Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

Multi-Color States of High Contrast Nano Prussian Yellow Electrochromic Film

Author(s): Abeer Baioun* and Hassan Kellawi

Volume 15, Issue 2, 2023

Published on: 09 September, 2022

Page: [118 - 126] Pages: 9

DOI: 10.2174/1876402914666220504143652

Price: $65

Abstract

Aim: Construction of electrochromic device via Prussian yellow nanofilm on glass electrode.

Background: Energy conservation is one of the primary research topics nowadays. Electrochromic devices with low power consumption and short stable switching periods are well suited to energyefficient applications, e.g., smart windows, car mirrors, displays, and electronic papers.

Objective: Preparation of electrochromic Prussian yellow nanofilm on ITO glass by a simple chemical facile method and study of its electrochromic features.

Methods: Prussian yellow nanofilm (iron (III) hexacyanoferrate (III)), was prepared by immersing the substrate in a solution of ferric nitrate and Potassium hexacyanoferrate. Prussian yellow nanofilm is characterized by ultraviolet-visible (Uv-Vis) spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy. Prussian yellow nanofilm shows an intense yellow color when it is in a pristine state.

Results: Resultant Prussian yellow nanofilm underwent reversible redox reactions accompanied by color changes from Prussian yellow to Prussian green to further Prussian blue, then to Prussian white. The transmittance of Prussian yellow nanofilm varies from 21% for colored state at 450nm to 81 % (for fully bleached) at 0.9V. The contrast ratio and ratio of optical density to charge density were examined and the coloration efficiency was calculated to be 299.6 cm2C-1.

Conclusion: Prussian yellow can be very simply prepared and used as an efficient, fast switching electrochromic device with high color contrast.

Keywords: Electrochromic film, redox charge/discharge coloration, Prussian Yellow (PY), Prussian Blue (PB), Prussian White (PW), Cyclic Voltammetry (CV), Contrast Ratio (CR), Coloration Efficiency (CE).

Graphical Abstract

[1]
Bi, Z.; Li, X.; Chen, Y.; He, X.; Xu, X.; Gao, X. Large-scale multifunctional electrochromic-energy storage device based on tungsten trioxide monohydrate nanosheets and prussian white. ACS Appl. Mater. Interfaces, 2017, 9(35), 29872-29880.
[http://dx.doi.org/10.1021/acsami.7b08656] [PMID: 28809104]
[2]
Mortimer, R.J. Electrochromic materials. Chem. Soc. Rev., 1997, 26(3), 147.
[http://dx.doi.org/10.1039/cs9972600147]
[3]
Wang, J.Y.; Yu, C.M.; Hwang, S.C.; Ho, K.C.; Chen, L.C. Influence of coloring voltage on the optical performance and cycling stability of a polyaniline–indium hexacyanoferrate. Electrochromic system. Sol. Energy Mater. Sol. Cells, 2008, 92(2), 112-119.
[http://dx.doi.org/10.1016/j.solmat.2007.02.028]
[4]
Granqvist, C.G. Electrochromic tungsten oxide films: Review of progress 1993-1998. Sol. Energy Mater. Sol. Cells, 2001, 60(3), 201-262.
[http://dx.doi.org/10.1016/S0927-0248(99)00088-4]
[5]
Granqvist, C.G.; Avendano, E.; Azens, A. Electrochromic coatings and devices: Survey of some recent advances. Thin Solid Films, 2003, 442(1-2), 201-211.
[http://dx.doi.org/10.1016/S0040-6090(03)00983-0]
[6]
Deb, S.K. Optical and photoelectric properties and colour centers in thin films of tungsten oxide. Philos. Mag., 1973, 27(4), 801-822.
[http://dx.doi.org/10.1080/14786437308227562]
[7]
Granqvist, C.G. Electrochromic devices. J. Eur. Ceram. Soc., 2005, 25(12), 2907-2912.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2005.03.162]
[8]
Luz, R.C.; Moreira, A.B.; Damos, F.S.; Tanaka, A.A.; Kubota, L.T. Cobalt tetrasulphonated phthalocyanine immobilized on poly-L-lysine film onto glassy carbon electrode as amperometric sensor for cysteine. J. Pharm. Biomed. Anal., 2006, 42(2), 184-191.
[http://dx.doi.org/10.1016/j.jpba.2006.03.036] [PMID: 16730154]
[9]
Shahrokhian, S. Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode. Anal. Chem., 2001, 73(24), 5972-5978.
[http://dx.doi.org/10.1021/ac010541m] [PMID: 11791568]
[10]
Shahrokhian, S.; Karimi, M. Voltammetric studies of a cobalt(II)-4-Methylsalophen modified carbon-paste electrode and its application for the simultaneous determination of cysteine and ascorbic acid. Electrochim. Acta, 2004, 50(1), 77-84.
[http://dx.doi.org/10.1016/j.electacta.2004.07.015]
[11]
Wang, H.; Wang, W.S.; Zhang, H.S. Spectrofluorimetic determination of cysteine based on the fluorescence inhibition of Cd(II)-8-hydroxyquinoline-5-sulphonic acid complex by cysteine. Talanta, 2001, 53(5), 1015-1019.
[http://dx.doi.org/10.1016/S0039-9140(00)00595-6] [PMID: 18968192]
[12]
Monk, P.M.S.; Mortimer, R.J.; Rosseinsky, D.R. Electrochromim: Fundamentals and Applications. J. Am. Chem., 2008, p. 239.
[13]
Mortimer, R.J.; Dyer, A.L.; Reynolds, J.R. Electrochromic organic and polymeric materials for display applications. Displays, 2006, 27(1), 2-18.
[http://dx.doi.org/10.1016/j.displa.2005.03.003]
[14]
Baetens, R.; Jelle, B.P.; Gustavsen, A. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review; Solar Energ. Mater. Solar Cells, 2010, pp. 87-105.
[15]
Somani, P.R.; Radhakrishnan, S. Electrochromic materials and devices: Present and future. Mater. Chem. Phys., 2002, 77(1), 117-133.
[http://dx.doi.org/10.1016/S0254-0584(01)00575-2]
[16]
De Paoli, M.; Gazotti, W. Electrochemistry, polymers and optoelectronic devices: A combination with a future. J. Braz. Chem. Soc., 2002, 13(4), 410-424.
[http://dx.doi.org/10.1590/S0103-50532002000400003]
[17]
Shaw, J.; Seidler, P. Organic electronics. Introduction. IBM J. Res. Develop., 2001, 45(1), 3-9.
[http://dx.doi.org/10.1147/rd.451.0003]
[18]
Mitzi, D.; Chondroudis, B.; Kagan, C. Organic–inorganic electronics. IBM J. Res. Develop., 2001, 45(1), 29-45.
[http://dx.doi.org/10.1147/rd.451.0029]
[19]
Shirota, Y. Organic materials for electronic and optoelectronic devices. J. Mater. Chem., 2000, 10(1), 1-25.
[http://dx.doi.org/10.1039/a908130e]
[20]
Reese, C.; Roberts, M.; Ling, M-m. Bao, Z Organic thin film transistors. Mater. Today, 2004, 20-27.
[http://dx.doi.org/10.1016/S1369-7021(04)00398-0]
[21]
Braun, D. Semiconducting polymer LEDs. Mater. Today, 2002, 32-39.
[http://dx.doi.org/10.1016/S1369-7021(02)00637-5]
[22]
Samuel, I.; Turnbull, G. Polymer lasers: Recent advances. Mater. Today, 2004, 28-35.
[http://dx.doi.org/10.1016/S1369-7021(04)00399-2]
[23]
Monk, P.M.S.; Mortimer, R.J.; Rosseisnsky, D.R. Electrochromism and electrochromic devices; Cambridge University Press, 2007.
[http://dx.doi.org/10.1017/CBO9780511550959]
[24]
Aegerter, M.A. Sol–Gel Chromogenic Materials and Devices in Structure and Bonding; Springer: Berlin, 1996, Vol. 85, pp. 149-194.
[25]
Gazotti, A.; Miceli, G.C.; Geri, A.; Berlin, A.; De Paoli, M.A. An all-plastic and flexible electrochromic device based on elastomeric blends. Adv. Mater., 1998, 10(18), 1522-1525.
[http://dx.doi.org/10.1002/(SICI)1521-4095(199812)10:18<1522:AID-ADMA1522>3.0.CO;2-U]
[26]
De Paoli, M.A.; Miceli, G.C.; Girotto, E.M.; Gazotti, W.A. All polymeric solid state electrochromic devices. Electrochim. Acta, 1999, 44(18), 2983-2991.
[http://dx.doi.org/10.1016/S0013-4686(99)00013-4]
[27]
Agrisuelas, J.; Bueno, P.R.; Ferreira, F.F.; Gabrielli, C.; Garcia-Jareno, J.J.; Gimenez-Romero, D.; Perrot, H.; Vicente, F. Electronic perspective on the electrochemistry of Prussian blue films. J. Electrochem. Soc., 2009, 156(4), 74-80.
[http://dx.doi.org/10.1149/1.3080711]
[28]
Li, Z.; Tang, Y.; Zhou, K.; Wang, H.; Yan, H. Improving electrochromic cycle life of Prussian blue by acid addition to the electrolyte. Materials (Basel), 2018, 12(1), 28.
[http://dx.doi.org/10.3390/ma12010028] [PMID: 30577668]
[29]
Cheng, K-C.; Chen, F-R.; Kai, J.J. Electrochromic property of nano composite Prussian blue based thin film. Electrochim. Acta, 2007, 52(9), 3330-3335.
[30]
Velevskaa, J.; Pecovska-Gjorgjevichb, M.; Stojanovc, N.M. Najdoskid electrochromic properties of prussian blue thin films prepared by chemical deposition method. Int. J. Sci. Basic Appl. Res., 2016, 25(3), 380-392.
[31]
Assis, L.M.N.; Leones, R.; Kanicki, J.; Pawlicka, A.; Silva, M. Prussian blue for electrochromic devices. J. Electroanal. Chem., 2016, 6, 33-39.
[http://dx.doi.org/10.1016/j.jelechem.2016.05.007]
[32]
Baioun, A.; Kellawi, H.; Falah, A.; Alghoraibi, I. A novel non electrically prepared nano prussian yellow film modifi ed electrode: As a sensor for ascorbic acid. Curr. Nanosci., 2017, 13(5), 201.
[http://dx.doi.org/10.2174/1573413713666170323162207]
[33]
Huang, Y-H. An Electrochromic Device Containing Prussian Blue and Indium Hexacyanoferrate: Its Performance and Optimization;; Master Thesis, Department of Chemical Engineering, National Taiwan University, 2002.
[34]
Mortimer, R.J.; Rosseinsky, D.R. Iron hexacyanoferrate films: Spectroelectrochemical distinction and electrodeposition sequence of ‘soluble’ (K+-containing) and ‘insoluble’ (K+-free) Prussian Blue, and composition changes in polyelectrochromic switching. J. Chem. Soc., Dalton Trans., 1984, (9), 2059.
[http://dx.doi.org/10.1039/dt9840002059]
[35]
Mortimer, R.J.; Rosseinsky, D.R. Electrochemical polychromicity in iron hexacyanoferrate films, and a new film form of ferric ferricyanide. J. Electroanal. Chem. Interfacial Electrochem., 1983, 151(1-2), 133-147.
[http://dx.doi.org/10.1016/S0022-0728(83)80429-X]
[36]
Goncalves, R.M.C.; Kellawi, H.; Rosseinsky, D.R. Electron-transfer processes and electrodeposition involving the iron hexacyanoferrates studied voltammetrically. J. Chem. Soc., Dalton Trans., 1983, (5), 991.
[http://dx.doi.org/10.1039/dt9830000991]
[37]
Tung, T-S.; Ho, K-C. Shih Tunga, Tsai; Kuo-Chuan, Hoa,b Cycling and at-rest stabilities of a complementary electrochromic device containing poly(3,4- ethylenedioxythiophene) and Prussian blue. Sol. Energy Mater. Sol. Cells, 2006, 90(4), 521-537.
[http://dx.doi.org/10.1016/j.solmat.2005.02.018]
[38]
Garcia-Jarego, J.J.; Navarro, J.J.; Roig, A.F.; Schollt, H.; Vicente, F. Impedance analysis of prussian blue films deposited on It0 electrodes. Elecfrochimm Acra., 1995, 40(9), 113-119.
[39]
Deepa, M. Arvind, Awadhia.; Shweta, Bhandari. Agrawal Electrochromic performance of a poly(3,4 ethylenedioxyth-iophene)-Prussian blue device encompassing a free standing proton electrolyte film. Electrochim. Acta, 2008, 53, 7266-7275.
[http://dx.doi.org/10.1016/j.electacta.2008.04.020]
[40]
Camurlu, P.; Cirpan, A.; Toppare, L. Dual type complementary colored polymer electrochromic devices utilized by 3-ester substituted thiophenes. J. Electroanal. Chem. (Lausanne), 2004, 572(1), 61-65.
[http://dx.doi.org/10.1016/j.jelechem.2004.06.002]
[41]
Gospodinova, N.; Terlemezyan, L. Conducting polymers prepared by oxidative polymerization: polyaniline. Prog. Polym. Sci., 1998, 23(8), 1443-1484.
[http://dx.doi.org/10.1016/S0079-6700(98)00008-2]
[42]
Itaya, K.; Ataka, T.; Toshima, S. Spectroelectrochemistry and electrochem icalpreparation method of Prussian Blue modified electrodes. J. Am. Chem. Soc., 1982, 104(18), 4767-4772.
[http://dx.doi.org/10.1021/ja00382a006]
[43]
Plesu, N.; Kellenberger, A.; Vaszilcsin, N.; Manoviciu, I. Electrochemical polymerization of aniline on skeleton nickel electrodes. Mol. Cryst. Liq. Cryst. (Phila. Pa.), 2004, 416(1), 127-135.
[http://dx.doi.org/10.1080/15421400490478605]
[44]
Chang, C.F.; Chen, W.C.; Wen, T.C.; Gopalan, A. Electrochemical and spectroelectrochemical studies on copolymerization of diphenylamine with 2,5-diaminobenzenesulfonic acid. J. Electrochem. Soc., 2002, 149(8), E298.
[http://dx.doi.org/10.1149/1.1491984]
[45]
Jiao, S.Q.; Zhou, H.H.; Chen, J.H.; Lou, S.L.; Kuang, Y.F. Influence of the preparation conditions on the morphology of polyaniline electrodeposited by the pulse galvanostatic method. J. Appl. Polym. Sci., 2004, 94(4), 1389-1394.
[http://dx.doi.org/10.1002/app.20983]
[46]
Kang, J.H.; Oh, Y.J.; Peak, S.M.; Hwang, S.J.; Choy, J.H. Electrochromic device of PEDOT–PANI hybrid system for fast response and high optical contrast. Sol. Energy Mater. Sol. Cells, 2009, 93(12), 2040-2044.
[http://dx.doi.org/10.1016/j.solmat.2009.08.007]
[47]
Zhou, H.; Wen, J.; Ning, X.; Fu, C.; Chen, J.; Kuang, Y. Electrosynthesis of polyaniline films on titanium by pulse potentiostatic method. Synth. Met., 2007, 157(2-3), 98-103.
[http://dx.doi.org/10.1016/j.synthmet.2006.12.013]
[48]
Xiao, Y.; Cui, X.; Martin, D.C. Electrochemical polymerization and properties of PEDOT/S-EDOT on neural microelectrode arrays. J. Electroanal. Chem. (Lausanne), 2004, 573(1), 43-48.
[http://dx.doi.org/10.1016/j.jelechem.2004.06.024]
[49]
Assisa, L.M.N.; Poneza, L.; Januszkob, A.; Grudzinskib, K.; Pawlickaa, A. A green-yellow reflective electrochromic. Electrochim. Acta, 2013, 111, 299-304.
[http://dx.doi.org/10.1016/j.electacta.2013.07.203]
[50]
Wang, J.M.; Sun, X.W.; Jiao, Z. Application of nanostructures in electrochromic materials and devices: Recent progress. Materials (Basel), 2010, 3(12), 5029-5053.
[http://dx.doi.org/10.3390/ma3125029] [PMID: 28883368]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy