Generic placeholder image

Recent Patents on Biotechnology

Editor-in-Chief

ISSN (Print): 1872-2083
ISSN (Online): 2212-4012

Research Article

Proteome Exploration of Human Coronaviruses for Identifying Novel Vaccine Candidate: A Hierarchical Subtractive Genomics and Reverse Vaccinology Approach

Author(s): Hesam Dorosti, Mahboubeh Zarei and Navid Nezafat*

Volume 17, Issue 2, 2023

Published on: 04 October, 2022

Page: [163 - 175] Pages: 13

DOI: 10.2174/1872208316666220504234800

Price: $65

Abstract

Background: The SARS-CoV-2 has been responsible for infecting more than 613,615,658 people in 222 countries by September 11, 2022, of which 6,516,076 have died. COVID-19 was introduced by World Health Organization as a global concern and a pandemic disease due to its prevalence.

Objective: Developing preventive or therapeutic medications against 2019-nCoV is an urgent need, and has been deemed as a high priority among scientific societies; in this regard, the production of effective vaccines is one of the most significant and high-priority requirements. Because of costly and time-consuming process of vaccine design, different immunoinformatics methods have been developed.

Methods: At the beginning of vaccine design, the proteome study is essential. In this investigation, the whole human coronavirus proteome was evaluated using the proteome subtraction strategy. Out of 5945 human coronavirus proteins, five new antigenic proteins were selected by analyzing the hierarchical proteome subtraction, and then their various physicochemical and immunological properties were investigated bioinformatically.

Results: All five protein sequences are antigenic and non-allergenic proteins; moreover, the spike protein group, including spike glycoprotein (E2) (Peplomer protein), spike fragment and spike glycoprotein fragment, showed acceptable stability, which can be used to design new vaccines against human coronaviruses.

Conclusion: The selected peptides and the other proteins introduced in this study (HE, orf7a, SARS_X4 domain-containing protein and protein 8) can be employed as a suitable candidate for developing a novel prophylactic or therapeutic vaccine against human coronaviruses.

Keywords: Human coronavirus, proteome study, vaccine design, immunoinformatics, reverse vaccinology, non-allergenic proteins.

Graphical Abstract

[1]
Sokhi J, Khera J, El-Hibri F, et al. Non-pulmonary manifestations of coronavirus disease 2019 (COVID-19): Case report. J Emerg Crit Care Med 2020; 5.
[2]
Ge XY, Li JL, Yang XL, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 2013; 503(7477): 535-8.
[http://dx.doi.org/10.1038/nature12711] [PMID: 24172901]
[3]
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[4]
Ye ZW, Yuan S, Yuen KS, Fung SY, Chan CP, Jin DY. Zoonotic origins of human coronaviruses. Int J Biol Sci 2020; 16(10): 1686-97.
[http://dx.doi.org/10.7150/ijbs.45472] [PMID: 32226286]
[5]
Neuman BW, Joseph JS, Saikatendu KS, et al. Proteomics analysis unravels the functional repertoire of coronavirus nonstructural protein 3. J Virol 2008; 82(11): 5279-94.
[http://dx.doi.org/10.1128/JVI.02631-07] [PMID: 18367524]
[6]
Rossen JW, de Beer R, Godeke GJ, et al. The viral spike protein is not involved in the polarized sorting of coronaviruses in epithelial cells. J Virol 1998; 72(1): 497-503.
[http://dx.doi.org/10.1128/JVI.72.1.497-503.1998] [PMID: 9420251]
[7]
Walls AC, Tortorici MA, Frenz B, et al. Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy. Nat Struct Mol Biol 2016; 23(10): 899-905.
[http://dx.doi.org/10.1038/nsmb.3293] [PMID: 27617430]
[8]
Xiong X, Tortorici MA, Snijder J, et al. Glycan shield and fusion activation of a deltacoronavirus spike glycoprotein fine-tuned for enteric infections. J Virol 2018; 92(4): e01628-17.
[http://dx.doi.org/10.1128/JVI.01628-17] [PMID: 29093093]
[9]
Klenk HD, Garten W. Host cell proteases controlling virus pathogenicity. Trends Microbiol 1994; 2(2): 39-43.
[http://dx.doi.org/10.1016/0966-842X(94)90123-6] [PMID: 8162439]
[10]
Shang J, Ye G, Shi K, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature 2020; 581(7807): 221-4.
[http://dx.doi.org/10.1038/s41586-020-2179-y] [PMID: 32225175]
[11]
Neuman BW, Adair BD, Yoshioka C, et al. Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy. J Virol 2006; 80(16): 7918-28.
[http://dx.doi.org/10.1128/JVI.00645-06] [PMID: 16873249]
[12]
Godet M, L’Haridon R, Vautherot JF, Laude H. TGEV corona virus ORF4 encodes a membrane protein that is incorporated into virions. Virology 1992; 188(2): 666-75.
[http://dx.doi.org/10.1016/0042-6822(92)90521-P] [PMID: 1316677]
[13]
Huang C, Narayanan K, Ito N, Peters CJ, Makino S. Severe acute respiratory syndrome coronavirus 3a protein is released in membranous structures from 3a protein-expressing cells and infected cells. J Virol 2006; 80(1): 210-7.
[http://dx.doi.org/10.1128/JVI.80.1.210-217.2006] [PMID: 16352545]
[14]
Huang C, Peters CJ, Makino S. Severe acute respiratory syndrome coronavirus accessory protein 6 is a virion-associated protein and is released from 6 protein-expressing cells. J Virol 2007; 81(10): 5423-6.
[http://dx.doi.org/10.1128/JVI.02307-06] [PMID: 17344286]
[15]
Huang C, Ito N, Tseng CT, Makino S. Severe acute respiratory syndrome coronavirus 7a accessory protein is a viral structural protein. J Virol 2006; 80(15): 7287-94.
[http://dx.doi.org/10.1128/JVI.00414-06] [PMID: 16840309]
[16]
Schaecher SR, Mackenzie JM, Pekosz A. The ORF7b protein of severe acute respiratory syndrome coronavirus (SARS-CoV) is expressed in virus-infected cells and incorporated into SARS-CoV particles. J Virol 2007; 81(2): 718-31.
[http://dx.doi.org/10.1128/JVI.01691-06] [PMID: 17079322]
[17]
Mustafa AS, Shaban FA. ProPred analysis and experimental evaluation of promiscuous T-cell epitopes of three major secreted antigens of Mycobacterium tuberculosis. Tuberculosis 2006; 86(2): 115-24.
[http://dx.doi.org/10.1016/j.tube.2005.05.001] [PMID: 16039905]
[18]
Nezafat N, Eslami M, Negahdaripour M, Rahbar MR, Ghasemi Y. Designing an efficient multi-epitope oral vaccine against Helicobacter pylori using immunoinformatics and structural vaccinology approaches. Mol Biosyst 2017; 13(4): 699-713.
[http://dx.doi.org/10.1039/C6MB00772D] [PMID: 28194462]
[19]
Vakili B, Eslami M, Hatam GR, et al. Immunoinformatics- aided design of a potential multi-epitope peptide vaccine against Leishmania infantum. Int J Biol Macromol 2018; 120(Pt A): 1127-39.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.125] [PMID: 30172806]
[20]
Hajissa K, Zakaria R, Suppian R, Mohamed Z. Epitope-based vaccine as a universal vaccination strategy against Toxoplasma gondii infection: A mini-review. J Adv Vet Anim Res 2019; 6(2): 174-82.
[http://dx.doi.org/10.5455/javar.2019.f329] [PMID: 31453188]
[21]
Dorosti H, Eslami M, Negahdaripour M, et al. Vaccinomics approach for developing multi-epitope peptide pneumococcal vaccine. 2019; 37: 3524-35.
[http://dx.doi.org/10.1080/07391102.2018.1519460]
[22]
Dorosti H, Eslami M, Nezafat N, Fadaei F, Ghasemi Y. Designing self-assembled peptide nanovaccine against Streptococcus pneumoniae: An in silico strategy. Mol Cell Probes 2019; 48: 101446.
[http://dx.doi.org/10.1016/j.mcp.2019.101446] [PMID: 31520715]
[23]
Vakili B, Nezafat N, Hatam GR, Zare B, Erfani N, Ghasemi Y. Proteome-scale identification of Leishmania infantum for novel vaccine candidates: A hierarchical subtractive approach. Comput Biol Chem 2018; 72: 16-25.
[http://dx.doi.org/10.1016/j.compbiolchem.2017.12.008] [PMID: 29291591]
[24]
Yu CS, Cheng CW, Su WC, et al. CELLO2GO: A web server for protein subcellular localization prediction with functional gene ontology annotation. PLoS One 2014; 9(6): e99368.
[http://dx.doi.org/10.1371/journal.pone.0099368] [PMID: 24911789]
[25]
Armenteros JA, Tsirigos KD, Sønderby CK, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 2019; 37(4): 420-3.
[http://dx.doi.org/10.1038/s41587-019-0036-z] [PMID: 30778233]
[26]
Nielsen H, Tsirigos KD, Brunak S, von Heijne G. A brief history of protein sorting prediction. Protein J 2019; 38(3): 200-16.
[http://dx.doi.org/10.1007/s10930-019-09838-3] [PMID: 31119599]
[27]
Doytchinova IA, Flower DR. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics 2007; 8(1): 1-7.
[http://dx.doi.org/10.1186/1471-2105-8-4] [PMID: 17207271]
[28]
Magnan CN, Zeller M, Kayala MA, et al. High-throughput prediction of protein antigenicity using protein microarray data. Bioinformatics 2010; 26(23): 2936-43.
[http://dx.doi.org/10.1093/bioinformatics/btq551] [PMID: 20934990]
[29]
Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J Mol Biol 2001; 305(3): 567-80.
[http://dx.doi.org/10.1006/jmbi.2000.4315] [PMID: 11152613]
[30]
Dimitrov I, Bangov I, Flower DR, Doytchinova I. AllerTOP v.2--a server for in silico prediction of allergens. J Mol Model 2014; 20(6): 2278.
[http://dx.doi.org/10.1007/s00894-014-2278-5] [PMID: 24878803]
[31]
Saha S, Raghava GPS. AlgPred: Prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Res 2006; 34 (Suppl_2): W202-9.
[http://dx.doi.org/10.1093/nar/gkl343] [PMID: 16844994]
[32]
Dimitrov I, Naneva L, Doytchinova I, Bangov I, Allergen FP. Allergenicity prediction by descriptor fingerprints. Bioinformatics 2014; 30(6): 846-51.
[http://dx.doi.org/10.1093/bioinformatics/btt619] [PMID: 24167156]
[33]
Wilkins MR, Gasteiger E, Bairoch A, et al. Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 1999; 112: 531-52.
[http://dx.doi.org/10.1385/1-59259-584-7:531] [PMID: 10027275]
[34]
Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020; 579(7798): 265-9.
[http://dx.doi.org/10.1038/s41586-020-2008-3] [PMID: 32015508]
[35]
Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020; 395(10224): 565-74.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[36]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-80.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[37]
Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 2020; 367(6485): 1444-8.
[http://dx.doi.org/10.1126/science.abb2762] [PMID: 32132184]
[38]
Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020; 367(6483): 1260-3.
[http://dx.doi.org/10.1126/science.abb2507] [PMID: 32075877]
[39]
Tai W, He L, Zhang X, et al. Characterization of the Receptor-Binding Domain (RBD) of 2019 novel coronavirus: Implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol Immunol 2020; 17(6): 613-20.
[http://dx.doi.org/10.1038/s41423-020-0400-4] [PMID: 32203189]
[40]
Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 2020; 5(4): 562-9.
[41]
Du L, He Y, Zhou Y, Liu S, Zheng BJ, Jiang S. The spike protein of SARS-CoV-a target for vaccine and therapeutic development. Nat Rev Microbiol 2009; 7(3): 226-36.
[http://dx.doi.org/10.1038/nrmicro2090] [PMID: 19198616]
[42]
Schoeman D, Fielding BC. Coronavirus envelope protein: Current knowledge. Virol J 2019; 16(1): 69.
[http://dx.doi.org/10.1186/s12985-019-1182-0] [PMID: 31133031]
[43]
Nal B, Chan C, Kien F, et al. Differential maturation and subcellular localization of severe acute respiratory syndrome coronavirus surface proteins S, M and E. J Gen Virol 2005; 86(Pt 5): 1423-34.
[http://dx.doi.org/10.1099/vir.0.80671-0] [PMID: 15831954]
[44]
Siu YL, Teoh KT, Lo J, et al. The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles. J Virol 2008; 82(22): 11318-30.
[http://dx.doi.org/10.1128/JVI.01052-08] [PMID: 18753196]
[45]
Chang CK, Sue SC, Yu TH, et al. Modular organization of SARS coronavirus nucleocapsid protein. J Biomed Sci 2006; 13(1): 59-72.
[http://dx.doi.org/10.1007/s11373-005-9035-9] [PMID: 16228284]
[46]
Hurst KR, Koetzner CA, Masters PS. Identification of in vivo-interacting domains of the murine coronavirus nucleocapsid protein. J Virol 2009; 83(14): 7221-34.
[http://dx.doi.org/10.1128/JVI.00440-09] [PMID: 19420077]
[47]
Klausegger A, Strobl B, Regl G, Kaser A, Luytjes W, Vlasak R. Identification of a coronavirus hemagglutinin-esterase with a substrate specificity different from those of influenza C virus and bovine coronavirus. J Virol 1999; 73(5): 3737-43.
[http://dx.doi.org/10.1128/JVI.73.5.3737-3743.1999] [PMID: 10196267]
[48]
de Groot RJ. Structure, function and evolution of the hemagglutinin-esterase proteins of corona- and toroviruses. Glycoconj J 2006; 23(1-2): 59-72.
[http://dx.doi.org/10.1007/s10719-006-5438-8] [PMID: 16575523]
[49]
Lang Y, Li W, Li Z, et al. Coronavirus hemagglutinin-esterase and spike proteins co-evolve for functional balance and optimal virion avidity. In: Proceedings of the National Academy of Sciences 2020; 117(41): 25759-70.
[http://dx.doi.org/10.1101/2020.04.03.003699]
[50]
Pewe L, Zhou H, Netland J, et al. A severe acute respiratory syndrome-associated coronavirus-specific protein enhances virulence of an attenuated murine coronavirus. J Virol 2005; 79(17): 11335-42.
[http://dx.doi.org/10.1128/JVI.79.17.11335-11342.2005] [PMID: 16103185]
[51]
Pfefferle S, Krähling V, Ditt V, Grywna K, Mühlberger E, Drosten C. Reverse genetic characterization of the natural genomic deletion in SARS-Coronavirus strain Frankfurt-1 open reading frame 7b reveals an attenuating function of the 7b protein in-vitro and in-vivo. Virol J 2009; 6(1): 1-7.
[http://dx.doi.org/10.1186/1743-422X-6-131] [PMID: 19698190]
[52]
Khan MT, Mahmud A, Hasan M, et al. Proteome exploration of Legionella pneumophila for identifying novel therapeutics: A hierarchical subtractive genomics and reverse vaccinology approach. bioRxiv 2020.
[http://dx.doi.org/10.1101/2020.02.03.922864]
[53]
Tahir Ul Qamar M, Ahmad S, Fatima I, et al. Designing multi-epitope vaccine against Staphylococcus aureus by employing subtractive proteomics, reverse vaccinology and immuno-informatics approaches. Comput Biol Med 2021; 132: 104389.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104389] [PMID: 33866250]
[54]
Singh M, Mukherjee P, Narayanasamy K, et al. Proteome analysis of Plasmodium falciparum extracellular secretory antigens at asexual blood stages reveals a cohort of proteins with possible roles in immune modulation and signaling. Mol Cell Proteomics 2009; 8(9): 2102-18.
[http://dx.doi.org/10.1074/mcp.M900029-MCP200] [PMID: 19494339]
[55]
Monterrubio-López GP. Identification of novel potential vaccine candidates against tuberculosis based on reverse vaccinology. BioMed Res Int 2015. 2015
[http://dx.doi.org/10.1155/2015/483150]
[56]
Rana A, Rub A, Akhter Y. Proteome-scale identification of outer membrane proteins in Mycobacterium avium subspecies paratuberculosis using a structure based combined hierarchical approach. Mol Biosyst 2014; 10(9): 2329-37.
[http://dx.doi.org/10.1039/C4MB00234B] [PMID: 24950976]
[57]
Li W, Joshi MD, Singhania S, Ramsey KH, Murthy AK. Peptide vaccine: Progress and challenges. Vaccines 2014; 2(3): 515-36.
[http://dx.doi.org/10.3390/vaccines2030515] [PMID: 26344743]
[58]
Ravichandran S, Coyle EM, Klenow L, et al. Antibody signature induced by SARS-CoV-2 spike protein immunogens in rabbits. Sci Transl Med 2020; 12(550): eabc3539.
[http://dx.doi.org/10.1126/scitranslmed.abc3539] [PMID: 32513867]
[59]
Salvatori G, Luberto L, Maffei M, et al. SARS-CoV-2 Spike Protein: An optimal immunological target for vaccines. J Transl Med 2020; 18(1): 222.
[http://dx.doi.org/10.1186/s12967-020-02392-y] [PMID: 32493510]
[60]
Lin L, Ting S, Yufei H, Wendong L, Yubo F, Jing Z. Epitope-based peptide vaccines predicted against novel coronavirus disease caused by SARS-CoV-2. Virus Res 2020; 288: 198082.
[http://dx.doi.org/10.1016/j.virusres.2020.198082] [PMID: 32621841]
[61]
Robson B. COVID-19 coronavirus spike protein analysis for synthetic vaccines, a peptidomimetic antagonist, and therapeutic drugs, and analysis of a proposed achilles’ heel conserved region to minimize probability of escape mutations and drug resistance. Comput Biol Med 2020; 121: 103749-9.
[http://dx.doi.org/10.1016/j.compbiomed.2020.103749] [PMID: 32568687]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy