Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

General Review Article

Total Synthesis, Mechanism of Action, and Antitumor Efficacy of Camptothecin and Some of its Analogues

Author(s): Valeriy A. Bacherikov*

Volume 22, Issue 20, 2022

Published on: 04 August, 2022

Page: [3438 - 3465] Pages: 28

DOI: 10.2174/1871520622666220501170405

Price: $65

Abstract

Over the past 55 years of research, various experimental methods have been developed for the total synthesis of the anticancer camptothecin, a potent antitumor antibiotic, and its numerous active derivatives. The discoveries made in synthetic pathways of the camptothecin heterocyclic core have contributed significantly to the theory and strategy of directed organic synthesis aimed at finding effective anticancer drugs. The synthetic, medicinal chemistry of camptothecin, the development of structures of anticancer camptothecin analogues, and the mechanism of their activity in inhibiting the growth of different types of cancers, such as lung, ovarian, breast, pancreas, and stomach cancers are analyzed. Various structural modifications in the A, B, C, D, and E-rings of the camptothecin molecule have been thoroughly studied to improve bioavailability and diminish toxicity. Modern synthetic approaches to the camptothecin analogues and several semi-synthetic methods are reviewed.

Keywords: Camptothecin, analogues, total synthesis, DNA Topoisomerase I, inhibition, anticancer drugs, structural modifications.

Graphical Abstract

[1]
Wall, M.E.; Wani, M.C.; Cook, C.E.; Palmer, K.H.; McPhail, A.T.; Sim, G.A. Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J. Am. Chem. Soc., 1966, 88(16), 3888-3890.
[http://dx.doi.org/10.1021/ja00968a057]
[2]
Cai, J-C.; Hutchinson, C.R. Camptothecin. In: The Alkaloids: Chemistry and Pharmacology; Brossi, A., Ed.; Elsevier, 1983; Vol. 21, pp. 101-137.
[3]
Li, S.; Zhang, W. Ethnobotany of Camptotheca Decaisne: New discoveries of old medicinal uses. Pharm. Crop., 2014, 5(1), 140-145.
[http://dx.doi.org/10.2174/2210290601405010140]
[4]
Horwitz, S.B.; Chang, C.K.; Grollman, A.P. Studies on camptothecin. I. Effects of nucleic acid and protein synthesis. Mol. Pharmacol., 1971, 7(6), 632-644.
[PMID: 4948241]
[5]
Gottlieb, J.A.; Luce, J.K. Treatment of malignant melanoma with camptothecin (NSC-100880). Cancer Chemother. Rep., 1972, 56(1), 103-105.
[PMID: 5030802]
[6]
Gottlieb, J.A.; Guarino, A.M.; Call, J.B.; Oliverio, V.T.; Block, J.B. Preliminary pharmacologic and clinical evaluation of camptothecin sodium (NSC-100880). Cancer Chemother. Rep., 1970, 54(6), 461-470.
[PMID: 4946015]
[7]
Hsiang, Y.H.; Hertzberg, R.; Hecht, S.; Liu, L.F. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J. Biol. Chem., 1985, 260(27), 14873-14878.
[http://dx.doi.org/10.1016/S0021-9258(17)38654-4] [PMID: 2997227]
[8]
Hsiang, Y.H.; Lihou, M.G.; Liu, L.F. Arrest of replication forks by drug-stabilized topoisomerase I-DNA cleavable complexes as a mech-anism of cell killing by camptothecin. Cancer Res., 1989, 49(18), 5077-5082.
[PMID: 2548710]
[9]
Li, F.; Jiang, T.; Li, Q.; Ling, X. Camptothecin (CPT) and its derivatives are known to target topoisomerase I (Top1) as their mechanism of action: Did we miss something in CPT analogue molecular targets for treating human disease such as cancer? Am. J. Cancer Res., 2017, 7(12), 2350-2394.
[PMID: 29312794]
[10]
Hsiang, Y.H.; Liu, L.F. Identification of mammalian DNA topoisomerase I as an intracellular target of the anticancer drug camptothecin. Cancer Res., 1988, 48(7), 1722-1726.
[PMID: 2832051]
[11]
Liu, L.F.; Desai, S.D.; Li, T.K.; Mao, Y.; Sun, M.; Sim, S.P. Mechanism of action of camptothecin. Ann. N. Y. Acad. Sci., 2000, 922(1), 1-10.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb07020.x] [PMID: 11193884]
[12]
Wani, M.C.; Nicholas, A.W.; Wall, M.E. Plant antitumor agents. 28. Resolution of a key tricyclic synthon, 5‘(RS)-1,5-dioxo-5’-ethyl-5′-hydroxy-2‘H,5’H,6‘H-6’-oxopyrano[3′, 4′- f]delta 6,8-tetrahydro-indolizine: Total synthesis and antitumor activity of 20(S)- and 20(R)-camptothecin. J. Med. Chem., 1987, 30(12), 2317-2319.
[http://dx.doi.org/10.1021/jm00395a024] [PMID: 3681902]
[13]
Bjornsti, M.A.; Benedetti, P.; Viglianti, G.A.; Wang, J.C. Expression of human DNA topoisomerase I in yeast cells lacking yeast DNA topoisomerase I: Restoration of sensitivity of the cells to the antitumor drug camptothecin. Cancer Res., 1989, 49(22), 6318-6323.
[PMID: 2553253]
[14]
Porter, S.E.; Champoux, J.J. The basis for camptothecin enhancement of DNA breakage by eukaryotic topoisomerase I. Nucleic Acids Res., 1989, 17(21), 8521-8532.
[http://dx.doi.org/10.1093/nar/17.21.8521] [PMID: 2555774]
[15]
Tanizawa, A.; Kohn, K.W.; Kohlhagen, G.; Leteurtre, F.; Pommier, Y. Differential stabilization of eukaryotic DNA topoisomerase I cleav-able complexes by camptothecin derivatives. Biochemistry, 1995, 34(21), 7200-7206.
[http://dx.doi.org/10.1021/bi00021a035] [PMID: 7766631]
[16]
Redinbo, M.R.; Stewart, L.; Kuhn, P.; Champoux, J.J.; Hol, W.G. Crystal structures of human topoisomerase I in covalent and noncovalent complexes with DNA. Science, 1998, 279(5356), 1504-1513.
[http://dx.doi.org/10.1126/science.279.5356.1504] [PMID: 9488644]
[17]
Champoux, J.J. Structure-based analysis of the effects of camptothecin on the activities of human topoisomerase I. Ann. N. Y. Acad. Sci., 2000, 922(1), 56-64.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb07025.x] [PMID: 11193925]
[18]
Kerrigan, J.E.; Pilch, D.S. A structural model for the ternary cleavable complex formed between human topoisomerase I, DNA, and camp-tothecin. Biochemistry, 2001, 40(33), 9792-9798.
[http://dx.doi.org/10.1021/bi010913l] [PMID: 11502172]
[19]
Hecht, S.M. Camptothecin: Roles of the D and E rings in binding to the topoisomerase I-DNA covalent binary complex. Curr. Med. Chem. Anticancer Agents, 2005, 5(4), 353-362.
[http://dx.doi.org/10.2174/1568011054222373] [PMID: 16101487]
[20]
Rahier, N.J.; Eisenhauer, B.M.; Gao, R.; Thomas, S.J.; Hecht, S.M. On the role of E-ring oxygen atoms in the binding of camptothecin to the topoisomerase I-DNA covalent binary complex. Bioorg. Med. Chem., 2005, 13(4), 1381-1386.
[http://dx.doi.org/10.1016/j.bmc.2004.11.011] [PMID: 15670945]
[21]
Pommier, Y. DNA topoisomerase I inhibitors: Chemistry, biology, and interfacial inhibition. Chem. Rev., 2009, 109(7), 2894-2902.
[http://dx.doi.org/10.1021/cr900097c] [PMID: 19476377]
[22]
Thomas, C.J.; Rahier, N.J.; Hecht, S.M. Camptothecin: Current perspectives. Bioorg. Med. Chem., 2004, 12(7), 1585-1604.
[http://dx.doi.org/10.1016/j.bmc.2003.11.036] [PMID: 15028252]
[23]
Shamanna, R.A.; Lu, H.; Croteau, D.L.; Arora, A.; Agarwal, D.; Ball, G.; Aleskandarany, M.A.; Ellis, I.O.; Pommier, Y.; Madhusudan, S.; Bohr, V.A. Camptothecin targets WRN protein: Mechanism and relevance in clinical breast cancer. Oncotarget, 2016, 7(12), 13269-13284.
[http://dx.doi.org/10.18632/oncotarget.7906] [PMID: 26959889]
[24]
Thomas, A.; Pommier, Y. Targeting Topoisomerase I in the era of precision medicine. Clin. Cancer Res., 2019, 25(22), 6581-6589.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-1089] [PMID: 31227499]
[25]
Stork, G.; Schultz, A.G. The total synthesis of dl-camptothecin. J. Am. Chem. Soc., 1971, 93(16), 4074-4075.
[http://dx.doi.org/10.1021/ja00745a056] [PMID: 5138309]
[26]
Volkmann, R.; Danishefsky, S.; Eggler, J.; Solomon, D.M. Total synthesis of (+-)-camptothecine. J. Am. Chem. Soc., 1971, 93(21), 5576-5577.
[http://dx.doi.org/10.1021/ja00750a045]
[27]
Winterfeldt, E. Reaktionen an indolderivaten, XIII. Chinolon-derivate durch autoxydation. Justus Liebigs Ann. Chem., 1971, 745(1), 23-30.
[http://dx.doi.org/10.1002/jlac.19717450105]
[28]
Winterfeldt, E.; Korth, T.; Pike, D.; Boch, M. The biogenetically oriented total synthesis of camptothecin and 7-chlorocamptothecin. Angew. Chem. Int. Ed., 1972, 11(4), 289-290.
[http://dx.doi.org/10.1002/anie.197202892] [PMID: 4626423]
[29]
Peters, K.; von Schnering, H.G. Die kristall- und molekülstruktur von N-(1,2-di-tert-butyldiaziridin-3-yliden)-2,4,6-trimethylanilin, C18H29N3. Chem. Ber., 1976, 109(4), 1384-1388.
[http://dx.doi.org/10.1002/cber.19761090420]
[30]
Krohn, K.; Ohlendrof, H-W.; Winterfeldt, E. Die camptothecin-oxidation. Chem. Ber., 1976, 109(4), 1389-1394.
[http://dx.doi.org/10.1002/cber.19761090421]
[31]
Plattner, J.J.; Gless, R.D.; Rapoport, H. Synthesis of some DE and CDE ring analogs of camptothecin. J. Am. Chem. Soc., 1972, 94(24), 8613-8615.
[http://dx.doi.org/10.1021/ja00779a072] [PMID: 4638995]
[32]
Tang, C.; Rapoport, H. A total synthesis of dl-camptothecin. J. Am. Chem. Soc., 1972, 94(24), 8615-8616.
[http://dx.doi.org/10.1021/ja00779a073] [PMID: 4638996]
[33]
Tang, C.S.F.; Morrow, C.J.; Rapoport, H. A total syntheses of dl-camptothecin. J. Am. Chem. Soc., 1975, 97(1), 159-167.
[http://dx.doi.org/10.1021/ja00834a028] [PMID: 1133329]
[34]
Schultz, A.G. Camptothecin. Chem. Rev., 1973, 73(4), 385-405.
[http://dx.doi.org/10.1021/cr60284a004] [PMID: 4578778]
[35]
Sugasawa, T.; Toyoda, T.; Sasakura, K. A total synthesis of dl-camptothecin. Tetrahedron Lett., 1972, 13(50), 5109-5112.
[http://dx.doi.org/10.1016/S0040-4039(01)85182-0]
[36]
Kende, A.S.; Bentley, T.J.; Draper, R.W.; Jenkins, J.K.; Joyeux, M.; Kubo, I. Total synthesis of DL-camptothecin from furfural. Tetrahedron Lett., 1973, 14(16), 1307-1310.
[http://dx.doi.org/10.1016/S0040-4039(01)95926-X]
[37]
Bradley, J.C.; Büchi, G. A short synthesis of camptothecin. J. Org. Chem., 1976, 41(4), 699-700.
[http://dx.doi.org/10.1021/jo00866a024] [PMID: 1249674]
[38]
Quick, J. A new route to pyridones via imines of pyruvic esters. Tetrahedron Lett., 1977, 18(4), 327-330.
[http://dx.doi.org/10.1016/S0040-4039(01)92628-0]
[39]
Kametani, T.; Ohsawa, T.; Ihara, M. A facile synthesis of (±)-camptothecin by enamine annelation. Heterocycles, 1980, 14(7), 951-953.
[http://dx.doi.org/10.3987/R-1980-07-0951]
[40]
Kametani, T.; Ohsawa, T.; Ihara, M. Studies on the syntheses of heterocyclic compounds. Part 878. Synthesis of (+/-)-camptothecin and (+/-)-10-methoxycamptothecin via enamine annulation. J. Chem. Soc., Perkin Trans. 1, 1981, (0), 1563-1568.
[http://dx.doi.org/10.1039/P19810001563]
[41]
Corey, E.J.; Crouse, D.N.; Anderson, J.E. Letter: A total synthesis of natural 20(S)-camptothecin. J. Org. Chem., 1975, 40(14), 2140-2141.
[http://dx.doi.org/10.1021/jo00902a034] [PMID: 1142044]
[42]
Ejima, A.; Terasawa, H.; Sugimori, M.; Tagawa, H. Asymmetric synthesis of (S)-camptothecin. Tetrahedron Lett., 1989, 30(20), 2639-2640.
[http://dx.doi.org/10.1016/S0040-4039(00)99086-5]
[43]
Tang, C-J.; Babjak, M.; Anderson, R.J.; Greene, A.E.; Kanazawa, A. Novel, efficient total synthesis of natural 20(S)-camptothecin. Org. Biomol. Chem., 2006, 4(20), 3757-3759.
[http://dx.doi.org/10.1039/b611202a] [PMID: 17024280]
[44]
Comins, D.L.; Baevsky, M.F.; Hong, H. A 10-step, asymmetric synthesis of (S)-camptothecin. J. Am. Chem. Soc., 1992, 114(27), 10971-10972.
[http://dx.doi.org/10.1021/ja00053a049]
[45]
Shen, W.; Coburn, C.A.; Bornmann, W.G.; Danishefsky, S.J. Concise total syntheses of dl-camptothecin and related anticancer drugs. J. Org. Chem., 1993, 58(3), 611-617.
[http://dx.doi.org/10.1021/jo00055a012]
[46]
Curran, D.P.; Liu, H. New 4 + 1 radical annulations. A formal total synthesis of (+-)-camptothecin. J. Am. Chem. Soc., 1992, 114(14), 5863-5864.
[http://dx.doi.org/10.1021/ja00040a060]
[47]
Simchen, G. Reaktionen mit halogenwasserstoffaddukten der nitrile. V. Synthese von derivaten des 3.4-dihydro-pyridins. Chem. Ber., 1970, 103(2), 407-412.
[http://dx.doi.org/10.1002/cber.19701030211]
[48]
Curran, D.P.; Josien, H.; Bom, D.; Gabarda, A.E.; Du, W. The cascade radical annulation approach to new analogues of camptothecins. Combinatorial synthesis of silatecans and homosilatecans. Ann. N. Y. Acad. Sci., 2000, 922(1), 112-121.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb07030.x] [PMID: 11193887]
[49]
Du, W.; Gabarda, A.E.; Bom, D.; Curran, D.P. The combinatorial synthesis of racemic homosilatecan libraries via a cascade radical annu-lation. Ann. N. Y. Acad. Sci., 2000, 922(1), 317-319.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb07053.x] [PMID: 11193911]
[50]
Curran, D.P.; Du, W. Palladium-promoted cascade reactions of isonitriles and 6-iodo-N-propargylpyridones: Synthesis of mappicines, camptothecins, and homocamptothecins. Org. Lett., 2002, 4(19), 3215-3218.
[http://dx.doi.org/10.1021/ol026408d] [PMID: 12227752]
[51]
Tangirala, R.S.; Dixon, R.; Yang, D.; Ambrus, A.; Antony, S.; Agama, K.; Pommier, Y.; Curran, D.P. Total and semisynthesis and in vitro studies of both enantiomers of 20-fluorocamptothecin. Bioorg. Med. Chem. Lett., 2005, 15(21), 4736-4740.
[http://dx.doi.org/10.1016/j.bmcl.2005.07.074] [PMID: 16140529]
[52]
Tangirala, R.S.; Antony, S.; Agama, K.; Pommier, Y.; Anderson, B.D.; Bevins, R.; Curran, D.P. Synthesis and biological assays of E-ring analogs of camptothecin and homocamptothecin. Bioorg. Med. Chem., 2006, 14(18), 6202-6212.
[http://dx.doi.org/10.1016/j.bmc.2006.05.073] [PMID: 16793274]
[53]
Danishefsky, S.; Etheredge, S.J. Synthesis and biological evaluation of DE-AB-camptothecin. J. Org. Chem., 1974, 39(23), 3430-3432.
[http://dx.doi.org/10.1021/jo00937a034] [PMID: 4427189]
[54]
Fortunak, J.M.D.; Mastrocola, A.R.; Mellinger, M.; Sisti, N.J.; Wood, J.L.; Zhuang, Z-P. Novel syntheses of camptothecin alkaloids, part I. Intramolecular [4+2] cycloadditions of N-arylimidates and 4H-3,1-benzoxazin-4-ones as 2-aza-1,3-dienes. Tetrahedron Lett., 1996, 37(32), 5679-5682.
[http://dx.doi.org/10.1016/0040-4039(96)01204-X]
[55]
Fortunak, J.M.D.; Kitteringham, J.; Mastrocola, A.R.; Mellinger, M.; Sisti, N.J.; Wood, J.L.; Zhuang, Z-P. Novel syntheses of camptothecin alkaloids, part 2. Concise synthesis of (S)-camptothecins. Tetrahedron Lett., 1996, 37(32), 5683-5686.
[http://dx.doi.org/10.1016/0040-4039(96)01205-1]
[56]
Tietze, L.F.; Bischoff, M.; Khan, T.A.; Liu, D. Synthesis of indolizinoquinolinones through three- and four-component domino Knoevenagel/hetero-Diels-Alder reactions: Novel access to (+)-camptothecin. Chem. Heterocycl. Compd., 2017, 53(4), 434-445.
[http://dx.doi.org/10.1007/s10593-017-2070-4]
[57]
Wall, M.E.; Wani, M.C.; Natschke, S.M.; Nicholas, A.W. Plant antitumor agents. 22. Isolation of 11-hydroxycamptothecin from Camp-totheca acuminata Decne: Total synthesis and biological activity. J. Med. Chem., 1986, 29(8), 1553-1555.
[http://dx.doi.org/10.1021/jm00158a044] [PMID: 3735324]
[58]
Wani, M.C.; Ronman, P.E.; Lindley, J.T.; Wall, M.E. Plant antitumor agents. 18. Synthesis and biological activity of camptothecin ana-logues. J. Med. Chem., 1980, 23(5), 554-560.
[http://dx.doi.org/10.1021/jm00179a016] [PMID: 7381856]
[59]
Comins, D.L.; Nolan, J.M. A practical six-step synthesis of (S)-camptothecin. Org. Lett., 2001, 3(26), 4255-4257.
[http://dx.doi.org/10.1021/ol0169271] [PMID: 11784191]
[60]
Comins, D.L.; Salvador, J.M. Efficient synthesis and resolution of trans-2-(1-aryl-1-methylethyl)cyclohexanols: Practical alternatives to 8-phenylmenthol. J. Org. Chem., 1993, 58(17), 4656-4661.
[http://dx.doi.org/10.1021/jo00069a031]
[61]
Martino, E.; Della Volpe, S.; Terribile, E.; Benetti, E.; Sakaj, M.; Centamore, A.; Sala, A.; Collina, S. The long story of camptothecin: From traditional medicine to drugs. Bioorg. Med. Chem. Lett., 2017, 27(4), 701-707.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.085] [PMID: 28073672]
[62]
Chavan, S.P.; Sivappa, R. A synthesis of camptothecin. Tetrahedron Lett., 2004, 45(15), 3113-3115.
[http://dx.doi.org/10.1016/j.tetlet.2004.02.091]
[63]
Liu, Q.; Huang, G.; Liu, M.; Chen, F. A formal synthesis of camptothecin via a photocatalytic decarboxylative radical addition. Eur. J. Org. Chem., 2019, 2019(35), 6024-6027.
[http://dx.doi.org/10.1002/ejoc.201900728]
[64]
Bennasar, M.L.; Juan, C.; Bosch, J. A short synthesis of camptothecin a 2-fluoro-1,4-dihydropyridine. Chem. Commun. (Camb.), 2000, (24), 2459-2460.
[http://dx.doi.org/10.1039/b007814j]
[65]
Bennasar, M.L.; Zulaica, E.; Juan, C.; Alonso, Y.; Bosch, J. Addition of ester enolates to N-alkyl-2-fluoropyridinium salts: Total synthesis of (+/-)-20-deoxycamptothecin and (+)-camptothecin. J. Org. Chem., 2002, 67(21), 7465-7474.
[http://dx.doi.org/10.1021/jo026173j] [PMID: 12375981]
[66]
Brown, R.T.; Jianli, L.; Santos, C.A.M. Biogenetically patterned synthesis of camptothecin and 20-deoxycamptothecin. Tetrahedron Lett., 2000, 41(6), 859-862.
[http://dx.doi.org/10.1016/S0040-4039(99)02210-8]
[67]
Blagg, B.S.J.; Boger, D.L. Total synthesis of (+)-camptothecin. Tetrahedron, 2002, 58(32), 6343-6349.
[http://dx.doi.org/10.1016/S0040-4020(02)00633-6]
[68]
Boger, D.L.; Hong, J. Total synthesis of nothapodytine B and (−)-mappicine. J. Am. Chem. Soc., 1998, 120(6), 1218-1222.
[http://dx.doi.org/10.1021/ja973007y]
[69]
Du, W. Towards new anticancer drugs: A decade of advances in synthesis of camptothecins and related alkaloids. Tetrahedron, 2003, 59(44), 8649-8687.
[http://dx.doi.org/10.1016/S0040-4020(03)01203-1]
[70]
Sawada, S.; Matsuoka, S.; Nokata, K.; Nagata, H.; Furuta, T.; Yokokura, T.; Miyasaka, T. Synthesis and antitumor activity of 20(S)-camptothecin derivatives: A-ring modified and 7,10-disubstituted camptothecins. Chem. Pharm. Bull. (Tokyo), 1991, 39(12), 3183-3188.
[http://dx.doi.org/10.1248/cpb.39.3183] [PMID: 1814610]
[71]
Sawada, S.; Nokata, K.; Furuta, T.; Yokokura, T.; Miyasaka, T. Chemical modification of an antitumor alkaloid camptothecin: Synthesis and antitumor activity of 7-C-substituted camptothecins. Chem. Pharm. Bull. (Tokyo), 1991, 39(10), 2574-2580.
[http://dx.doi.org/10.1248/cpb.39.2574] [PMID: 1806276]
[72]
Sawada, S.; Okajima, S.; Aiyama, R.; Nokata, K.; Furuta, T.; Yokokura, T.; Sugino, E.; Yamaguchi, K.; Miyasaka, T. Synthesis and anti-tumor activity of 20(S)-camptothecin derivatives: Carbamate-linked, water-soluble derivatives of 7-ethyl-10-hydroxycamptothecin. Chem. Pharm. Bull. (Tokyo), 1991, 39(6), 1446-1450.
[http://dx.doi.org/10.1248/cpb.39.1446] [PMID: 1934165]
[73]
Yaegashi, T.; Nokata, K.; Sawada, S.; Furuta, T.; Yokokura, T.; Miyasaka, T. Chemical modification of an antitumor alkaloid, 20(S)-camptothecin: Glycosides, phosphates and sulfates of 7-ethyl-10-hydroxycamptothecin. Chem. Pharm. Bull. (Tokyo), 1992, 40(1), 131-135.
[http://dx.doi.org/10.1248/cpb.40.131] [PMID: 1576663]
[74]
Sawada, S.; Yaegashi, T.; Furuta, T.; Yokokura, T.; Miyasaka, T. Chemical modification of an antitumor alkaloid, 20(S)-camptothecin: E-lactone ring-modified water-soluble derivatives of 7-ethylcamptothecin. Chem. Pharm. Bull. (Tokyo), 1993, 41(2), 310-313.
[http://dx.doi.org/10.1248/cpb.41.310] [PMID: 8500199]
[75]
Yaegashi, T.; Sawada, S.; Furuta, T.; Yokokura, T.; Yamaguchi, K.; Miyasaka, T. Chemical modification of antitumor alkaloids, 20(S)-camptothecin and 7-ethylcamptothecin: Reaction of the E-lactone ring portion with hydrazine hydrate. Chem. Pharm. Bull. (Tokyo), 1993, 41(5), 971-974.
[http://dx.doi.org/10.1248/cpb.41.971] [PMID: 8339343]
[76]
Yaegashi, T.; Sawada, S.; Nagata, H.; Furuta, T.; Yokokura, T.; Miyasaka, T. Synthesis and antitumor activity of 20(S)-camptothecin de-rivatives. A-ring-substituted 7-ethylcamptothecins and their E-ring-modified water-soluble derivatives. Chem. Pharm. Bull. (Tokyo), 1994, 42(12), 2518-2525.
[http://dx.doi.org/10.1248/cpb.42.2518] [PMID: 7697767]
[77]
Lavergne, O.; Lesueur-Ginot, L.; Rodas, F.P.; Bigg, D.C.H. BN 80245: An E-ring modified camptothecin with potent antiproliferative and topoisomerase I inhibitory activities. Bioorg. Med. Chem. Lett., 1997, 7(17), 2235-2238.
[http://dx.doi.org/10.1016/S0960-894X(97)00398-3]
[78]
Lavergne, O.; Lesueur-Ginot, L.; Pla Rodas, F.; Kasprzyk, P.G.; Pommier, J.; Demarquay, D.; Prévost, G.; Ulibarri, G.; Rolland, A. Schi-ano-Liberatore, A-M.; Harnett, J.; Pons, D.; Camara, J.; Bigg, D.C.H. Homocamptothecins: Synthesis and antitumor activity of novel E-ring-modified camptothecin analogues. J. Med. Chem., 1998, 41(27), 5410-5419.
[http://dx.doi.org/10.1021/jm980400l] [PMID: 9876111]
[79]
Lavergne, O.; Harnett, J.; Rolland, A.; Lanco, C.; Lesueur-Ginot, L.; Demarquay, D.; Huchet, M.; Coulomb, H.; Bigg, D.C.H. BN 80927: A novel homocamptothecin with inhibitory activities on both topoisomerase I and topoisomerase II. Bioorg. Med. Chem. Lett., 1999, 9(17), 2599-2602.
[http://dx.doi.org/10.1016/S0960-894X(99)00428-X] [PMID: 10498216]
[80]
LaMattina, J.L. The synthesis of 2-amino-4-(4-imidazolyl)pyridines. J. Heterocycl. Chem., 1983, 20(3), 533-538.
[http://dx.doi.org/10.1002/jhet.1983.20.3.533]
[81]
Driver, R.W.; Yang, L.X. Synthesis and pharmacology of new camptothecin drugs. Mini Rev. Med. Chem., 2005, 5(5), 425-439.
[http://dx.doi.org/10.2174/1389557053765547] [PMID: 15892685]
[82]
Hautefaye, P.; Cimetière, B.; Pierré, A.; Léonce, S.; Hickman, J.; Laine, W.; Bailly, C.; Lavielle, G. Synthesis and pharmacological evalua-tion of novel non-lactone analogues of camptothecin. Bioorg. Med. Chem. Lett., 2003, 13(16), 2731-2735.
[http://dx.doi.org/10.1016/S0960-894X(03)00534-1] [PMID: 12873503]
[83]
Rocca, P.; Cochennec, C.; Marsais, F.; Thomas-dit-Dumont, L.; Mallet, M.; Godard, A.; Queguiner, G. First metalation of aryl iodides: Directed ortho-lithiation of iodopyridines, halogen-dance, and application to synthesis. J. Org. Chem., 1993, 58(27), 7832-7838.
[http://dx.doi.org/10.1021/jo00079a031]
[84]
Comins, D.L.; Saha, J.K. Asymmetric synthesis of a key camptothecin intermediate from 2-fluoropyridine. Tetrahedron Lett., 1995, 36(44), 7995-7998.
[http://dx.doi.org/10.1016/0040-4039(95)01665-5]
[85]
Liu, H.; Ko, S-B.; Josien, H.; Curran, D.P. Selective N-functionalization of 6-substituted-2-pyridones. Tetrahedron Lett., 1995, 36(49), 8917-8920.
[http://dx.doi.org/10.1016/0040-4039(95)01917-7]
[86]
Manikumar, G.; Wadkins, R.M.; Bearss, D.; Von Hoff, D.D.; Wani, M.C.; Wall, M.E. Camptothecin analogs with bulky, hydrophobic sub-stituents at the 7-position via a Grignard reaction. Bioorg. Med. Chem. Lett., 2004, 14(21), 5377-5381.
[http://dx.doi.org/10.1016/j.bmcl.2004.08.010] [PMID: 15454230]
[87]
Cao, Z.S.; Mendoza, J.; Dejesus, A.; Giovanella, B. Synthesis and anti-tumor activity of alkenyl camptothecin esters. Acta Pharmacol. Sin., 2005, 26(2), 235-241.
[http://dx.doi.org/10.1111/j.1745-7254.2005.00031.x] [PMID: 15663905]
[88]
Snyder, L.; Shen, W.; Bornmann, W.G.; Danishefsky, S.J. Synthesis of 18-noranhydrocamptothecin analogs which retain topoisomerase inhibitory function. J. Org. Chem., 1994, 59(23), 7033-7037.
[http://dx.doi.org/10.1021/jo00102a030]
[89]
Bacherikov, V.A.; Tsai, T-J.; Chang, J-Y.; Chou, T-C.; Lee, R-Z.; Su, T-L. Synthesis of new camptothecin analogues with the E-lactone ring replaced by α,β-cyclohexenone. Eur. J. Org. Chem., 2006, 2006(19), 4490-4499.
[http://dx.doi.org/10.1002/ejoc.200600298]
[90]
Henegar, K.E.; Ashford, S.W.; Baughman, T.A.; Sih, J.C.; Gu, R-L. Practical asymmetric synthesis of (S)-4-ethyl-7,8-dihydro-4-hydroxy-1H-pyrano[3,4-f]indolizine- 3,6,10(4H)-trione, a key intermediate for the synthesis of irinotecan and other camptothecin analogs. J. Org. Chem., 1997, 62(19), 6588-6597.
[http://dx.doi.org/10.1021/jo970173f]
[91]
Carpino, L.A. Simple preparation of active manganese dioxide from activated carbon. J. Org. Chem., 1970, 35(11), 3971-3972.
[http://dx.doi.org/10.1021/jo00836a091]
[92]
Kolb, H.C.; VanNieuwenhze, M.S.; Sharpless, K.B. Catalytic asymmetric dihydroxylation. Chem. Rev., 1994, 94(8), 2483-2547.
[http://dx.doi.org/10.1021/cr00032a009]
[93]
Lackey, K.; Besterman, J.M.; Fletcher, W.; Leitner, P.; Morton, B.; Sternbach, D.D. Rigid analogs of camptothecin as DNA topoisomerase I inhibitors. J. Med. Chem., 1995, 38(6), 906-911.
[http://dx.doi.org/10.1021/jm00006a008] [PMID: 7699706]
[94]
Dallavalle, S.; Delsoldato, T.; Ferrari, A.; Merlini, L.; Penco, S.; Carenini, N.; Perego, P.; De Cesare, M.; Pratesi, G.; Zunino, F. Novel 7-substituted camptothecins with potent antitumor activity. J. Med. Chem., 2000, 43(21), 3963-3969.
[http://dx.doi.org/10.1021/jm000944z] [PMID: 11052801]
[95]
Li, Q.Y.; Zu, Y.G.; Shi, R.Z.; Yao, L.P. Review camptothecin: Current perspectives. Curr. Med. Chem., 2006, 13(17), 2021-2039.
[http://dx.doi.org/10.2174/092986706777585004] [PMID: 16842195]
[96]
Drug.com SuperGen Announces Withdrawal of Orathecin NDA.. Available from: http://www.drugs.com/nda/orathecin_050103.html
[97]
Huang, M.; Gao, H.; Chen, Y.; Zhu, H.; Cai, Y.; Zhang, X.; Miao, Z.; Jiang, H.; Zhang, J.; Shen, H.; Lin, L.; Lu, W.; Ding, J. Chimmitecan, a novel 9-substituted camptothecin, with improved anticancer pharmacologic profiles in vitro and in vivo. Clin. Cancer Res., 2007, 13(4), 1298-1307.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1277] [PMID: 17287296]
[98]
Du, H.; Huang, Y.; Hou, X.; Quan, X.; Jiang, J.; Wei, X.; Liu, Y.; Li, H.; Wang, P.; Zhan, M.; Ai, X.; Lu, L.; Yuan, S.; Sun, L. Two novel camptothecin derivatives inhibit colorectal cancer proliferation via induction of cell cycle arrest and apoptosis in vitro and in vivo. Eur. J. Pharm. Sci., 2018, 123, 546-559.
[http://dx.doi.org/10.1016/j.ejps.2018.08.018] [PMID: 30118848]
[99]
Verma, R.P.; Hansch, C. Camptothecins: A SAR/QSAR study. Chem. Rev., 2009, 109(1), 213-235.
[http://dx.doi.org/10.1021/cr0780210] [PMID: 19099450]
[100]
Teicher, B.A. Next generation topoisomerase I inhibitors: Rationale and biomarker strategies. Biochem. Pharmacol., 2008, 75(6), 1262-1271.
[http://dx.doi.org/10.1016/j.bcp.2007.10.016] [PMID: 18061144]
[101]
Song, Z.L.; Yang, G.Z.; Li, J.C.; Liu, Y.Q.; Yang, C.J.; Goto, M.; Zhang, Z.J.; Morris-Natschke, S.L.; Liu, H.; Lee, K.H. Design and syn-thesis of novel 7-[(N-substituted-thioureidopiperazinyl)-methyl]-camptothecin derivatives as potential cytotoxic agents. Nat. Prod. Res., 2020, 34(14), 2022-2029.
[http://dx.doi.org/10.1080/14786419.2019.1573231] [PMID: 30784310]
[102]
Wu, D.; Zhang, S.Y.; Liu, Y.Q.; Wu, X.B.; Zhu, G.X.; Zhang, Y.; Wei, W.; Liu, H.X.; Chen, A.L. Synthesis, biological activities, and quan-titative structure-activity relationship (QSAR) study of novel camptothecin analogues. Molecules, 2015, 20(5), 8634-8653.
[http://dx.doi.org/10.3390/molecules20058634] [PMID: 25985362]
[103]
Peters, R.; Althaus, M.; Diolez, C.; Rolland, A.; Manginot, E.; Veyrat, M. Practical formal total syntheses of the homocamptothecin deriva-tive and anticancer agent diflomotecan via asymmetric acetate aldol additions to pyridine ketone substrates. J. Org. Chem., 2006, 71(20), 7583-7595.
[http://dx.doi.org/10.1021/jo060928v] [PMID: 16995662]
[104]
Kroep, J.R.; Gelderblom, H. Diflomotecan, a promising homocamptothecin for cancer therapy. Expert Opin. Investig. Drugs, 2009, 18(1), 69-75.
[http://dx.doi.org/10.1517/13543780802571674] [PMID: 19053883]
[105]
Huang, Q.; Wang, L.; Lu, W. Evolution in medicinal chemistry of E-ring-modified Camptothecin analogs as anticancer agents. Eur. J. Med. Chem., 2013, 63, 746-757.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.058] [PMID: 23578545]
[106]
Miao, Z.; Zhu, L.; Dong, G.; Zhuang, C.; Wu, Y.; Wang, S.; Guo, Z.; Liu, Y.; Wu, S.; Zhu, S.; Fang, K.; Yao, J.; Li, J.; Sheng, C.; Zhang, W. A new strategy to improve the metabolic stability of lactone: Discovery of (20S,21S)-21-fluorocamptothecins as novel, hydrolytically sta-ble topoisomerase I inhibitors. J. Med. Chem., 2013, 56(20), 7902-7910.
[http://dx.doi.org/10.1021/jm400906z] [PMID: 24069881]
[107]
Lv, J.; Guo, N.; Wen, S.P.; Teng, Y.O.; Ma, M.X.; Yu, P. Synthesis and antitumor activity evaluation of a novel series of camptothecin analogs. J. Asian Nat. Prod. Res., 2013, 15(8), 867-874.
[http://dx.doi.org/10.1080/10286020.2013.804068] [PMID: 23796391]
[108]
Zhou, Y.; Zhao, H.Y.; Jiang, D.; Wang, L.Y.; Xiang, C.; Wen, S.P.; Fan, Z.C.; Zhang, Y.M.; Guo, N.; Teng, Y.O.; Yu, P. Low toxic and high soluble camptothecin derivative 2-47 effectively induces apoptosis of tumor cells in vitro. Biochem. Biophys. Res. Commun., 2016, 472(3), 477-481.
[http://dx.doi.org/10.1016/j.bbrc.2016.02.015] [PMID: 26879138]
[109]
Wani, M.C.; Nicholas, A.W.; Wall, M.E. Plant antitumor agents. 23. Synthesis and antileukemic activity of camptothecin analogues. J. Med. Chem., 1986, 29(11), 2358-2363.
[http://dx.doi.org/10.1021/jm00161a035] [PMID: 3783593]
[110]
Wall, M.E.; Wani, M.C.; Nicholas, A.W.; Manikumar, G.; Tele, C.; Moore, L.; Truesdale, A.; Leitner, P.; Besterman, J.M. Plant antitumor agents. 30. Synthesis and structure activity of novel camptothecin analogs. J. Med. Chem., 1993, 36(18), 2689-2700.
[http://dx.doi.org/10.1021/jm00070a013] [PMID: 8410981]
[111]
Ling, X.; Cao, S.; Cheng, Q.; Keefe, J.T.; Rustum, Y.M.; Li, F. A novel small molecule FL118 that selectively inhibits survivin, Mcl-1, XIAP and cIAP2 in a p53-independent manner, shows superior antitumor activity. PLoS One, 2012, 7(9), e45571.
[http://dx.doi.org/10.1371/journal.pone.0045571] [PMID: 23029106]
[112]
Li, F. Discovery of survivin inhibitors and beyond: FL118 as a proof of concept. Int. Rev. Cell Mol. Biol., 2013, 305, 217-252.
[http://dx.doi.org/10.1016/B978-0-12-407695-2.00005-6] [PMID: 23890383]
[113]
Ling, X.; Li, F. An intravenous (i.v.) route-compatible formulation of FL118, a survivin, Mcl-1, XIAP, and cIAP2 selective inhibitor, improves FL118 antitumor efficacy and therapeutic index (TI). Am. J. Transl. Res., 2013, 5(2), 139-154.
[PMID: 23573360]
[114]
Holthof, L.C.; van der Horst, H.J.; van Hal-van Veen, S.E.; Ruiter, R.W.J.; Li, F.; Buijze, M.; Andersen, M.N.; Yuan, H.; de Bruijn, J.; van de Donk, N.W.C.J.; Lokhorst, H.M.; Zweegman, S.; Groen, R.W.J.; Mutis, T. Preclinical evidence for an effective therapeutic activity of FL118, a novel survivin inhibitor, in patients with relapsed/refractory multiple myeloma. Haematologica, 2020, 105(2), e80-e83.
[http://dx.doi.org/10.3324/haematol.2018.213314] [PMID: 31123033]
[115]
Li, F. Anticancer drug FL118 is more than a survivin inhibitor: Where is the Achilles’ heel of cancer? Am. J. Cancer Res., 2014, 4(3), 304-311.
[PMID: 24959385]
[116]
Ling, X.; Liu, X.; Zhong, K.; Smith, N.; Prey, J.; Li, F. FL118, a novel camptothecin analogue, overcomes irinotecan and topotecan re-sistance in human tumor xenograft models. Am. J. Transl. Res., 2015, 7(10), 1765-1781.
[PMID: 26692923]
[117]
Song, Z.L.; Wang, M.J.; Li, L.; Wu, D.; Wang, Y.H.; Yan, L.T.; Morris-Natschke, S.L.; Liu, Y.Q.; Zhao, Y.L.; Wang, C.Y.; Liu, H.; Goto, M.; Liu, H.; Zhu, G.X.; Lee, K.H. Design, synthesis, cytotoxic activity and molecular docking studies of new 20(S)-sulfonylamidine camptothecin derivatives. Eur. J. Med. Chem., 2016, 115, 109-120.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.070] [PMID: 26994847]
[118]
Wang, M.J.; Liu, Y.Q.; Chang, L.C.; Wang, C.Y.; Zhao, Y.L.; Zhao, X.B.; Qian, K.; Nan, X.; Yang, L.; Yang, X.M.; Hung, H.Y.; Yang, J.S.; Kuo, D.H.; Goto, M.; Morris-Natschke, S.L.; Pan, S.L.; Teng, C.M.; Kuo, S.C.; Wu, T.S.; Wu, Y.C.; Lee, K.H. Design, synthesis, mecha-nisms of action, and toxicity of novel 20(s)-sulfonylamidine derivatives of camptothecin as potent antitumor agents. J. Med. Chem., 2014, 57(14), 6008-6018.
[http://dx.doi.org/10.1021/jm5003588] [PMID: 25003995]
[119]
Wu, G.; Mai, X.; Liu, F.; Lin, M.; Dong, X.; Xu, Q.; Hao, C.; Zhang, L.; Yu, R.; Jiang, T. Synthesis of novel 10,11-methylenedioxy-camptothecin glycoside derivatives and investigation of their anti-tumor effects in vivo. RSC Advances, 2019, 9(20), 11142-11150.
[http://dx.doi.org/10.1039/C9RA00315K]
[120]
Liu, Y.Q.; Tian, X.; Yang, L.; Zhan, Z.C. First synthesis of novel spin-labeled derivatives of camptothecin as potential antineoplastic agents. Eur. J. Med. Chem., 2008, 43(11), 2610-2614.
[http://dx.doi.org/10.1016/j.ejmech.2008.01.008] [PMID: 18313176]
[121]
Zhao, X.B.; Wu, D.; Wang, M.J.; Goto, M.; Morris-Natschke, S.L.; Liu, Y.Q.; Wu, X.B.; Song, Z.L.; Zhu, G.X.; Lee, K.H. Design and syn-thesis of novel spin-labeled camptothecin derivatives as potent cytotoxic agents. Bioorg. Med. Chem., 2014, 22(22), 6453-6458.
[http://dx.doi.org/10.1016/j.bmc.2014.09.035] [PMID: 25438769]
[122]
Yang, C.J.; Song, Z.L.; Goto, M.; Hsu, P.L.; Zhang, X.S.; Yang, Q.R.; Liu, Y.Q.; Wang, M.J.; Morris-Natschke, S.L.; Shang, X.F.; Lee, K.H. Design, semisynthesis and potent cytotoxic activity of novel 10-fluorocamptothecin derivatives. Bioorg. Med. Chem. Lett., 2017, 27(20), 4694-4697.
[http://dx.doi.org/10.1016/j.bmcl.2017.09.012] [PMID: 28927790]
[123]
Yang, C.J.; Li, B.; Zhang, Z.J.; Gao, J.M.; Wang, M.J.; Zhao, X.B.; Song, Z.L.; Liu, Y.Q.; Li, H.; Chen, Y.; Lee, K.H.; Morris-Natschke, S.L.; Xu, C. Design, synthesis and antineoplastic activity of novel 20(S)-acylthiourea derivatives of camptothecin. Eur. J. Med. Chem., 2020, 187, 111971.
[http://dx.doi.org/10.1016/j.ejmech.2019.111971] [PMID: 31881457]
[124]
Song, Z.L.; Yang, G.Z.; Li, J.C.; Liu, Y.Q.; Yang, C.J.; Goto, M.; Zhang, Z.J.; Morris-Natschke, S.L.; Liu, H.; Lee, K.H. Design and syn-thesis of novel 7-[(N-substituted-thioureidopiperazinyl)-methyl]-camptothecin derivatives as potential cytotoxic agents. Nat. Prod. Res., 2020, 34(14), 2022-2029.
[http://dx.doi.org/10.1080/14786419.2019.1573231] [PMID: 30784310]
[125]
Yang, X.Y.; Zhao, H.Y.; Lei, H.; Yuan, B.; Mao, S.; Xin, M.; Zhang, S.Q. Synthesis and biological evaluation of 10-substituted camptothe-cin derivatives with improved water solubility and activity. ChemMedChem, 2020.
[PMID: 33241878]
[126]
Zhao, C.; Wang, X.; Yang, F.; Gao, L.; Wang, Y. A simple route to a novel acid-sensitive 20(S)-O-linked camptothecin norcantharidin acid ester derivative. R. Soc. Open Sci., 2018, 5(2), 170842.
[http://dx.doi.org/10.1098/rsos.170842] [PMID: 29515825]
[127]
Dong, S.; He, J.; Sun, Y.; Li, D.; Li, L.; Zhang, M.; Ni, P. Efficient click synthesis of a protonized and reduction-sensitive amphiphilic small-molecule prodrug containing camptothecin and gemcitabine for a drug self-delivery system. Mol. Pharm., 2019, 16(9), 3770-3779.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00349] [PMID: 31348660]
[128]
El-Sayed, N.S.; Shirazi, A.N.; Sajid, M.I.; Park, S.E.; Parang, K.; Tiwari, R.K. Synthesis and antiproliferative activities of conjugates of paclitaxel and camptothecin with a cyclic cell-penetrating peptide. Molecules, 2019, 24(7), 1427-1439.
[http://dx.doi.org/10.3390/molecules24071427] [PMID: 30978971]
[129]
Botella, P.; Rivero-Buceta, E. Safe approaches for camptothecin delivery: Structural analogues and nanomedicines. J. Control. Release, 2017, 247, 28-54.
[http://dx.doi.org/10.1016/j.jconrel.2016.12.023] [PMID: 28027948]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy