Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Green Polymer Nanocomposites in Automotive and Packaging Industries

Author(s): Mohammad Harun-Ur-Rashid, Abu Bin Imran and Md. Abu Bin Hasan Susan*

Volume 24, Issue 1, 2023

Published on: 27 September, 2022

Page: [145 - 163] Pages: 19

DOI: 10.2174/1389201023666220506111027

Price: $65

Abstract

Green polymer nanocomposites referred to as completely biodegradable, renewable, environmentally friendly, and benign materials, have received a surge of attention to promote sustainable development. Polymer nanocomposites, where nanomaterials are used for reinforcement, possess a large interfacial area per volume, and the intervals between the filler nanoparticles and polymer matrix are significantly short. Molecular interactions between the filler particles and the matrix, therefore, provide polymer nanocomposites with novel characteristics that ordinary polymers or conventional macrocomposites do not possess. However, nanoparticles, nanotubes, nanofilms, nanofibers, nanoflakes, etc., in the form of nanocomposites may cause serious health hazards and pollute the environment severely. While the number of review articles on fundamental and applied research work of polymer nanocomposites is noteworthy, this review focuses more in depth on the applications of safe and green polymer nanocomposites in the automotive and packaging industries. The particular focus has been to examine and investigate in detail the initial and contemporaneous trends, status, and perspectives of green and safe polymer nanocomposites in the automotive and packaging industries. Background characteristics, strengths, weaknesses, potentiality, prospects, and opportunities of green polymer nanocomposites suitable for automotive and packaging industries have been addressed. The ultimate goal is to have a profound understanding of the structure-property relationship of green polymer nanocomposites to overcome existing limitations for automotive and packaging applications.

Keywords: Safe nanotechnology, green polymer nanocomposite, eco-filler, eco-polymer matrix, biocomposite, natural fiber.

Graphical Abstract

[1]
Singh, N.B.; Susan, M.A.B.H.; Guin, M. Applications of green synthesized nanomaterials in water remediation. Curr. Pharm. Biotechnol., 2021, 22(6), 733-761.
[http://dx.doi.org/10.2174/1389201021666201027160029] [PMID: 33109041]
[2]
Wallner, E.; Sarma, D.H.R.; Myers, B.; Shah, S.; Ihms, D.; Chengalva, S.; Parker, R.; Eesley, G.; Dykstra, C. Nanotechnology applications in future automobiles. SAE Technical Paper, 2010.
[http://dx.doi.org/10.4271/2010-01-1149]
[3]
Shafique, M.; Luo, X. Nanotechnology in transportation vehicles: An overview of its applications, environmental, health and safety con-cerns. Materials, 2019, 12(15), 2493.
[http://dx.doi.org/10.3390/ma12152493] [PMID: 31390752]
[4]
Zhang, J.; Guo, W.; Li, Q.; Wang, Z.; Liu, S. The effects and the potential mechanism of environmental transformation of metal nanoparti-cles on their toxicity in organisms. Environ. Sci. Nano, 2018, 5(11), 2482-2499.
[http://dx.doi.org/10.1039/C8EN00688A]
[5]
Mahapatra, I.; Clark, J.R.; Dobson, P.J.; Owen, R.; Lynch, I.; Lead, J.R. Expert perspectives on potential environmental risks from nano-medicines and adequacy of the current guideline on environmental risk assessment. Environ. Sci. Nano, 2018, 5(8), 1873-1889.
[http://dx.doi.org/10.1039/C8EN00053K]
[6]
Peng, C.; Zhang, W.; Gao, H.; Li, Y.; Tong, X.; Li, K.; Zhu, X.; Wang, Y.; Chen, Y. Behavior and potential impacts of metal-based engi-neered nanoparticles in aquatic environments. Nanomaterials, 2017, 7(1), 21.
[http://dx.doi.org/10.3390/nano7010021] [PMID: 28336855]
[7]
Türk, V.; Kaiser, C.; Schaller, S. Kaiser, C.; Schaller, S. Invisible but tangible? Societal opportunities and risks of nanotechnologies. J. Clean. Prod., 2008, 16(8-9), 1006-1009.
[http://dx.doi.org/10.1016/j.jclepro.2007.04.012]
[8]
Erbis, S.; Ok, Z.; Isaacs, J.A.; Benneyan, J.C.; Kamarthi, S. Review of research trends and methods in nano environmental, health, and safety risk analysis. Risk Anal., 2016, 36(8), 1644-1665.
[http://dx.doi.org/10.1111/risa.12546] [PMID: 26882074]
[9]
Aithal, S.; Aithal, P.S. Green and eco-friendly nanotechnology–concepts and industrial prospects. Intl. J. Manag. Technol. Soc. Sci., 2021, 6(1), 1-31.
[http://dx.doi.org/10.47992/IJMTS.2581.6012.0127]
[10]
Bundschuh, M.; Filser, J.; Lüderwald, S.; McKee, M.S.; Metreveli, G.; Schaumann, G.E.; Schulz, R.; Wagner, S. Nanoparticles in the envi-ronment: Where do we come from, where do we go to? Environ. Sci. Eur., 2018, 30(1), 6.
[http://dx.doi.org/10.1186/s12302-018-0132-6] [PMID: 29456907]
[11]
Jacobasch, C.; Völker, C.; Giebner, S.; Völker, J.; Alsenz, H.; Potouridis, T.; Heidenreich, H.; Kayser, G.; Oehlmann, J.; Oetken, M. Long-term effects of nanoscaled titanium dioxide on the cladoceran Daphnia magna over six generations. Environ. Pollut., 2014, 186, 180-186.
[http://dx.doi.org/10.1016/j.envpol.2013.12.008] [PMID: 24378815]
[12]
Freixa, A.; Acuña, V.; Sanchís, J.; Farré, M.; Barceló, D.; Sabater, S. Ecotoxicological effects of carbon based nanomaterials in aquatic organisms. Sci. Total Environ., 2018, 619-620, 328-337.
[http://dx.doi.org/10.1016/j.scitotenv.2017.11.095] [PMID: 29154051]
[13]
Adachi, K.; Yamada, N.; Yoshida, Y.; Yamamoto, O. Subchronic exposure of titanium dioxide nanoparticles to hairless rat skin. Exp. Dermatol., 2013, 22(4), 278-283.
[http://dx.doi.org/10.1111/exd.12121] [PMID: 23528214]
[14]
Vogt, A.; Rancan, F.; Ahlberg, S.; Nazemi, B.; Choe, C.S.; Darvin, M.E.; Hadam, S.; Blume-Peytavi, U.; Loza, K.; Diendorf, J.; Epple, M.; Graf, C.; Rühl, E.; Meinke, M.C.; Lademann, J. Interaction of dermatologically relevant nanoparticles with skin cells and skin. Beilstein J. Nanotechnol., 2014, 5(1), 2363-2373.
[http://dx.doi.org/10.3762/bjnano.5.245] [PMID: 25551064]
[15]
Dhingra, R.; Naidu, S.; Upreti, G.; Sawhney, R. Sawhney, R. (). Sustainable nanotechnology: Through green methods and life-cycle think-ing. Sustainability, 2010, 2(10), 3323-3338.
[http://dx.doi.org/10.3390/su2103323]
[16]
Chandra, A.K.; Kumar, N.R. Polymer nanocomposites for automobile engineering applications. Properties and Applications of Polymer Nanocomposites; Springer: Berlin, Heidelberg, 2017, pp. 139-172.
[http://dx.doi.org/10.1007/978-3-662-53517-2_7]
[17]
Garces, J.M.; Moll, D.J.; Bicerano, J.; Fibiger, R.; McLeod, D.G. Polymeric nanocomposites for automotive applications. Adv. Mater., 2000, 12(23), 1835-1839.
[http://dx.doi.org/10.1002/1521-4095(200012)12:23<1835:AID-ADMA1835>3.0.CO;2-T]
[18]
Usuki, A.; Kato, M.; Okada, A.; Kurauchi, T. Synthesis of polypropylene‐clay hybrid. J. Appl. Polym. Sci., 1997, 63(1), 137-138.
[http://dx.doi.org/10.1002/(SICI)1097-4628(19970103)63:1<137:AID-APP15>3.0.CO;2-2]
[19]
Chirayil, C.J.; Joy, J.; Maria, H.J.; Krupa, I.; Thomas, S. Polyolefins in automotive industry. Polyolefin Compounds and Materials; Springer: Cham,, 2016, pp. 265-283.
[http://dx.doi.org/10.1007/978-3-319-25982-6_11]
[20]
Kakarala, N.; Shah, S. SPE Automotive TPO Global Conference 200 2000, pp. 147-158.
[21]
Seubert, C.; Nietering, K.; Nichols, M.; Wykoff, R.; Bollin, S. An overview of the scratch resistance of automotive coatings: Exterior clear-coats and polycarbonate hardcoats. Coatings, 2012, 2(4), 221-234.
[http://dx.doi.org/10.3390/coatings2040221]
[22]
Serrano, E.; Rus, G.; Garcia-Martinez, J. Nanotechnology for sustainable energy. Renew. Sustain. Energy Rev., 2009, 13(9), 2373-2384.
[http://dx.doi.org/10.1016/j.rser.2009.06.003]
[23]
Wang, C.; Wu, H.; Chen, Z.; McDowell, M.T.; Cui, Y.; Bao, Z. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem., 2013, 5(12), 1042-1048.
[http://dx.doi.org/10.1038/nchem.1802] [PMID: 24256869]
[24]
Sofla, M.R.K.; Brown, R.J.; Tsuzuki, T.; Rainey, T.J. A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods. Adv. Nat. Sci.: Nanosci. Nanotechnol., 2016, 7(3), 035004.
[http://dx.doi.org/10.1088/2043-6262/7/3/035004]
[25]
Chandra, A.K.; Bhandari, V. Nanocomposites for tyre applications. Advances in elastomers II; Springer: Berlin, Heidelberg, 2013, pp. 183-203.
[http://dx.doi.org/10.1007/978-3-642-20928-4_6]
[26]
A.B. Imran, M.A.B.H. Susan, Chapter 5 - Natural fiber-reinforced nanocomposites in automotive industry, in: H. Song, T.A. Nguyen, G. Yasin, N.B. Singh, R.K. Gupta (Eds.) Nanotechnology in the Automotive Industry, Elsevier 2022, pp. 85-103.
[http://dx.doi.org/10.3390/jcs3020051]
[27]
Battegazzore, D.; Abt, T.; Maspoch, M.L.; Frache, A. Multilayer cotton fabric bio-composites based on PLA and PHB copolymer for in-dustrial load carrying applications. Compos., Part B Eng., 2019, 163, 761-768.
[http://dx.doi.org/10.1016/j.compositesb.2019.01.057]
[28]
Mochane, M.J.; Mokhena, T.C.; Mokhothu, T.H.; Mtibe, A.; Sadiku, E.R.; Ray, S.S.; Ibrahim, I.D.; Daramola, O.O. Recent progress on natural fiber hybrid composites for advanced applications: A review. Express Polym. Lett., 2019, 13(2), 159-198.
[http://dx.doi.org/10.3144/expresspolymlett.2019.15]
[29]
Wang, Q.; Xiao, S.; Shi, S.Q.; Cai, L. Effect of light-delignification on mechanical, hydrophobic, and thermal properties of high-strength molded fiber materials. Sci. Rep., 2018, 8(1), 955.
[http://dx.doi.org/10.1038/s41598-018-19623-4] [PMID: 29343806]
[30]
Peças, P.; Carvalho, H.; Salman, H.; Leite, M. Natural fibre composites and their applications: a review. J. Compos. Sci., 2018, 2(4), 66.
[http://dx.doi.org/10.3390/jcs2040066]
[31]
Sarasini, F.; Fiore, V. A systematic literature review on less common natural fibres and their biocomposites. J. Clean. Prod., 2018, 195, 240-267.
[http://dx.doi.org/10.1016/j.jclepro.2018.05.197]
[32]
Gurunathan, T.; Mohanty, S.; Nayak, S.K. A review of the recent developments in biocomposites based on natural fibres and their appli-cation perspectives. Compos., Part A Appl. Sci. Manuf., 2015, 77, 1-25.
[http://dx.doi.org/10.1016/j.compositesa.2015.06.007]
[33]
Alkbir, M.F.M.; Sapuan, S.M.; Nuraini, A.A.; Ishak, M.R. Fibre properties and crashworthiness parameters of natural fibre-reinforced composite structure: A literature review. Compos. Struct., 2016, 148, 59-73.
[http://dx.doi.org/10.1016/j.compstruct.2016.01.098]
[34]
Fiore, V.; Scalici, T.; Di Bella, G.; Valenza, A. Di Bella, G.; Valenza, A. A review on basalt fibre and its composites. Compos., Part B Eng., 2015, 74, 74-94.
[http://dx.doi.org/10.1016/j.compositesb.2014.12.034]
[35]
Lau, K.T.; Hung, P.Y.; Zhu, M.H.; Hui, D. Properties of natural fibre composites for structural engineering applications. Compos., Part B Eng., 2018, 2018(136), 222-233.
[http://dx.doi.org/10.1016/j.compositesb.2017.10.038]
[36]
Dhand, V.; Mittal, G.; Rhee, K.Y.; Park, S.J.; Hui, D. A short review on basalt fiber reinforced polymer composites. Compos., Part B Eng., 2015, 73, 166-180.
[http://dx.doi.org/10.1016/j.compositesb.2014.12.011]
[37]
Hashim, U.R.; Jumahat, A.; Jawaid, M.; Dungani, R.; Alamery, S. Effects of accelerated weathering on degradation behavior of basalt fiber reinforced polymer nanocomposites. Polymers, 2020, 12(11), 2621.
[http://dx.doi.org/10.3390/polym12112621] [PMID: 33172162]
[38]
Rwawiire, S.; Tomkova, B.; Militky, J.; Jabbar, A.; Kale, B.M. Development of a biocomposite based on green epoxy polymer and natural cellulose fabric (bark cloth) for automotive instrument panel applications. Compos., Part B Eng., 2015, 81, 149-157.
[http://dx.doi.org/10.1016/j.compositesb.2015.06.021]
[39]
Bouzouita, A.; Notta-Cuvier, D.; Raquez, J.M.; Lauro, F.; Dubois, P. Poly (lactic acid)-based materials for automotive applications. Indus-trial Applications of Poly(lactic acid). Advances in Polymer Science; Di Lorenzo, M; Androsch, R., Ed.; Springer: Cham, 2017, Vol. 282, pp. 177-219.
[http://dx.doi.org/10.1007/12_2017_10]
[40]
Holbery, J.; Houston, D. Natural-fiber-reinforced polymer composites in automotive applications. J. Miner. Met. Mater. Soc., 2006, 58(11), 80-86.
[http://dx.doi.org/10.1007/s11837-006-0234-2]
[41]
Alves, C.; Silva, A.J.; Reis, L.G.; Freitas, M.; Rodrigues, L.B.; Alves, D.E. Ecodesign of automotive components making use of natural jute fiber composites. J. Clean. Prod., 2010, 18(4), 313-327.
[http://dx.doi.org/10.1016/j.jclepro.2009.10.022]
[42]
Suddell, B.C.; Evans, W.J. Natural fiber composites in automotive applications.Natural fibers, biopolymers, and biocomposites; Mohanty, A.K.; Misra, M; Drzal, L.T., Ed.; CRC press: Boca Raton, FL, USA, 2005, pp. 237-266.
[http://dx.doi.org/10.1201/9780203508206.ch7]
[43]
Koronis, G.; Silva, A.; Fontul, M. Green composites: A review of adequate materials for automotive applications. Compos., Part B Eng., 2013, 44(1), 120-127.
[http://dx.doi.org/10.1016/j.compositesb.2012.07.004]
[44]
Stewart, R. Automotive composites offer lighter solutions. Reinf. Plast., 2010, 54(2), 22-28.
[http://dx.doi.org/10.1016/S0034-3617(10)70061-8]
[45]
Verma, D.; Senal, I. Natural fiber-reinforced polymer composites: Feasibiliy study for sustainable automotive industries. Biomass, Biopol-ymer-Based Materials, and Bioenergy; Woodhead Publishing, 2019, pp. 103-122.
[http://dx.doi.org/10.1016/B978-0-08-102426-3.00006-0]
[46]
Mathew, J.; Joy, J.; George, S.C. Potential applications of nanotechnology in transportation: A review. J. King Saud Univ. Sci., 2019, 31(4), 586-594.
[http://dx.doi.org/10.1016/j.jksus.2018.03.015]
[47]
Bai, Y.; Zhang, H.; Shao, Y.; Zhang, H.; Zhu, J. Recent progresses of Superhydrophobic coatings in different application fields: An over-view. Coatings, 2021, 11(2), 116.
[http://dx.doi.org/10.3390/coatings11020116]
[48]
Akafuah, N.K.; Poozesh, S.; Salaimeh, A.; Patrick, G.; Lawler, K.; Saito, K. Evolution of the automotive body coating process–A review. Coatings, 2016, 6(2), 24.
[http://dx.doi.org/10.3390/coatings6020024]
[49]
Syafiq, A.; Vengadaesvaran, B.; Ahmed, U.; Rahim, N.A.; Ramesh, S. Facile synthesize of transparent hydrophobic nano-CaCO3 based coatings for self-cleaning and anti-fogging. Mater. Chem. Phys., 2020, 239, 121913.
[http://dx.doi.org/10.1016/j.matchemphys.2019.121913]
[50]
Šuligoj, A.; Pliekhova, O.; Vodišek, N.; Mihelčič, M.; Surca, A.K.; Kunič, R.; Šubic, B.; Starman, J.; Ugovšek, A.; Lavrenčič Štangar, U. Field test of self-cleaning Zr-modified-TiO2-SiO2 films on glass with a demonstration of their anti-fogging effect. Materials (Basel), 2019, 12(13), 2196.
[http://dx.doi.org/10.3390/ma12132196] [PMID: 31288427]
[51]
Lai, Y.; Tang, Y.; Gong, J.; Gong, D.; Chi, L.; Lin, C.; Chen, Z. Transparent superhydrophobic/superhydrophilic TiO2-based coatings for self-cleaning and anti-fogging. J. Mater. Chem., 2012, 22(15), 7420-7426.
[http://dx.doi.org/10.1039/c2jm16298a]
[52]
Syafiq, A.; Vengadaesvaran, B.; Pandey, A.K.; Rahim, N.A. Superhydrophilic smart coating for self-cleaning application on glass sub-strate. J. Nanomater., 2018, 2018(6412601), 1-10.
[http://dx.doi.org/10.1155/2018/6412601]
[53]
Hooda, A.; Goyat, M.S.; Pandey, J.K.; Kumar, A.; Gupta, R. A review on fundamentals, constraints and fabrication techniques of super-hydrophobic coatings. Prog. Org. Coat., 2020, 142, 105557.
[http://dx.doi.org/10.1016/j.porgcoat.2020.105557]
[54]
Qing, Y.; Yang, C.; Hu, C.; Zheng, Y.; Liu, C. A facile method to prepare superhydrophobic fluorinated polysiloxane/ZnO nanocomposite coatings with corrosion resistance. Appl. Surf. Sci., 2015, 326, 48-54.
[http://dx.doi.org/10.1016/j.apsusc.2014.11.100]
[55]
Figueira, R.B.; Fontinha, I.R.; Silva, C.J.; Pereira, E.V. Hybrid sol-gel coatings: smart and green materials for corrosion mitigation. Coatings, 2016, 6(1), 12.
[http://dx.doi.org/10.3390/coatings6010012]
[56]
Shen, L.; Chen, H.; Qi, C.; Fu, Q.; Xiong, Z.; Sun, Y.; Liu, Y. A green and facile fabrication of rGO/FEVE nanocomposite coating for anti-corrosion application. Mater. Chem. Phys., 2021, 263, 124382.
[http://dx.doi.org/10.1016/j.matchemphys.2021.124382]
[57]
Wang, S.; Hu, Z.; Shi, J.; Chen, G.; Zhang, Q.; Weng, Z.; Wu, K.; Lu, M. Green synthesis of graphene with the assistance of modified lig-nin and its application in anticorrosive waterborne epoxy coatings. Appl. Surf. Sci., 2019, 484, 759-770.
[http://dx.doi.org/10.1016/j.apsusc.2019.03.229]
[58]
Shahabadi, S.I.; Kong, J.; Lu, X. Aqueous-only, green route to self-healable, UV-resistant, and electrically conductive polyure-thane/graphene/lignin nanocomposite coatings. ACS Sustain. Chem.& Eng., 2017, 5(4), 3148-3157.
[http://dx.doi.org/10.1021/acssuschemeng.6b02941]
[59]
Bhat, S.I.; Ahmad, S. Castor oil-TiO2 hyperbranched poly (ester amide) nanocomposite: a sustainable, green precursor-based anticorro-sive nanocomposite coatings. Prog. Org. Coat., 2018, 123, 326-336.
[http://dx.doi.org/10.1016/j.porgcoat.2018.06.010]
[60]
Ammar, A.U.; Shahid, M.; Ahmed, M.K.; Khan, M.; Khalid, A.; Khan, Z.A. Electrochemical study of polymer and ceramic-based nano-composite coatings for corrosion protection of cast iron pipeline. Materials, 2018, 11(3), 332.
[http://dx.doi.org/10.3390/ma11030332] [PMID: 29495339]
[61]
Akbarzadeh, S.; Ramezanzadeh, M.; Ramezanzadeh, B.; Bahlakeh, G. A green assisted route for the fabrication of a high-efficiency self-healing anti-corrosion coating through graphene oxide nanoplatform reduction by Tamarindus indiaca extract. J. Hazard. Mater., 2020, 390, 122147.
[http://dx.doi.org/10.1016/j.jhazmat.2020.122147] [PMID: 32006846]
[62]
Pourhashem, S.; Saba, F.; Duan, J.; Rashidi, A.; Guan, F.; Nezhad, E.G.; Hou, B. Polymer/Inorganic nanocomposite coatings with superior corrosion protection performance: A review. J. Ind. Eng. Chem., 2020, 88, 29-57.
[http://dx.doi.org/10.1016/j.jiec.2020.04.029]
[63]
Hübsch, Z.; Van Zyl, R.L.; Cock, I.E.; Van Vuuren, S.F. Interactive antimicrobial and toxicity profiles of conventional antimicrobials with Southern African medicinal plants. S. Afr. J. Bot., 2014, 93, 185-197.
[http://dx.doi.org/10.1016/j.sajb.2014.04.005]
[64]
Suresh, S.; Saravanan, P.; Jayamoorthy, K.; Ananda Kumar, S.; Karthikeyan, S. Development of silane grafted ZnO core shell nanoparti-cles loaded diglycidyl epoxy nanocomposites film for antimicrobial applications. Mater. Sci. Eng. C, 2016, 64, 286-292.
[http://dx.doi.org/10.1016/j.msec.2016.03.096] [PMID: 27127055]
[65]
Dakal, T.C.; Kumar, A.; Majumdar, R.S.; Yadav, V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol., 2016, 7, 1831.
[http://dx.doi.org/10.3389/fmicb.2016.01831] [PMID: 27899918]
[66]
Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on zinc oxide nano-particles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett., 2015, 7(3), 219-242.
[http://dx.doi.org/10.1007/s40820-015-0040-x] [PMID: 30464967]
[67]
Martău, G.A.; Mihai, M.; Vodnar, D.C. The use of chitosan, alginate, and pectin in the biomedical and food sector-biocompatibility, bio-adhesiveness, and biodegradability. Polymers, 2019, 11(11), 1837.
[http://dx.doi.org/10.3390/polym11111837] [PMID: 31717269]
[68]
Bakshi, P.S.; Selvakumar, D.; Kadirvelu, K.; Kumar, N.S. Chitosan as an environment friendly biomaterial - a review on recent modifica-tions and applications. Int. J. Biol. Macromol., 2020, 150, 1072-1083.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.113] [PMID: 31739057]
[69]
Hadi, J.M.; Aziz, S.B.; Nofal, M.M.; Hussen, S.A.; Hamsan, M.H.; Brza, M.A.; Abdulwahid, R.T.; Kadir, M.F.Z.; Woo, H.J. Electrical, dielectric property and electrochemical performances of plasticized silver ion-conducting chitosan-based polymer nanocomposites. Membranes, 2020, 10(7), 151.
[http://dx.doi.org/10.3390/membranes10070151] [PMID: 32668644]
[70]
Soundhar, A.; Jayakrishna, K. Investigations on mechanical and morphological characterization of chitosan reinforced polymer nanocom-posites. Mater. Res. Express, 2019, 6(7), 075301.
[http://dx.doi.org/10.1088/2053-1591/ab1288]
[71]
Dhayal, V.; Hashmi, S.Z.; Kumar, U.; Choudhary, B.L.; Dalela, S.; Dolia, S.N.; Alvi, P.A. Optical and electrical properties of biocompati-ble and novel (CS–GO) polymer nanocomposites. Opt. Quantum Electron., 2021, 53(1), 1-13.
[http://dx.doi.org/10.1007/s11082-020-02723-9]
[72]
Youssef, A.M.; Hasanin, M.S.; El-Aziz, M.E.A.; Turky, G.M. Conducting chitosan/hydroxylethyl cellulose/polyaniline bionanocompo-sites hydrogel based on graphene oxide doped with Ag-NPs. Int. J. Biol. Macromol., 2021, 167, 1435-1444.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.11.097] [PMID: 33202266]
[73]
Pirahmadi, P.; Kokabi, M.; Alamdarnejad, G. Polyvinyl alcohol/chitosan/carbon nanotubes electroactive shape memory nanocomposite hydrogels. J. Appl. Polym. Sci., 2021, 138(11), 49995.
[http://dx.doi.org/10.1002/app.49995]
[74]
Grossman, A.; Vermerris, W. Lignin-based polymers and nanomaterials. Curr. Opin. Biotechnol., 2019, 56, 112-120.
[http://dx.doi.org/10.1016/j.copbio.2018.10.009] [PMID: 30458357]
[75]
Wróblewska-Krepsztul, J.; Rydzkowski, T.; Michalska-Pożoga, I.; Thakur, V.K. Biopolymers for biomedical and pharmaceutical applica-tions: Recent advances and overview of alginate electrospinning. Nanomaterials, 2019, 9(3), 404.
[http://dx.doi.org/10.3390/nano9030404] [PMID: 30857370]
[76]
Zhao, W.; Qi, Y.; Wang, Y.; Xue, Y.; Xu, P.; Li, Z.; Li, Q. Morphology and thermal properties of calcium alginate/reduced graphene oxide composites. Polymers, 2018, 10(9), 990.
[http://dx.doi.org/10.3390/polym10090990] [PMID: 30960915]
[77]
Bibi, A.; Rehman, S.U.; Yaseen, A. Alginate-nanoparticles composites: kinds, reactions and applications. Mater. Res. Express, 2019, 6(9), 092001.
[http://dx.doi.org/10.1088/2053-1591/ab2016]
[78]
Shah, T.; Gupta, C.; Ferebee, R.L.; Bockstaller, M.R.; Washburn, N.R. Extraordinary toughening and strengthening effect in polymer nano-composites using lignin-based fillers synthesized by ATRP. Polymer, 2015, 72, 406-412.
[http://dx.doi.org/10.1016/j.polymer.2015.04.073]
[79]
Liu, Y. Strong and flexible nanocomposites of carboxylated cellulose nanofibril dispersed by industrial lignin. ACS Sustain. Chem.& Eng., 2018, 6(4), 5524-5532.
[http://dx.doi.org/10.1021/acssuschemeng.8b00402]
[80]
Yang, W.; Rallini, M.; Wang, D.Y.; Gao, D.; Dominici, F.; Torre, L.; Kenny, J.M.; Puglia, D. Role of lignin nanoparticles in UV resistance, thermal and mechanical performance of PMMA nanocomposites prepared by a combined free-radical graft polymerization/masterbatch procedure. Compos., Part A Appl. Sci. Manuf., 2018, 107, 61-69.
[http://dx.doi.org/10.1016/j.compositesa.2017.12.030]
[81]
Thakur, V.K.; Thakur, M.K.; Raghavan, P.; Kessler, M.R. Progress in green polymer composites from lignin for multifunctional applica-tions: A review. ACS Sustain. Chem.& Eng., 2014, 2(5), 1072-1092.
[http://dx.doi.org/10.1021/sc500087z]
[82]
Pandey, J.K.; Nagarajan, V.; Mohanty, A.K.; Misra, M. Commercial potential and competitiveness of natural fiber composites. Biocompo-sites; Woodhead Publishing, 2015, pp. 1-15.
[http://dx.doi.org/10.1016/B978-1-78242-373-7.00001-9]
[83]
Ogunsona, E.O.; Codou, A.; Misra, M.; Mohanty, A.K. Thermally stable pyrolytic biocarbon as an effective and sustainable reinforcing filler for polyamide bio-composites fabrication. J. Polym. Environ., 2018, 26(9), 3574-3589.
[http://dx.doi.org/10.1007/s10924-018-1232-5]
[84]
Peterson, S.C.; Chandrasekaran, S.R.; Sharma, B.K. Birchwood biochar as partial carbon black replacement in styrene–butadiene rubber composites. J. Elastomers Plast., 2016, 48(4), 305-316.
[http://dx.doi.org/10.1177/0095244315576241]
[85]
dos Santos Pegoretti, T.; Mathieux, F.; Evrard, D.; Brissaud, D.; de França Arruda, J.R. Use of recycled natural fibres in industrial prod-ucts: A comparative LCA case study on acoustic components in the Brazilian automotive sector. Resour. Conserv. Recycling, 2014, 84, 1-14.
[http://dx.doi.org/10.1016/j.resconrec.2013.12.010]
[86]
Reddy, A.B.; Manjula, B.; Jayaramudu, T.; Owonubi, S.J.; Sadiku, E.R.; Agboola, O.; Sivanjineyulu, V.; Molelekwa, G.F. Biocomposites from renewable resources: preparation and applications of chitosan-clay nanocomposites. Handbook of Composites from Renewable Materials; Scrivener Publishing LLC,, 2017, 8, pp. 275-303.
[http://dx.doi.org/10.1002/9781119441632.ch158]
[87]
Sanjay, M.R.; Yogesha, B. Studies on natural/glass fiber reinforced polymer hybrid composites: An evolution. Mater. Today Proc., 2017, 4(2), 2739-2747.
[http://dx.doi.org/10.1016/j.matpr.2017.02.151]
[88]
Mansor, M.R. Concurrent conceptual design of hybrid natural/glass fiber reinforced thermoplastic composites for automotive parking brake lever. Universiti Putra Malaysia, Serdang. 2014. Available from: http://psasir.upm.edu.my/id/eprint/64858/1/FK%202014%20169IR.pdf
[89]
Khanna, V.; Bakshi, B.R. Carbon nanofiber polymer composites: Evaluation of life cycle energy use. Environ. Sci. Technol., 2009, 43(6), 2078-2084.
[http://dx.doi.org/10.1021/es802101x] [PMID: 19368217]
[90]
Kumar, N.; Mireja, S.; Khandelwal, V.; Arun, B.; Manik, G. Light-weight high-strength hollow glass microspheres and bamboo fiber based hybrid polypropylene composite: A strength analysis and morphological study. Compos., Part B Eng., 2017, 109, 277-285.
[http://dx.doi.org/10.1016/j.compositesb.2016.10.052]
[91]
Das, S. Life cycle assessment of carbon fiber-reinforced polymer composites. Int. J. Life Cycle Assess., 2011, 16(3), 268-282.
[http://dx.doi.org/10.1007/s11367-011-0264-z]
[92]
Chen, C.; Tang, Y.; Ye, Y.S.; Xue, Z.; Xue, Y.; Xie, X.; Mai, Y.W. High-performance epoxy/silica coated silver nanowire composites as underfill material for electronic packaging. Compos. Sci. Technol., 2014, 105, 80-85.
[http://dx.doi.org/10.1016/j.compscitech.2014.10.002]
[93]
Youssef, A.M.; El-Samahy, M.A.; Abdel Rehim, M.H. Preparation of conductive paper composites based on natural cellulosic fibers for packaging applications. Carbohydr. Polym., 2012, 89(4), 1027-1032.
[http://dx.doi.org/10.1016/j.carbpol.2012.03.044] [PMID: 24750909]
[94]
Silvestre, C.; Duraccio, D.; Cimmino, S. Food packaging based on polymer nanomaterials. Prog. Polym. Sci., 2011, 36(12), 1766-1782.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.02.003]
[95]
Yu, H.Y.; Qin, Z.Y.; Sun, B.; Yang, X.G.; Yao, J.M. Reinforcement of transparent poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by incorporation of functionalized carbon nanotubes as a novel bionanocomposite for food packaging. Compos. Sci. Technol., 2014, 94, 96-104.
[http://dx.doi.org/10.1016/j.compscitech.2014.01.018]
[96]
Kausar, A. A review of high performance polymer nanocomposites for packaging applications in electronics and food industries. J. Plast. Film Sheeting, 2020, 36(1), 94-112.
[http://dx.doi.org/10.1177/8756087919849459]
[97]
Kausar, A. Progress in green nanocomposites for high-performance applications. Mater. Res. Innov., 2021, 25(1), 53-65.
[http://dx.doi.org/10.1080/14328917.2020.1728489]
[98]
Idumah, C.I.; Hassan, A.; Ihuoma, D.E. Recently emerging trends in polymer nanocomposites packaging materials. Polym. Plast. Technol. Mater., 2019, 58(10), 1054-1109.
[http://dx.doi.org/10.1080/03602559.2018.1542718]
[99]
Ahmed, J.; Varshney, S.K. Polylactides-chemistry, properties and green packaging technology: a review. Int. J. Food Prop., 2011, 14(1), 37-58.
[http://dx.doi.org/10.1080/10942910903125284]
[100]
Maiti, P.; Yamada, K.; Okamoto, M.; Ueda, K.; Okamoto, K. New polylactide/layered silicate nanocomposites: role of organoclay. Chem. Mater., 2002, 14(11), 4654-4661.
[http://dx.doi.org/10.1021/cm020391b]
[101]
Plackett, D.V.; Holm, V.K.; Johansen, P.; Ndoni, S.; Nielsen, P.V.; Sipilainen-Malm, T.; Södergård, A.; Verstichel, S. Characterization of L-Polylactide and L-Polylactide–polycaprolactone Co-polymer films for use in cheese-packaging applications. Packag. Technol. Sci., 2006, 19(1), 1-24.
[http://dx.doi.org/10.1002/pts.704]
[102]
Zhang, J.; Jiang, L.; Zhu, L.; Jane, J.L.; Mungara, P. Morphology and properties of soy protein and polylactide blends. Biomacromolecules, 2006, 7(5), 1551-1561.
[http://dx.doi.org/10.1021/bm050888p] [PMID: 16677038]
[103]
Madhumitha, G.; Fowsiya, J.; Roopan, S.; Thakur, V. Recent advances in starch–clay nanocomposites. IJPAC Int. J. Polym. Anal. Charact., 2018, 23(4), 331-345.
[http://dx.doi.org/10.1080/1023666X.2018.1447260]
[104]
Iamareerat, B.; Singh, M.; Sadiq, M.B.; Anal, A.K. Reinforced cassava starch based edible film incorporated with essential oil and sodium bentonite nanoclay as food packaging material. J. Food Sci. Technol., 2018, 55(5), 1953-1959.
[http://dx.doi.org/10.1007/s13197-018-3100-7] [PMID: 29666549]
[105]
Nogueira, G.F.; Fakhouri, F.M.; de Oliveira, R.A. Extraction and characterization of arrowroot (Maranta arundinaceae L.) starch and its application in edible films. Carbohydr. Polym., 2018, 186, 64-72.
[http://dx.doi.org/10.1016/j.carbpol.2018.01.024] [PMID: 29456010]
[106]
Noorbakhsh-Soltani, S.M.; Zerafat, M.M.; Sabbaghi, S. A comparative study of gelatin and starch-based nano-composite films modified by nano-cellulose and chitosan for food packaging applications. Carbohydr. Polym., 2018, 189, 48-55.
[http://dx.doi.org/10.1016/j.carbpol.2018.02.012] [PMID: 29580425]
[107]
Sivaranjana, P.; Nagarajan, E.R.; Rajini, N.; Rajulu, A.V.; Siengchin, S. Green synthesis of copper-reinforced cellulose nanocomposites for packaging applications. Bionanocomposites for Packaging Applications; Jawaid, M; Swain, S., Ed.; Springer: Cham, 2018, pp. 515-528.
[http://dx.doi.org/10.1007/978-3-319-67319-6_9]
[108]
Sarwar, M.S.; Niazi, M.B.K.; Jahan, Z.; Ahmad, T.; Hussain, A.; Hussain, A. Preparation and characterization of PVA/nanocellulose/Ag nanocomposite films for antimicrobial food packaging. Carbohydr. Polym., 2018, 184, 453-464.
[http://dx.doi.org/10.1016/j.carbpol.2017.12.068] [PMID: 29352941]
[109]
Niu, X.; Liu, Y.; Song, Y.; Han, J.; Pan, H. Rosin modified cellulose nanofiber as a reinforcing and co-antimicrobial agents in polylactic acid/chitosan composite film for food packaging. Carbohydr. Polym., 2018, 183, 102-109.
[http://dx.doi.org/10.1016/j.carbpol.2017.11.079] [PMID: 29352864]
[110]
Sun, L.; Wang, W.; Zeng, W.; Mustapha, A.; Lin, M. Soy protein-based films incorporated with cellulose nanocrystals and pine needle extract for active packaging. Ind. Crops Prod., 2018, 112, 412-419.
[http://dx.doi.org/10.1016/j.indcrop.2017.12.031]
[111]
Ortiz, C.M.; Salgado, P.R.; Dufresne, A.; Mauri, A.N. Microfibrillated cellulose addition improved the physicochemical and bioactive properties of biodegradable films based on soy protein and clove essential oil. Food Hydrocoll., 2018, 79, 416-427.
[http://dx.doi.org/10.1016/j.foodhyd.2018.01.011]
[112]
Adilah, B.; Jamilah, Z.; Hanani, N. Functional and antioxidant properties of protein-based films incorporated with mango kernel extract for active packaging. Food Hydrocoll., 2018, 74, 207-218.
[http://dx.doi.org/10.1016/j.foodhyd.2017.08.017]
[113]
Kang, H.; Wang, Z.; Zhao, S.; Wang, Q.; Zhang, S. Reinforced soy protein isolate–based bionanocomposites with halloysite nanotubes via mussel-inspired dopamine and polylysine codeposition. J. Appl. Polym. Sci., 2018, 135(18), 46197.
[http://dx.doi.org/10.1002/app.46197]
[114]
Sukyai, P.; Anongjanya, P.; Bunyahwuthakul, N.; Kongsin, K.; Harnkarnsujarit, N.; Sukatta, U.; Sothornvit, R.; Chollakup, R. Effect of cellulose nanocrystals from sugarcane bagasse on whey protein isolate-based films. Food Res. Int., 2018, 107, 528-535.
[http://dx.doi.org/10.1016/j.foodres.2018.02.052] [PMID: 29580516]
[115]
Azevedo, V.; Dias, M.; Borges, S.; Costa, A.; Silva, E.; Medeiros, A.; Soares, N. Development of whey protein isolate bio-nanocomposites: Effect of montmorillonite and citric acid on structural, thermal, morphological and mechanical properties. Food Hydrocoll., 2015, 48, 179-188.
[http://dx.doi.org/10.1016/j.foodhyd.2015.02.014]
[116]
Müller, K.; Jesdinszki, M.; Schmid, M. Modification of functional properties of whey protein isolate nanocomposite films and coatings with nanoclays. J. Nanomater., 2017, 2017, 6039192.
[http://dx.doi.org/10.1155/2017/6039192]
[117]
Naskar, A.K.; Keum, J.K.; Boeman, R.G. Polymer matrix nanocomposites for automotive structural components. Nat. Nanotechnol., 2016, 11(12), 1026-1030.
[http://dx.doi.org/10.1038/nnano.2016.262] [PMID: 27920443]
[118]
Kumar, S.K.; Krishnamoorti, R. Nanocomposites: Structure, phase behavior, and properties. Annu. Rev. Chem. Biomol. Eng., 2010, 1(1), 37-58.
[http://dx.doi.org/10.1146/annurev-chembioeng-073009-100856] [PMID: 22432572]
[119]
Al-Oqla, F.M.; Sapuan, S.M. Natural fiber reinforced polymer composites in industrial applications: Feasibility of date palm fibers for sustainable automotive industry. J. Clean. Prod., 2014, 66, 347-354.
[http://dx.doi.org/10.1016/j.jclepro.2013.10.050]
[120]
Patel, V.; Mahajan, Y. Polymer nanocomposites: emerging growth driver for the global automotive industry. Handbook of Polymer Nano-composites. Processing, Performance and Application; Pandey, J.; Reddy, K.; Mohanty, A; Misra, M., Ed.; Springer: Berlin, Heidelberg, 2014, pp. 511-538.
[http://dx.doi.org/10.1007/978-3-642-38649-7_23]
[121]
Sakib, M.N.; Iqbal, A.A. Epoxy based nanocomposite material for automotive application-a short review. Int. J. Automot. Mech. Eng., 2021, 18(3), 9127-9140.
[http://dx.doi.org/10.15282/ijame.18.3.2021.24.0701]
[122]
Adeosun, S.O.; Lawal, G.I.; Balogun, S.A.; Akpan, E.I. Review of green polymer nanocomposites. J. Miner. Mater. Charact. Eng., 2012, 11(04), 385-416.
[http://dx.doi.org/10.4236/jmmce.2012.114028]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy