsu NY, et al. A pH sensitive polymeric micelle for co-delivery of doxorubicin and α-TOS for colon cancer thera-py. J Mater Chem B Mater Biol Med 2017; 5(29): 5870-80.
[http://dx.doi.org/10.1039/C7TB01031A] [PMID: 32264220]
[102]
Kang Y, Lu L, Lan J, et al. Redox-responsive polymeric micelles formed by conjugating gambogic acid with bioreducible poly(amido amine)s for the co-delivery of docetaxel and MMP-9 shRNA. Acta Biomater 2018; 68: 137-53.
[http://dx.doi.org/10.1016/j.actbio.2017.12.028] [PMID: 29288085]
[103]
Chai Z, Teng C, Yang L, et al. Doxorubicin delivered by redox-responsive hyaluronic acid-ibuprofen prodrug micelles for treatment of metastatic breast cancer. Carbohydr Polym 2020; 245: 116527.
[http://dx.doi.org/10.1016/j.carbpol.2020.116527] [PMID: 32718631]
[104]
Ma N, Li Y, Xu H, Wang Z, Zhang X. Dual redox responsive assemblies formed from diselenide block copolymers. J Am Chem Soc 2010; 132(2): 442-3.
[http://dx.doi.org/10.1021/ja908124g] [PMID: 20020681]
[105]
Birhan YS, Hailemeskel BZ, Mekonnen TW, et al. Fabrication of redox-responsive Bi(mPEG-PLGA)-Se2 micelles for doxorubicin delivery. Int J Pharm 2019; 567: 118486.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118486] [PMID: 31260783]
[106]
Ward MA, Georgiou TK. Thermoresponsive polymers for biomedical applications. Polymers (Basel) 2011; 3(3): 1215-42.
[http://dx.doi.org/10.3390/polym3031215]
[107]
Deng K, Zhao X, Liu F, et al. Synthesis of thermosensitive conjugated triblock copolymers by sequential click couplings for drug delivery and cell imaging. ACS Biomater Sci Eng 2019; 5(7): 3419-28.
[http://dx.doi.org/10.1021/acsbiomaterials.9b00664] [PMID: 33405726]
[108]
Xia H, Zhao Y, Tong R. Ultrasound-mediated polymeric micelle drug delivery. Adv Exp Med Biol 2016; 880: 365-84.
[http://dx.doi.org/10.1007/978-3-319-22536-4_20] [PMID: 26486348]
[109]
Ahmed SE, Martins AM, Husseini GA. The use of ultrasound to release chemotherapeutic drugs from micelles and liposomes. J Drug Target 2015; 23(1): 16-42.
[http://dx.doi.org/10.3109/1061186X.2014.954119] [PMID: 25203857]
[110]
Li F, Xie C, Cheng Z, Xia H. Ultrasound responsive block copolymer micelle of poly(ethylene glycol)-poly(propylene glycol) obtained through click reaction. Ultrason Sonochem 2016; 30: 9-17.
[http://dx.doi.org/10.1016/j.ultsonch.2015.11.023] [PMID: 26703197]
[111]
Liang B, Wang Z, Xia H. High intensity focused ultrasound responsive release behavior of metallo-supramolecular block PPG-PEG co-polymer micelles. Ultrason Sonochem 2020; 68: 105217.
[http://dx.doi.org/10.1016/j.ultsonch.2020.105217] [PMID: 32575005]
[112]
Sabra SA, Sheweita SA, Haroun M, et al. Magnetically guided self-assembled protein micelles for enhanced delivery of dasatinib to human triple-negative breast cancer cells. J Pharm Sci 2019; 108(5): 1713-25.
[http://dx.doi.org/10.1016/j.xphs.2018.11.044] [PMID: 30528944]
[113]
Oerlemans C, Bult W, Bos M, Storm G, Nijsen JFW, Hennink WE. Polymeric micelles in anticancer therapy: Targeting, imaging and triggered release. Pharm Res 2010; 27(12): 2569-89.
[http://dx.doi.org/10.1007/s11095-010-0233-4] [PMID: 20725771]
[114]
Cao J, Chen D, Huang S, Deng D, Tang L, Gu Y. Multifunctional near-infrared light-triggered biodegradable micelles for chemo- and photo-thermal combination therapy. Oncotarget 2016; 7(50): 82170-84.
[http://dx.doi.org/10.18632/oncotarget.10320] [PMID: 27366951]
[115]
Kwon G, Naito M, Yokoyama M, Okano T, Sakurai Y, Kataoka K. Block copolymer micelles for drug delivery: Loading and release of doxorubicin. J Control Release 1997; 48(2-3): 195-201.
[http://dx.doi.org/10.1016/S0168-3659(97)00039-4]
[116]
Yokoyama M, Okano T, Sakurai Y, Suwa S, Kataoka K. Introduction of cisplatin into polymeric micelle. J Control Release 1996; 39(2-3): 351-6.
[http://dx.doi.org/10.1016/0168-3659(95)00165-4]
[117]
Yokoyama M, Okano T, Sakurai Y, Ekimoto H, Shibazaki C, Kataoka K. Toxicity and antitumor activity against solid tumors of micelle-forming polymeric anticancer drug and its extremely long circulation in blood. Cancer Res 1991; 51(12): 3229-36.
[PMID: 2039998]
[118]
Yokoyama M, Miyauchi M, Yamada N, et al. Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer. Cancer Res 1990; 50(6): 1693-700.
[PMID: 2306723]
[119]
Yokoyama M, Okano T, Sakurai Y, Kataoka K. Improved synthesis of adriamycin-conjugated poly (ethylene oxide)-poly (aspartic acid) block copolymer and formation of unimodal micellar structure with controlled amount of physically entrapped adriamycin. J Control Release 1994; 32(3): 269-77.
[http://dx.doi.org/10.1016/0168-3659(94)90237-2]
[120]
Kwon G, Suwa S, Yokoyama M, Okano T, Sakurai Y, Kataoka K. Enhanced tumor accumulation and prolonged circulation times of micelle-forming poly (ethylene oxide-aspartate) block copolymer-adriamycin conjugates. J Control Release 1994; 29(1-2): 17-23.
[http://dx.doi.org/10.1016/0168-3659(94)90118-X]
[121]
Alakhov VYu, Moskaleva EYu, Batrakova EV, Kabanov AV. Hypersensitization of multidrug resistant human ovarian carcinoma cells by pluronic P85 block copolymer. Bioconjug Chem 1996; 7(2): 209-16.
[http://dx.doi.org/10.1021/bc950093n] [PMID: 8983343]
[122]
Venne A, Li S, Mandeville R, Kabanov A, Alakhov V. Hypersensitizing effect of pluronic L61 on cytotoxic activity, transport, and sub-cellular distribution of doxorubicin in multiple drug-resistant cells. Cancer Res 1996; 56(16): 3626-9.
[PMID: 8705995]
[123]
Batrakova EV, Li S, Brynskikh AM, et al. Effects of pluronic and doxorubicin on drug uptake, cellular metabolism, apoptosis and tumor inhibition in animal models of MDR cancers. J Control Release 2010; 143(3): 290-301.
[http://dx.doi.org/10.1016/j.jconrel.2010.01.004] [PMID: 20074598]
[124]
Batrakova EV, Dorodnych TY, Klinskii EY, et al. Anthracycline antibiotics non-covalently incorporated into the block copolymer micelles: In vivo evaluation of anti-cancer activity. Br J Cancer 1996; 74(10): 1545-52.
[http://dx.doi.org/10.1038/bjc.1996.587] [PMID: 8932333]
[125]
Bontha S, Kabanov AV, Bronich TK. Polymer micelles with cross-linked ionic cores for delivery of anticancer drugs. J Control Release 2006; 114(2): 163-74.
[http://dx.doi.org/10.1016/j.jconrel.2006.06.015] [PMID: 16914223]
[126]
Kim JO, Kabanov AV, Bronich TK. Polymer micelles with cross-linked polyanion core for delivery of a cationic drug doxorubicin. J Control Release 2009; 138(3): 197-204.
[http://dx.doi.org/10.1016/j.jconrel.2009.04.019] [PMID: 19386272]
[127]
Jo MJ, Jin IS, Park CW, et al. Revolutionizing technologies of nanomicelles for combinatorial anticancer drug delivery. Arch Pharm Res 2020; 43(1): 100-9.
[http://dx.doi.org/10.1007/s12272-020-01215-4] [PMID: 31989478]
[128]
Cho H, Lai TC, Kwon GS. Poly(ethylene glycol)-block-poly(ε-caprolactone) micelles for combination drug delivery: Evaluation of paclitaxel, cyclopamine and gossypol in intraperitoneal xenograft models of ovarian cancer. J Control Release 2013; 166(1): 1-9.
[http://dx.doi.org/10.1016/j.jconrel.2012.12.005] [PMID: 23246471]
[129]
Scarano W, de Souza P, Stenzel MH. Dual-drug delivery of curcumin and platinum drugs in polymeric micelles enhances the synergistic effects: A double act for the treatment of multidrug-resistant cancer. Biomater Sci 2015; 3(1): 163-74.
[http://dx.doi.org/10.1039/C4BM00272E] [PMID: 26214199]
[130]
Katragadda U, Teng Q, Rayaprolu BM, Chandran T, Tan C. Multi-drug delivery to tumor cells via micellar nanocarriers. Int J Pharm 2011; 419(1-2): 281-6.
[http://dx.doi.org/10.1016/j.ijpharm.2011.07.033] [PMID: 21820041]
[131]
Yao J, Feng J, Chen J. External-stimuli responsive systems for cancer theranostic. Asian J Pharm Sci 2016; 11(5): 585-95.
[http://dx.doi.org/10.1016/j.ajps.2016.06.001]
[132]
Wang S, Yuan F, Chen K, et al. Synthesis of hemoglobin conjugated polymeric micelle: A ZnPc carrier with oxygen self-compensating ability for photodynamic therapy. Biomacromolecules 2015; 16(9): 2693-700.
[http://dx.doi.org/10.1021/acs.biomac.5b00571] [PMID: 26207413]
[133]
Py-Daniel KR, Namban JS, de Andrade LR, et al. Highly efficient photodynamic therapy colloidal system based on chloroaluminum phthalocyanine/pluronic micelles. Eur J Pharm Biopharm 2016; 103: 23-31.
[http://dx.doi.org/10.1016/j.ejpb.2016.03.028] [PMID: 27018329]
[134]
Pais-Silva C, de Melo-Diogo D, Correia IJ. IR780-loaded TPGS-TOS micelles for breast cancer photodynamic therapy. Eur J Pharm Biopharm 2017; 113: 108-17.
[http://dx.doi.org/10.1016/j.ejpb.2017.01.002] [PMID: 28087376]
[135]
Du YZ, Cai LL, Li J, et al. Receptor-mediated gene delivery by folic acid-modified stearic acid-grafted chitosan micelles. Int J Nanomedicine 2011; 6: 1559-68.
[http://dx.doi.org/10.2147/IJN.S23828] [PMID: 21845046]
[136]
Kim BS, Kim HJ, Osawa S, et al. Dually stabilized triblock copolymer micelles with hydrophilic shell and hydrophobic interlayer for systemic antisense oligonucleotide delivery to solid tumor. ACS Biomater Sci Eng 2019; 5(11): 5770-80.
[http://dx.doi.org/10.1021/acsbiomaterials.9b00384] [PMID: 33405669]
[137]
Wang Q, Jiang H, Li Y, et al. Targeting NF-kB signaling with polymeric hybrid micelles that co-deliver siRNA and dexamethasone for arthritis therapy. Biomaterials 2017; 122: 10-22.
[http://dx.doi.org/10.1016/j.biomaterials.2017.01.008] [PMID: 28107661]
[138]
Miura Y, Tsuji AB, Sugyo A, et al. Polymeric micelle platform for multimodal tomographic imaging to detect scirrhous gastric cancer. ACS Biomater Sci Eng 2015; 1(11): 1067-76.
[http://dx.doi.org/10.1021/acsbiomaterials.5b00142] [PMID: 33429548]
[139]
Starmans LWE, Hummelink MAPM, Rossin R, et al. 89 Zr- and Fe-labeled polymeric micelles for dual modality PET and T1 -weighted MR imaging. Adv Healthc Mater 2015; 4(14): 2137-45.
[http://dx.doi.org/10.1002/adhm.201500414] [PMID: 26333024]
[140]
Guo J, Hong H, Chen G, et al. Image-guided and tumor-targeted drug delivery with radiolabeled unimolecular micelles. Biomaterials 2013; 34(33): 8323-32.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.085] [PMID: 23932288]
[141]
Garrigue P, Tang J, Ding L, et al. Self-assembling supramolecular dendrimer nanosystem for PET imaging of tumors. Proc Natl Acad Sci USA 2018; 115(45): 11454-9.
[http://dx.doi.org/10.1073/pnas.1812938115] [PMID: 30348798]
[142]
Yim H, Seo S, Na K. MRI contrast agent-based multifunctional materials: Diagnosis and therapy. J Nanomater 2011; 2011: 1-11.
[http://dx.doi.org/10.1155/2011/747196]
[143]
Cao Y, Liu M, Kuang Y, Zu G, Xiong D, Pei R. A poly(ε-caprolactone)-poly(glycerol)-poly(ε-caprolactone) triblock copolymer for designing a polymeric micelle as a tumor targeted magnetic resonance imaging contrast agent. J Mater Chem B Mater Biol Med 2017; 5(42): 8408-16.
[http://dx.doi.org/10.1039/C7TB01967J] [PMID: 32264508]
[144]
Xiao Y, Lin ZT, Chen Y, et al. High molecular weight chitosan derivative polymeric micelles encapsulating superparamagnetic iron oxide for tumor-targeted magnetic resonance imaging. Int J Nanomedicine 2015; 10: 1155-72.
[http://dx.doi.org/10.2147/IJN.S70022] [PMID: 25709439]
[145]
Wu C, Li D, Yang L, et al. Multivalent manganese complex decorated amphiphilic dextran micelles as sensitive MRI probes. J Mater Chem B Mater Biol Med 2015; 3(8): 1470-3.
[http://dx.doi.org/10.1039/C4TB02036G] [PMID: 32429604]
[146]
Lin B, Su H, Jin R, et al. Multifunctional dextran micelles as drug delivery carriers and magnetic resonance imaging probes. Sci Bull (Beijing) 2015; 60(14): 1272-80.
[http://dx.doi.org/10.1007/s11434-015-0840-x]
[147]
Su H, Liu Y, Wang D, et al. Amphiphilic starlike dextran wrapped superparamagnetic iron oxide nanoparticle clsuters as effective magnetic resonance imaging probes. Biomaterials 2013; 34(4): 1193-203.
[http://dx.doi.org/10.1016/j.biomaterials.2012.10.056] [PMID: 23168385]
[148]
Al Zaki A, Joh D, Cheng Z, et al. Gold-loaded polymeric micelles for computed tomography-guided radiation therapy treatment and radiosensitization. ACS Nano 2014; 8(1): 104-12.
[http://dx.doi.org/10.1021/nn405701q] [PMID: 24377302]
[149]
Kesharwani SS, Kaur S, Tummala H, Sangamwar AT. Overcoming multiple drug resistance in cancer using polymeric micelles. Expert Opin Drug Deliv 2018; 15(11): 1127-42.
[http://dx.doi.org/10.1080/17425247.2018.1537261] [PMID: 30324813]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy