Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Exploring the Interactions Between Algae and Bacteria

Author(s): Bahareh Nowruzi*, Md. Asaduzzaman Shishir, Samaneh J. Porzani and Umme Tamanna Ferdous

Volume 22, Issue 20, 2022

Published on: 13 July, 2022

Page: [2596 - 2607] Pages: 12

DOI: 10.2174/1389557522666220504141047

Price: $65

Abstract

Humans have used algae for hundreds of years to make various products viz. agar, fertilizer, food, and pigments. Algae are also used in bioremediation to clean up polluted water and as essential laboratory tools in genomics, proteomics, and other research applications such as environmental warnings. Several special features of algae, including the oxygenic photosynthesis, higher yield in biomass, growth on the non-arable lands, their survival in a wide range of water supplies (contaminated or filtered waters), the production of necessary byproducts and biofuels, the enhancement of soil productivity, and the greenhouse gas emissions, etc. altogether rendered them as vital bio-resources in the sustainable development. Algae and bacteria have been assumed to coexist from the early stages of the development of the earth, and a wide variety of interactions were observed between them which have influenced the ecosystems ranging from the oceans to the lichens. Research has shown that bacteria and algae interact synergistically, especially roseobacter- algae interactions being the most common. These interactions are common to all ecosystems and characterize their primary efficiency. The commercialization of algae for industrial purposes, an important field, is also influenced by this interaction which frequently results in bacterial infections among the consumers. However, the recent findings have revealed that the bacteria improve algal growth and support flocculation which are very crucial in algal biotechnology. Some of the most exciting advancements in the area of algal biotic interactions and potential difficulties were reviewed in this article. Information gleaned in this study would provide a firm foundation for launching more contemporaneous research efforts in understanding and utilizing the algal species in biotechnology industries and medical sectors.

Keywords: Algal-bacteria, algal biotic interactions, algal classification, parasitism, mutualism, interaction.

Graphical Abstract

[1]
Cavalier-Smith, T. Higher classification and phylogeny of Euglenozoa. Eur. J. Protistol., 2016, 56, 250-276.
[http://dx.doi.org/10.1016/j.ejop.2016.09.003] [PMID: 27889663]
[2]
Adl, S.M.; Simpson, A.G.; Farmer, M.A.; Andersen, R.A.; Anderson, O.R.; Barta, J.R.; Bowser, S.S.; Brugerolle, G.; Fensome, R.A.; Frede-ricq, S.; James, T.Y.; Karpov, S.; Kugrens, P.; Krug, J.; Lane, C.E.; Lewis, L.A.; Lodge, J.; Lynn, D.H.; Mann, D.G.; McCourt, R.M.; Men-doza, L.; Moestrup, O.; Mozley-Standridge, S.E.; Nerad, T.A.; Shearer, C.A.; Smirnov, A.V.; Spiegel, F.W.; Taylor, M.F. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J. Eukaryot. Microbiol., 2005, 52(5), 399-451.
[http://dx.doi.org/10.1111/j.1550-7408.2005.00053.x] [PMID: 16248873]
[3]
Guiry, M.; Guiry, G. World-wide electronic publication, National University of Ireland. Galway AlgaeBase, 2017. Available from: https://www.algaebase.org (accessed on 6 June 2020).
[4]
Menaa, F.; Wijesinghe, P.A.U.I.; Thiripuranathar, G.; Uzair, B.; Iqbal, H.; Khan, B.A.; Menaa, B. Ecological and industrial implications of dynamic seaweed-associated microbiota interactions. Mar. Drugs, 2020, 18(12), 641.
[http://dx.doi.org/10.3390/md18120641] [PMID: 33327517]
[5]
Price, D.C.; Chan, C.X.; Yoon, H.S.; Yang, E.C.; Qiu, H.; Weber, A.P.; Schwacke, R.; Gross, J.; Blouin, N.A.; Lane, C.; Reyes-Prieto, A.; Durnford, D.G.; Neilson, J.A.; Lang, B.F.; Burger, G.; Steiner, J.M.; Löffelhardt, W.; Meuser, J.E.; Posewitz, M.C.; Ball, S.; Arias, M.C.; Henrissat, B.; Coutinho, P.M.; Rensing, S.A.; Symeonidi, A.; Doddapaneni, H.; Green, B.R.; Rajah, V.D.; Boore, J.; Bhattacharya, D. Cy-anophora paradoxa genome elucidates origin of photosynthesis in algae and plants. Science, 2012, 335(6070), 843-847.
[http://dx.doi.org/10.1126/science.1213561] [PMID: 22344442]
[6]
Cenci, U.; Bhattacharya, D.; Weber, A.P.M.; Colleoni, C.; Subtil, A.; Ball, S.G. Biotic host-pathogen interactions as major drivers of plastid endosymbiosis. Trends Plant Sci., 2017, 22(4), 316-328.
[http://dx.doi.org/10.1016/j.tplants.2016.12.007] [PMID: 28089380]
[7]
Worden, A.Z.; Follows, M.J.; Giovannoni, S.J.; Wilken, S.; Zimmerman, A.E.; Keeling, P. J. Environmental Science. Rethinking the marine carbon cycle: Factoring in the multifarious lifestyles of microbes. Science, 2015, 347(6223), 1257594.
[http://dx.doi.org/10.1126/science.1257594] [PMID: 25678667]
[8]
Brodie, J.; Ball, S.G.; Bouget, F.Y.; Chan, C.X.; De Clerck, O.; Cock, J.M.; Gachon, C.; Grossman, A.R.; Mock, T.; Raven, J.A.; Saha, M.; Smith, A.G.; Vardi, A.; Yoon, H.S.; Bhattacharya, D. Biotic interactions as drivers of algal origin and evolution. New Phytol., 2017, 216(3), 670-681.
[http://dx.doi.org/10.1111/nph.14760] [PMID: 28857164]
[9]
Nowruzi, B.; Porzani, S.J. Toxic compounds produced by cyanobacteria belonging to several species of the order Nostocales: A review. J. Appl. Toxicol., 2020, 41(4), 510-548.
[http://dx.doi.org/10.1002/jat.4088] [PMID: 33289164]
[10]
Eghtedari, M.; Porzani, S.J.; Nowruzi, B. Anticancer potential of natural peptides from terrestrial and marine environments: A review. Phytochem. Lett., 2021.
[http://dx.doi.org/10.1016/j.phytol.2021.02.008]
[11]
Gómez, M.; Barreiro, F.; López, J.; Lastra, M. Effect of upper beach macrofauna on nutrient cycling of sandy beaches: Metabolic rates during wrack decay. Mar. Biol., 2018, 165(8), 1-12.
[http://dx.doi.org/10.1007/s00227-018-3392-1]
[12]
Bell, W.; Mitchell, R. Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol. Bull., 1972, 143(2), 265-277.
[http://dx.doi.org/10.2307/1540052]
[13]
Wahl, M.; Goecke, F.; Labes, A.; Dobretsov, S.; Weinberger, F. The second skin: Ecological role of epibiotic biofilms on marine orga-nisms. Front. Microbiol., 2012, 3, 292.
[http://dx.doi.org/10.3389/fmicb.2012.00292] [PMID: 22936927]
[14]
Korpinen, S.; Honkanen, T.; Vesakoski, O.; Hemmi, A.; Koivikko, R.; Loponen, J.; Jormalainen, V. Macroalgal communities face the challenge of changing biotic interactions: Review with focus on the Baltic Sea. Ambio, 2007, 36(2-3), 203-211.
[http://dx.doi.org/10.1579/0044-7447(2007)36[203:MCFTCO]2.0.CO;2] [PMID: 17520935]
[15]
Yao, S.; Lyu, S.; An, Y.; Lu, J.; Gjermansen, C.; Schramm, A. Microalgae-bacteria symbiosis in microalgal growth and biofuel production: A review. J. Appl. Microbiol., 2019, 126(2), 359-368.
[http://dx.doi.org/10.1111/jam.14095] [PMID: 30168644]
[16]
Helliwell, K.E.; Collins, S.; Kazamia, E.; Purton, S.; Wheeler, G.L.; Smith, A.G. Fundamental shift in vitamin B12 eco-physiology of a model alga demonstrated by experimental evolution. ISME J., 2015, 9(6), 1446-1455.
[http://dx.doi.org/10.1038/ismej.2014.230] [PMID: 25526368]
[17]
Croft, M.T.; Lawrence, A.D.; Raux-Deery, E.; Warren, M.J.; Smith, A.G. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature, 2005, 438(7064), 90-93.
[http://dx.doi.org/10.1038/nature04056] [PMID: 16267554]
[18]
Kazamia, E.; Czesnick, H.; Nguyen, T.T.V.; Croft, M.T.; Sherwood, E.; Sasso, S.; Hodson, S.J.; Warren, M.J.; Smith, A.G. Mutualistic interactions between vitamin B12 -dependent algae and heterotrophic bacteria exhibit regulation. Environ. Microbiol., 2012, 14(6), 1466-1476.
[http://dx.doi.org/10.1111/j.1462-2920.2012.02733.x] [PMID: 22463064]
[19]
Kim, B-H.; Ramanan, R.; Cho, D-H.; Oh, H-M.; Kim, H-S. Role of Rhizobium, a plant growth promoting bacterium, in enhancing algal biomass through mutualistic interaction. Biomass Bioenergy, 2014, 69, 95-105.
[http://dx.doi.org/10.1016/j.biombioe.2014.07.015]
[20]
Cho, D-H.; Ramanan, R.; Heo, J.; Lee, J.; Kim, B-H.; Oh, H-M.; Kim, H.S. Enhancing microalgal biomass productivity by engineering a microalgal-bacterial community. Bioresour. Technol., 2015, 175, 578-585.
[http://dx.doi.org/10.1016/j.biortech.2014.10.159] [PMID: 25459870]
[21]
Hollants, J.; Leroux, O.; Leliaert, F.; Decleyre, H.; De Clerck, O.; Willems, A. Who is in there? Exploration of endophytic bacteria within the siphonous green seaweed Bryopsis (Bryopsidales, Chlorophyta). PLoS One, 2011, 6(10), e26458.
[http://dx.doi.org/10.1371/journal.pone.0026458] [PMID: 22028882]
[22]
Mougi, A. The roles of amensalistic and commensalistic interactions in large ecological network stability. Sci. Rep., 2016, 6(1), 29929.
[http://dx.doi.org/10.1038/srep29929] [PMID: 27406267]
[23]
Bratbak, G.; Thingstad, T. Phytoplankton-bacteria interactions: An apparent paradox? Analysis of a model system with both competition and commensalism. Mar. Ecol. Prog. Ser., 1985, 25(1), 23-30.
[http://dx.doi.org/10.3354/meps025023]
[24]
Ramanan, R.; Kim, B-H.; Cho, D-H.; Oh, H-M.; Kim, H-S. Algae-bacteria interactions: Evolution, ecology and emerging applications. Biotechnol. Adv., 2016, 34(1), 14-29.
[http://dx.doi.org/10.1016/j.biotechadv.2015.12.003] [PMID: 26657897]
[25]
González-Olalla, J.M.; Medina-Sánchez, J.M.; Lozano, I.L.; Villar-Argaiz, M.; Carrillo, P. Climate-driven shifts in algal-bacterial interaction of high-mountain lakes in two years spanning a decade. Sci. Rep., 2018, 8(1), 10278.
[http://dx.doi.org/10.1038/s41598-018-28543-2] [PMID: 29980756]
[26]
Uzair, B.; Menaa, F.; Khan, B.A.; Mohammad, F.V.; Ahmad, V.U.; Djeribi, R.; Menaa, B. Isolation, purification, structural elucidation and antimicrobial activities of kocumarin, a novel antibiotic isolated from actinobacterium Kocuria marina CMG S2 associated with the brown seaweed Pelvetia canaliculata. Microbiol. Res., 2018, 206, 186-197.
[http://dx.doi.org/10.1016/j.micres.2017.10.007] [PMID: 29146256]
[27]
Hancock, L.; Goff, L.; Lane, C. Red algae lose key mitochondrial genes in response to becoming parasitic. Genome Biol. Evol., 2010, 2, 897-910.
[http://dx.doi.org/10.1093/gbe/evq075] [PMID: 21081313]
[28]
Wang, X.; Li, Z.; Su, J.; Tian, Y.; Ning, X.; Hong, H. Lysis of a red-tide causing alga, Alexandrium tamarense, caused by bacteria from its phycosphere. Biol. Control, 2010, 52(2), 123-130.
[http://dx.doi.org/10.1016/j.biocontrol.2009.10.004]
[29]
Arora, M.; Anil, A.C.; Delany, J.; Rajarajan, N.; Emami, K.; Mesbahi, E. Carbohydrate-degrading bacteria closely associated with Tetrasel-mis indica: Influence on algal growth. Aquat. Biol., 2012, 15(1), 61-71.
[http://dx.doi.org/10.3354/ab00402]
[30]
Zozaya-Valdés, E.; Roth-Schulze, A.J.; Thomas, T. Effects of temperature stress and aquarium conditions on the red macroalga Delisea pulchra and its associated microbial community. Front. Microbiol., 2016, 7, 161.
[http://dx.doi.org/10.3389/fmicb.2016.00161] [PMID: 26925036]
[31]
Serebryakova, A.; Aires, T.; Viard, F.; Serrão, E.A.; Engelen, A.H. Summer shifts of bacterial communities associated with the invasive brown seaweed Sargassum muticum are location and tissue dependent. PLoS One, 2018, 13(12), e0206734.
[http://dx.doi.org/10.1371/journal.pone.0206734] [PMID: 30517113]
[32]
Ihua, M.W.; Guihéneuf, F.; Mohammed, H.; Margassery, L.M.; Jackson, S.A.; Stengel, D.B. Microbial population changes in decaying Ascophyllum nodosum result in macroalgal-polysaccharide-degrading bacteria with potential applicability in enzyme-assisted extraction te-chnologies. Mar. Drugs, 2019, 17(4), 200.
[33]
Fuentes, J.L.; Garbayo, I.; Cuaresma, M.; Montero, Z.; González-Del-Valle, M.; Vílchez, C. Impact of microalgae-bacteria interactions on the production of algal biomass and associated compounds. Mar. Drugs, 2016, 14(5), 100.
[http://dx.doi.org/10.3390/md14050100] [PMID: 27213407]
[34]
Jönsson, M.; Allahgholi, L.; Sardari, R.R.R.; Hreggviðsson, G.O.; Nordberg Karlsson, E. Extraction and modification of macroalgal poly-saccharides for current and next-generation applications. Molecules, 2020, 25(4), 930.
[http://dx.doi.org/10.3390/molecules25040930] [PMID: 32093097]
[35]
Ruocco, N.; Costantini, S.; Guariniello, S.; Costantini, M. Polysaccharides from the marine environment with pharmacological, cosme-ceutical and nutraceutical potential. Molecules, 2016, 21(5), 551.
[http://dx.doi.org/10.3390/molecules21050551] [PMID: 27128892]
[36]
de Oliveira, L.S.; Gregoracci, G.B.; Silva, G.G.Z.; Salgado, L.T.; Filho, G.A.; Alves-Ferreira, M.; Pereira, R.C.; Thompson, F.L. Transcrip-tomic analysis of the red seaweed Laurencia dendroidea (Florideophyceae, Rhodophyta) and its microbiome. BMC Genomics, 2012, 13(1), 487.
[http://dx.doi.org/10.1186/1471-2164-13-487] [PMID: 22985125]
[37]
Rao, D.; Skovhus, T.; Tujula, N.; Holmström, C.; Dahllöf, I.; Webb, J.S.; Kjelleberg, S. Ability of Pseudoalteromonas tunicata to colonize natural biofilms and its effect on microbial community structure. FEMS Microbiol. Ecol., 2010, 73(3), 450-457.
[http://dx.doi.org/10.1111/j.1574-6941.2010.00917.x] [PMID: 20579099]
[38]
Egan, S.; Harder, T.; Burke, C.; Steinberg, P.; Kjelleberg, S.; Thomas, T. The seaweed holobiont: Understanding seaweed-bacteria interac-tions. FEMS Microbiol. Rev., 2013, 37(3), 462-476.
[http://dx.doi.org/10.1111/1574-6976.12011] [PMID: 23157386]
[39]
Parfrey, L.W.; Lahr, D.J.; Knoll, A.H.; Katz, L.A. Estimating the timing of early eukaryotic diversification with multigene molecular clo-cks. Proc. Natl. Acad. Sci. USA, 2011, 108(33), 13624-13629.
[http://dx.doi.org/10.1073/pnas.1110633108] [PMID: 21810989]
[40]
Yoon, H.S.; Hackett, J.D.; Ciniglia, C.; Pinto, G.; Bhattacharya, D. A molecular timeline for the origin of photosynthetic eukaryotes. Mol. Biol. Evol., 2004, 21(5), 809-818.
[http://dx.doi.org/10.1093/molbev/msh075] [PMID: 14963099]
[41]
Curtis, B.A.; Tanifuji, G.; Burki, F.; Gruber, A.; Irimia, M.; Maruyama, S.; Arias, M.C.; Ball, S.G.; Gile, G.H.; Hirakawa, Y.; Hopkins, J.F.; Kuo, A.; Rensing, S.A.; Schmutz, J.; Symeonidi, A.; Elias, M.; Eveleigh, R.J.; Herman, E.K.; Klute, M.J.; Nakayama, T.; Oborník, M. Re-yes-Prieto, A.; Armbrust, E.V.; Aves, S.J.; Beiko, R.G.; Coutinho, P.; Dacks, J.B.; Durnford, D.G.; Fast, N.M.; Green, B.R.; Grisdale, C.J.; Hempel, F.; Henrissat, B.; Höppner, M.P.; Ishida, K.; Kim, E.; Kořený, L.; Kroth, P.G.; Liu, Y.; Malik, S.B.; Maier, U.G.; McRose, D.; Mock, T.; Neilson, J.A.; Onodera, N.T.; Poole, A.M.; Pritham, E.J.; Richards, T.A.; Rocap, G.; Roy, S.W.; Sarai, C.; Schaack, S.; Shirato, S.; Slamovits, C.H.; Spencer, D.F.; Suzuki, S.; Worden, A.Z.; Zauner, S.; Barry, K.; Bell, C.; Bharti, A.K.; Crow, J.A.; Grimwood, J.; Kramer, R.; Lindquist, E.; Lucas, S.; Salamov, A.; McFadden, G.I.; Lane, C.E.; Keeling, P.J.; Gray, M.W.; Grigoriev, I.V.; Archibald, J.M. Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature, 2012, 492(7427), 59-65.
[http://dx.doi.org/10.1038/nature11681] [PMID: 23201678]
[42]
Li, S.; Nosenko, T.; Hackett, J.D.; Bhattacharya, D. Phylogenomic analysis identifies red algal genes of endosymbiotic origin in the chro-malveolates. Mol. Biol. Evol., 2006, 23(3), 663-674.
[http://dx.doi.org/10.1093/molbev/msj075] [PMID: 16357039]
[43]
Decker, H.; van Holde, K.E. Aerobic metabolism: Benefits from an oxygenated world. In: Decker, H.; van Holde, K.E. Oxygen and the Evolution of Life; Springer: Berlin, Heidelberg, 2011; pp. 61-77.
[44]
Keeling, P.J. Chromalveolates and the evolution of plastids by secondary endosymbiosis. J. Eukaryot. Microbiol., 2009, 56(1), 1-8.
[http://dx.doi.org/10.1111/j.1550-7408.2008.00371.x] [PMID: 19335769]
[45]
Prechtl, J.; Kneip, C.; Lockhart, P.; Wenderoth, K.; Maier, U-G. Intracellular spheroid bodies of Rhopalodia gibba have nitrogen-fixing apparatus of cyanobacterial origin. Mol. Biol. Evol., 2004, 21(8), 1477-1481.
[http://dx.doi.org/10.1093/molbev/msh086] [PMID: 14963089]
[46]
Thompson, A.W.; Foster, R.A.; Krupke, A.; Carter, B.J.; Musat, N.; Vaulot, D.; Kuypers, M.M.; Zehr, J.P. Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga. Science, 2012, 337(6101), 1546-1550.
[http://dx.doi.org/10.1126/science.1222700] [PMID: 22997339]
[47]
Vaishnava, S.; Striepen, B. The cell biology of secondary endosymbiosis-how parasites build, divide and segregate the apicoplast. Mol. Microbiol., 2006, 61(6), 1380-1387.
[http://dx.doi.org/10.1111/j.1365-2958.2006.05343.x] [PMID: 16968220]
[48]
Schönknecht, G.; Chen, W-H.; Ternes, C.M.; Barbier, G.G.; Shrestha, R.P.; Stanke, M.; Bräutigam, A.; Baker, B.J.; Banfield, J.F.; Garavito, R.M.; Carr, K.; Wilkerson, C.; Rensing, S.A.; Gagneul, D.; Dickenson, N.E.; Oesterhelt, C.; Lercher, M.J.; Weber, A.P. Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science, 2013, 339(6124), 1207-1210.
[http://dx.doi.org/10.1126/science.1231707] [PMID: 23471408]
[49]
Jafari Porzani, S.; Konur, O.; Nowruzi, B. Cyanobacterial natural products as sources for antiviral drug discovery against COVID-19. J. Biomol. Struct. Dyn., 2021, 1-17.
[http://dx.doi.org/10.1080/07391102.2021.1899050] [PMID: 33749496]
[50]
Abed, R.M. Interaction between cyanobacteria and aerobic heterotrophic bacteria in the degradation of hydrocarbons. Int. Biodeterior. Biodegradation, 2010, 64(1), 58-64.
[http://dx.doi.org/10.1016/j.ibiod.2009.10.008]
[51]
Stuart, R.K.; Mayali, X.; Lee, J.Z.; Craig Everroad, R.; Hwang, M.; Bebout, B.M.; Weber, P.K.; Pett-Ridge, J.; Thelen, M.P. Cyanobacterial reuse of extracellular organic carbon in microbial mats. ISME J., 2016, 10(5), 1240-1251.
[http://dx.doi.org/10.1038/ismej.2015.180] [PMID: 26495994]
[52]
Hays, S.G.; Yan, L.L.W.; Silver, P.A.; Ducat, D.C. Synthetic photosynthetic consortia define interactions leading to robustness and photo-production. J. Biol. Eng., 2017, 11(1), 4.
[http://dx.doi.org/10.1186/s13036-017-0048-5] [PMID: 28127397]
[53]
Osman, O.A.; Beier, S.; Grabherr, M.; Bertilsson, S. Interactions of freshwater cyanobacteria with bacterial antagonists. Appl. Environ. Microbiol., 2017, 83(7), e02634-e16.
[http://dx.doi.org/10.1128/AEM.02634-16] [PMID: 28115385]
[54]
Lezcano, M.Á.; Quesada, A.; El-Shehawy, R. Seasonal dynamics of microcystin-degrading bacteria and toxic cyanobacterial blooms: In-teraction and influence of abiotic factors. Harmful Algae, 2018, 71, 19-28.
[http://dx.doi.org/10.1016/j.hal.2017.11.002] [PMID: 29306393]
[55]
Kim, M.; Lee, J.; Yang, D.; Park, H.Y.; Park, W. Seasonal dynamics of the bacterial communities associated with cyanobacterial blooms in the Han River. Environ. Pollut., 2020, 266(Pt 2), 115198.
[http://dx.doi.org/10.1016/j.envpol.2020.115198] [PMID: 32668373]
[56]
Goecke, F.; Labes, A.; Wiese, J.; Imhoff, J.F. Chemical interactions between marine macroalgae and bacteria. Mar. Ecol. Prog. Ser., 2010, 409, 267-299.
[http://dx.doi.org/10.3354/meps08607]
[57]
Toncheva-Panova, T.G.; Ivanova, J.G. Interactions between the unicellular red alga Rhodella reticulata (Rhodophyta) and contaminated bacteria. J. Appl. Microbiol., 2002, 93(3), 497-504.
[http://dx.doi.org/10.1046/j.1365-2672.2002.01717.x] [PMID: 12174050]
[58]
Maggs, C.; Callow, M. Algal spores. In: Encyclopedia of Life Sciences; Nature Publishing Group: London, 2002.
[59]
Weinberger, F.; Beltran, J.; Correa, J.A.; Lion, U.; Pohnert, G.; Kumar, N. Spore release in Acrochaetium sp. (Rhodophyta) is bacterially controlled 1. J. Phycol., 2007, 43(2), 235-241.
[http://dx.doi.org/10.1111/j.1529-8817.2007.00329.x]
[60]
Tait, K.; Joint, I.; Daykin, M.; Milton, D.L.; Williams, P.; Cámara, M. Disruption of quorum sensing in seawater abolishes attraction of zoospores of the green alga Ulva to bacterial biofilms. Environ. Microbiol., 2005, 7(2), 229-240.
[http://dx.doi.org/10.1111/j.1462-2920.2004.00706.x] [PMID: 15658990]
[61]
Callow, M.E.; Callow, J.A.; Pickett‐Heaps, J.D.; Wetherbee, R. Primary adhesion of enteromorpha (chlorophyta, ulvales) propagules: Quantitative settlement studies and video microscopy 1. J. Phycol., 1997, 33(6), 938-947.
[http://dx.doi.org/10.1111/j.0022-3646.1997.00938.x]
[62]
Smith, A.M.; Callow, J.A. Biological Adhesives; Springer: Berlin, Heidelberg, 2006.
[http://dx.doi.org/10.1007/978-3-540-31049-5]
[63]
Joint, I.; Tait, K.; Callow, M.E.; Callow, J.A.; Milton, D.; Williams, P.; Cámara, M. Cell-to-cell communication across the prokaryote-eukaryote boundary. Science, 2002, 298(5596), 1207.
[http://dx.doi.org/10.1126/science.1077075] [PMID: 12424372]
[64]
Spoerner, M.; Wichard, T.; Bachhuber, T.; Stratmann, J.; Oertel, W. Growth and thallus morphogenesis of Ulva mutabilis (Chlorophyta) depends on a combination of two bacterial species excreting regulatory factors. J. Phycol., 2012, 48(6), 1433-1447.
[http://dx.doi.org/10.1111/j.1529-8817.2012.01231.x] [PMID: 27009994]
[65]
Guo, Z.; Tong, Y.W. The interactions between Chlorella vulgaris and algal symbiotic bacteria under photoautotrophic and photohetero-trophic conditions. J. Appl. Phycol., 2014, 26(3), 1483-1492.
[http://dx.doi.org/10.1007/s10811-013-0186-1]
[66]
Amin, S.A.; Hmelo, L.R.; van Tol, H.M.; Durham, B.P.; Carlson, L.T.; Heal, K.R.; Morales, R.L.; Berthiaume, C.T.; Parker, M.S.; Dju-naedi, B.; Ingalls, A.E.; Parsek, M.R.; Moran, M.A.; Armbrust, E.V. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature, 2015, 522(7554), 98-101.
[http://dx.doi.org/10.1038/nature14488] [PMID: 26017307]
[67]
Bates, S.S.; Gaudet, J.; Kaczmarska, I.; Ehrman, J.M. Interaction between bacteria and the domoic-acid-producing diatom Pseudo-nitzschia multiseries (Hasle) Hasle; can bacteria produce domoic acid autonomously? Harmful Algae, 2004, 3(1), 11-20.
[http://dx.doi.org/10.1016/j.hal.2003.08.001]
[68]
Su, J.Q.; Yang, X.R.; Zheng, T.L.; Tian, Y.; Jiao, N.Z.; Cai, L.Z. Isolation and characterization of a marine algicidal bacterium against the toxic dinoflagellate Alexandrium tamarense. Harmful Algae, 2007, 6(6), 799-810.
[http://dx.doi.org/10.1016/j.hal.2007.04.004]
[69]
Viktoria, B.; Grigorszky, I.; Vasas, G.; Borics, G.; Várbíró, G.; Nagy, S.A. The effects of Microcystis aeruginosa (cyanobacterium) on Cryptomonas ovata (Cryptophyta) in laboratory cultures: Why these organisms do not coexist in steady-state assemblages? Hydrobiologia, 2012, 691(1), 97-107.
[http://dx.doi.org/10.1007/s10750-012-1061-9]
[70]
Princiotta, S.D.; Hendricks, S.P.; White, D.S. Production of cyanotoxins by Microcystis aeruginosa mediates interactions with the mixo-trophic flagellate Cryptomonas. Toxins (Basel), 2019, 11(4), 223.
[http://dx.doi.org/10.3390/toxins11040223] [PMID: 30991631]
[71]
Kimura, B.; Ishida, Y.; Kadota, H. Effect of naturally collected bacteria on growth of Uroglena americana, a freshwater red tide Chrysop-hyceae. Nippon Suisan Gakkaishi, 1986, 52(4), 691-696.
[72]
Salvesen, I.; Reitan, K.I.; Skjermo, J.; Øie, G. Microbial environments in marine larviculture: Impacts of algal growth rates on the bacterial load in six microalgae. Aquacult. Int., 2000, 8(4), 275-287.
[http://dx.doi.org/10.1023/A:1009200926452]
[73]
Rico-Mora, R.; Voltolina, D.; Villaescusa-Celaya, J.A. Biological control of Vibrio alginolyticus in Skeletonema costatum (Bacillariophy-ceae) cultures. Aquacult. Eng., 1998, 19(1), 1-6.
[http://dx.doi.org/10.1016/S0144-8609(98)00035-1]
[74]
Gawne, B.; Wang, Y.; Hoagland, K.D.; Gretz, M.R. Role of bacteria and bacterial exopolymer in the attachment of Achnanthes longipes (Bacillariophyceae). Biofouling, 1998, 13(2), 137-156.
[http://dx.doi.org/10.1080/08927019809378377]
[75]
Noh, S.Y.; Jung, S.W.; Kim, B.H.; Katano, T.; Han, M-S. Algicidal activity of the bacterium, Pseudomonas fluorescens SK09, to mitigate Stephanodiscus hantzschii (Bacillariophyceae) blooms using field mesocosms. J. Freshwat. Ecol., 2017, 32(1), 477-488.
[http://dx.doi.org/10.1080/02705060.2017.1323682]
[76]
Kang, Y.H.; Kim, B.R.; Choi, H.J.; Seo, J.G.; Kim, B.H.; Han, M.S. Enhancement of algicidal activity by immobilization of algicidal bacte-ria antagonistic to Stephanodiscus hantzschii (Bacillariophyceae). J. Appl. Microbiol., 2007, 103(5), 1983-1994.
[http://dx.doi.org/10.1111/j.1365-2672.2007.03439.x] [PMID: 17953609]
[77]
Park, B.S.; Joo, J-H.; Baek, K-D.; Han, M-S. A mutualistic interaction between the bacterium Pseudomonas asplenii and the harmful algal species Chattonella marina (Raphidophyceae). Harmful Algae, 2016, 56, 29-36.
[http://dx.doi.org/10.1016/j.hal.2016.04.006] [PMID: 28073494]
[78]
Vieira, C.; Engelen, A.H.; Guentas, L.; Aires, T.; Houlbreque, F.; Gaubert, J.; Serrão, E.A.; De Clerck, O.; Payri, C.E. Species specificity of bacteria associated to the brown seaweeds Lobophora (Dictyotales, Phaeophyceae) and their potential for induction of rapid coral bleaching in Acropora muricata. Front. Microbiol., 2016, 7, 316.
[http://dx.doi.org/10.3389/fmicb.2016.00316] [PMID: 27047453]
[79]
Needham, D.M.; Fuhrman, J.A. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat. Microbiol., 2016, 1(4), 16005.
[http://dx.doi.org/10.1038/nmicrobiol.2016.5] [PMID: 27572439]
[80]
Shishir, M.A.; Mamun, M.A.; Mian, M.M.; Ferdous, U.T.; Akter, N.J.; Suravi, R.S.; Datta, S.; Kabir, M.E. Prevalence of Vibrio cholerae in coastal alternative supplies of drinking water and association with Bacillus-like spore formers. Front. Public Health, 2018, 6, 50.
[http://dx.doi.org/10.3389/fpubh.2018.00050] [PMID: 29536001]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy