Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

Proteomics, Peptidomics and Transcriptomic Analysis of the Venom from the Spider Macrothele yani (Mygalomorphae: Macrothelidae)

Author(s): Xiao-Liang Gu, Ying Wang, Cheng-Gui Zhang, Xiu-Mei Wu, Huai Xiao, Yin-He Yang, Da-Song Yang, Zhi-Bin Yang, Yu Zhao* and Zi-Zhong Yang*

Volume 19, Issue 4, 2022

Published on: 27 July, 2022

Page: [308 - 322] Pages: 15

DOI: 10.2174/1570164619666220430151150

Price: $65

Abstract

Background: Spider venom show abundant diversity in both peptides and proteins, which play essential roles in new drug development and agrochemistry. The venoms of Macrothele yani species have strong toxicity on the victims.

Objective: The purpose of this study is to comprehensively characterize the profile of venom proteins and peptides of spider Macrothele yani mainly inhabiting Yunnan province, China.

Methods: Using a combination of RNA sequencing of the venom glands and venom proteomics based on Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry (LC-ESI-MS/MS), we provide the first overview of the peptides and proteins synthesized from Macrothele yani.

Results: A total of 116 peptide sequences were analyzed, and 43 homologous proteins were matched, of which 38.10% were toxin proteins. High-throughput sequencing by the HiSeq-2000 (Illumina), followed by de novo assembly. As a result, 301,024 similar protein sequences were annotated in the available databases. A total of 68 toxins-related sequences were identified, comparative sequence analyses of these sequences indicated the presence of different types of enzymes and toxin- like genes, including Acetylcholinesterase, Hyaluronidase, cysteine-rich secretory proteins (CRISP), Astacin metalloprotease and other venom components.

Conclusion: The venom of a spider is a very abundant resource in nature. They were analyzed to determine their function in pathophysiology. Molecular templates with potential application value in medical and biological fields were obtained by classifying and characterizing the presumed components of spider venom of Macrothele yani, which laid a foundation for further study of the venom in the future.

Keywords: Spider venom, Macrothele yani, LC-ESI-MS/MS, proteomics, peptidomics, transcriptome.

Graphical Abstract

[1]
Yang, S.; Fitches, E.; Pyati, P.; Gatehouse, J.A. Effect of insecticidal fusion proteins containing spider toxins targeting sodium and calcium ion channels on pyrethroid-resistant strains of peach-potato aphid (Myzus persicae). Pest Manag. Sci., 2015, 71(7), 951-956.
[http://dx.doi.org/10.1002/ps.3872] [PMID: 25077959]
[2]
King, G.F. Tying pest insects in knots: The deployment of spider-venom-derived knottins as bioinsecticides. Pest Manag. Sci., 2019, 75(9), 2437-2445.
[http://dx.doi.org/10.1002/ps.5452] [PMID: 31025461]
[3]
Escoubas, P. Molecular diversification in spider venoms: A web of combinatorial peptide libraries. Mol. Divers., 2006, 10(4), 545-554.
[http://dx.doi.org/10.1007/s11030-006-9050-4] [PMID: 17096075]
[4]
Escoubas, P.; Sollod, B.; King, G.F. Venom landscapes: Mining the complexity of spider venoms via a combined cDNA and mass spectrometric approach. Toxicon: Official Journal of the International Society on Toxinology, 2006, 47(6), 650-63.
[5]
Zhang, Y.; Huang, Y.; He, Q.; Liu, J.; Luo, J.; Zhu, L.; Lu, S.; Huang, P.; Chen, X.; Zeng, X.; Liang, S. Toxin diversity revealed by a transcriptomic study of Ornithoctonus huwena. PLoS One, 2014, 9(6), e100682.
[http://dx.doi.org/10.1371/journal.pone.0100682] [PMID: 24949878]
[6]
Kozlov, S.A.; Lazarev, V.N.; Kostryukova, E.S.; Selezneva, O.V.; Ospanova, E.A.; Alexeev, D.G.; Govorun, V.M.; Grishin, E.V. Com-prehensive analysis of the venom gland transcriptome of the spider Dolomedes fimbriatus. Sci. Data, 2014, 1(1), 140023.
[http://dx.doi.org/10.1038/sdata.2014.23] [PMID: 25977780]
[7]
Undheim, E.A.B.; Sunagar, K.; Herzig, V.; Kely, L.; Low, D.H.W.; Jackson, T.N.W.; Jones, A.; Kurniawan, N.; King, G.F.; Ali, S.A.; An-tunes, A.; Ruder, T.; Fry, B.G. A proteomics and transcriptomics investigation of the venom from the barychelid spider Trittame loki (brush-foot trapdoor). Toxins, 2013, 5(12), 2488-2503.
[http://dx.doi.org/10.3390/toxins5122488] [PMID: 24351713]
[8]
Cai, L.J.; Xu, D.H.; Luo, J.; Chen, R.Z.; Chi, Y.P.; Zeng, X.Z.; Wang, X.C.; Liang, S.P. Inhibition of Jingzhaotoxin-V on Kv4.3 channel. Sheng Li Xue Bao, [Acta Physiologica Sinica], 2010, 62(3), 255-260.
[PMID: 20571743]
[9]
Rong, M.; Chen, J.; Tao, H.; Wu, Y.; Jiang, P.; Lu, M.; Su, H.; Chi, Y.; Cai, T.; Zhao, L.; Zeng, X.; Xiao, Y.; Liang, S. Molecular basis of the tarantula toxin jingzhaotoxin-III (β-TRTX-Cj1α) interacting with voltage sensors in sodium channel subtype Nav1.5. FASEB J., 2011, 25(9), 3177-3185.
[http://dx.doi.org/10.1096/fj.10-178848] [PMID: 21665957]
[10]
Powell, M.E.; Bradish, H.M.; Cao, M.; Makinson, R.; Brown, A.P.; Gatehouse, J.A.; Fitches, E.C. Demonstrating the potential of a novel spider venom-based biopesticide for target-specific control of the small hive beetle, a serious pest of the European honeybee. J. Pest Sci., 2020, 93(1), 391-402.
[http://dx.doi.org/10.1007/s10340-019-01143-3] [PMID: 31997983]
[11]
Jin, L.; Fang, M.; Chen, M.; Zhou, C.; Ombati, R.; Hakim, M.A.; Mo, G.; Lai, R.; Yan, X.; Wang, Y.; Yang, S. An insecticidal toxin from Nephila clavata spider venom. Amino Acids, 2017, 49(7), 1237-1245.
[http://dx.doi.org/10.1007/s00726-017-2425-2] [PMID: 28497266]
[12]
Vassilevski, A.A.; Kozlov, S.A.; Samsonova, O.V.; Egorova, N.S.; Karpunin, D.V.; Pluzhnikov, K.A.; Feofanov, A.V.; Grishin, E.V. Cy-to-insectotoxins, a novel class of cytolytic and insecticidal peptides from spider venom. Biochem. J., 2008, 411(3), 687-696.
[http://dx.doi.org/10.1042/BJ20071123] [PMID: 18215128]
[13]
Liu, W.B.; Yan, Q.; Liu, F.Y.; Tang, X.C.; Chen, H.G.; Liu, J.; Nie, L.; Zhang, X.W.; Ji, W-K.; Hu, X.H.; Hu, W.F.; Woodward, Z.; Wu, K.L.; Wu, M.X.; Liu, X.L.; Luo, L.X.; Yu, M.B.; Liu, Y.Z.; Liu, S.J.; Li, D.W. Protein serine/threonine phosphotase-1 is essential in governing normal development of vertebrate eye. Curr. Mol. Med., 2012, 12(10), 1361-1371.
[http://dx.doi.org/10.2174/156652412803833535] [PMID: 23016590]
[14]
Huang, X.; Wang, Q.; Huang, Q.; Zhou, Y.M.; Ye, Y.L. Advances in research on cytotoxicity of spider toxin. J. Guangxi Tradit. Chin. Med. Univ., 2007, 10(1), 82-84.
[15]
Tan, C.H.; Tan, K.Y.; Ng, T.S.; Quah, E.S.H.; Ismail, A.K.; Khomvilai, S.; Sitprija, V.; Tan, N.H. Venomics of Trimeresurus (Popeia) nebularis, the cameron highlands pit viper from malaysia: Insights into venom proteome, toxicity and neutralization of antivenom. Toxins, 2019, 11(2), 95.
[http://dx.doi.org/10.3390/toxins11020095] [PMID: 30736335]
[16]
Yuan, C.; Jin, Q.; Tang, X.; Hu, W.; Cao, R.; Yang, S.; Xiong, J.; Xie, C.; Xie, J.; Liang, S. Proteomic and peptidomic characterization of the venom from the Chinese bird spider, Ornithoctonus huwena Wang. J. Proteome Res., 2007, 6(7), 2792-2801.
[http://dx.doi.org/10.1021/pr0700192] [PMID: 17567163]
[17]
Díaz, C.; Rivera, J.; Lomonte, B.; Bonilla, F.; Diego-García, E.; Camacho, E.; Tytgat, J.; Sasa, M. Venom characterization of the bark scorpion Centruroides edwardsii (Gervais 1843): Composition, biochemical activities and in vivo toxicity for potential prey. Toxicon, 2019, 171, 7-19.
[http://dx.doi.org/10.1016/j.toxicon.2019.09.021] [PMID: 31585140]
[18]
Oldrati, V.; Koua, D.; Allard, P-M.; Hulo, N.; Arrell, M.; Nentwig, W.; Lisacek, F.; Wolfender, J.L.; Kuhn-Nentwig, L.; Stöcklin, R. Peptidomic and transcriptomic profiling of four distinct spider venoms. PLoS One, 2017, 12(3), e0172966.
[http://dx.doi.org/10.1371/journal.pone.0172966] [PMID: 28306751]
[19]
Xu, X.; Yin, C.M.; Griswold, C.E. A new species of the spider genus Macrothele from the Gaoligong Mountains, Yunnan, China (Araneae: Hexathelidae). Pan-Pac. Entomol., 2002, 78(2), 116-119.
[20]
Hu, Z.; Chen, B.; Xiao, Z.; Zhou, X.; Liu, Z. Transcriptomic analysis of the spider venom gland reveals venom diversity and species con-sanguinity. Toxins, 2019, 11(2), 68.
[http://dx.doi.org/10.3390/toxins11020068] [PMID: 30682870]
[21]
Huang, P.F. Activity and applied fundamental research of two spider toxins, PhD Thesis; The Hunan Normal University: Hunan, 2015.
[22]
Wang, M.R.; Wang, Y.; Zhou, S.T.; Yang, Z.Z.; Li, L.X.; Yang, Z.B. Determination of peptide and protein diversity in the venom of Macrothele yani. Sichuan Dong Wu, 2019, 38, 408-414.
[23]
Rey-Suárez, P.; Núñez, V.; Fernández, J.; Lomonte, B. Integrative characterization of the venom of the coral snake Micrurus dumerilii (Elapidae) from Colombia: Proteome, toxicity, and cross-neutralization by antivenom. J. Proteomics, 2016, 136, 262-273.
[http://dx.doi.org/10.1016/j.jprot.2016.02.006] [PMID: 26883873]
[24]
Abreu, T.F.; Sumitomo, B.N.; Nishiyama, M.Y., Jr; Oliveira, U.C.; Souza, G.H.; Kitano, E.S.; Zelanis, A.; Serrano, S.M.; Junqueira-de-Azevedo, I.; Silva, P.I., Jr; Tashima, A.K. Peptidomics of Acanthoscurria gomesiana spider venom reveals new toxins with potential anti-microbial activity. J. Proteomics, 2017, 151, 232-242.
[http://dx.doi.org/10.1016/j.jprot.2016.07.012] [PMID: 27436114]
[25]
Liang, S. Proteome and peptidome profiling of spider venoms. Expert Rev. Proteomics, 2008, 5(5), 731-746.
[http://dx.doi.org/10.1586/14789450.5.5.731] [PMID: 18937563]
[26]
Escoubas, P.; Rash, L. Tarantulas: Eight-legged pharmacists and combinatorial chemists. Toxicon, 2004, 43(5), 555-574.
[http://dx.doi.org/10.1016/j.toxicon.2004.02.007] [PMID: 15066413]
[27]
Huang, L.; Wang, Z.; Yu, N.; Li, J.; Liu, Z. Toxin diversity revealed by the venom gland transcriptome of Pardosa pseudoannulata, a natural enemy of several insect pests. Comp. Biochem. Physiol. Part D Genomics Proteomics, 2018, 28, 172-182.
[http://dx.doi.org/10.1016/j.cbd.2018.09.002] [PMID: 30290365]
[28]
Liberato, T.; Troncone, L.R.P.; Yamashiro, E.T.; Serrano, S.M.T.; Zelanis, A. High-resolution proteomic profiling of spider venom: expanding the toxin diversity of Phoneutria nigriventer venom. Amino Acids, 2016, 48(3), 901-906.
[http://dx.doi.org/10.1007/s00726-015-2151-6] [PMID: 26803659]
[29]
Oldrati, V.; Arrell, M.; Violette, A.; Perret, F.; Sprüngli, X.; Wolfender, J.L.; Stöcklin, R. Advances in venomics. Mol. Biosyst., 2016, 12(12), 3530-3543.
[http://dx.doi.org/10.1039/C6MB00516K] [PMID: 27787525]
[30]
Santos, P.P.; Games, P.D.; Azevedo, D.O.; Barros, E.; de Oliveira, L.L.; de Oliveira Ramos, H.J.; Baracat-Pereira, M.C.; Serrão, J.E. Proteomic analysis of the venom of the predatory ant Pachycondyla striata (Hymenoptera: Formicidae). Arch. Insect Biochem. Physiol., 2017, 96(3), e21424.
[http://dx.doi.org/10.1002/arch.21424] [PMID: 29024043]
[31]
Satake, H.; Villegas, E.; Oshiro, N.; Terada, K.; Shinada, T.; Corzo, G. Rapid and efficient identification of cysteine-rich peptides by random screening of a venom gland cDNA library from the hexathelid spider Macrothele gigas. Toxicon, 2004, 44(2), 149-156.
[http://dx.doi.org/10.1016/j.toxicon.2004.05.012] [PMID: 15246762]
[32]
Corzo, G.; Gilles, N.; Satake, H.; Villegas, E.; Dai, L.; Nakajima, T.; Haupt, J. Distinct primary structures of the major peptide toxins from the venom of the spider Macrothele gigas that bind to sites 3 and 4 in the sodium channel. FEBS Lett., 2003, 547(1-3), 43-50.
[http://dx.doi.org/10.1016/S0014-5793(03)00666-5] [PMID: 12860384]
[33]
Koua, D.; Mary, R.; Ebou, A.; Barrachina, C.; El Koulali, K.; Cazals, G.; Charnet, P.; Dutertre, S. Proteotranscriptomic insights into the venom composition of the wolf spider Lycosa tarantula. Toxins, 2020, 12(8), 501.
[http://dx.doi.org/10.3390/toxins12080501] [PMID: 32764230]
[34]
Huang, Y.S.; Sun, Y. Research advance in heart failure and neprilysin. Chin J Mult Organ Dis Elderly, 2018, 17(1), 73-76.
[35]
Waterworth, W.M.; Kozak, J.; Provost, C.M.; Bray, C.M.; Angelis, K.J.; West, C.E. DNA ligase 1 deficient plants display severe growth defects and delayed repair of both DNA single and double strand breaks. BMC Plant Biol., 2009, 9(1), 79.
[http://dx.doi.org/10.1186/1471-2229-9-79] [PMID: 19558640]
[36]
Díaz, C.; Rivera, J.; Lomonte, B.; Bonilla, F.; Diego-García, E.; Camacho, E.; Tytgat, J.; Sasa, M. Venom characterization of the bark scorpion Centruroides edwardsii (Gervais 1843): Composition, biochemical activities and in vivo toxicity for potential prey. Toxicon, 2019, 171, 7-19.
[37]
Kerscher, S.J. Diversity and origin of alternative NADH: Ubiquinone oxidoreductases. Biochim. Biophys. Acta, 2000, 1459(2-3), 274-283.
[http://dx.doi.org/10.1016/S0005-2728(00)00162-6] [PMID: 11004440]
[38]
Martin, P.; Pardo, J.; Schill, N.; Jöckel, L.; Berg, M.; Froelich, C.J.; Wallich, R.; Simon, M.M. Granzyme B-induced and caspase 3-dependent cleavage of gelsolin by mouse cytotoxic T cells modifies cytoskeleton dynamics. J. Biol. Chem., 2010, 285(24), 18918-18927.
[http://dx.doi.org/10.1074/jbc.M109.056028] [PMID: 20395300]
[39]
Di, H.; Ji, C. Recent advances in research on gelsolin and related diseases. World Latest Med. Inf., 2019, 19(59), 109-111.
[40]
Huang, Y.Q.; Zhang, P.; Zhong, M.Q.; Yao, D.F.; Chen, J.H.; Zhang, Y.L. Analysis and comparison of agglutinative activity and the mo-lecular basis among 4 kinds of Litopenaeus vannamei hemocyanin based on different purification strategies. Shuichan Xuebao, 2018, 42(11), 1747-1753.
[41]
Zheng, L.; Zhao, X.; Zhang, P.; Chen, C.; Liu, S.; Huang, R.; Zhong, M.; Wei, C.; Zhang, Y. Hemocyanin from shrimp Litopenaeus vannamei has antiproliferative effect against HeLa cell in vitro. PLoS One, 2016, 11(3), e0151801.
[http://dx.doi.org/10.1371/journal.pone.0151801] [PMID: 27007573]
[42]
Markl, J.; Winter, S. Subunit-specific monoclonal antibodies to tarantula hemocyanin, and a common epitope shared with calliphorin. J. Comp. Physiol. B, 1989, 159(2), 139-151.
[http://dx.doi.org/10.1007/BF00691734]
[43]
Shevchenko, A.; de Sousa, M.M.; Waridel, P.; Bittencourt, S.T.; de Sousa, M.V.; Shevchenko, A. Sequence similarity-based proteomics in insects: characterization of the larvae venom of the Brazilian moth Cerodirphia speciosa. J. Proteome Res., 2005, 4(3), 862-869.
[http://dx.doi.org/10.1021/pr0500051] [PMID: 15952733]
[44]
dos Santos Pinto, J.R.; Fox, E.G.P.; Saidemberg, D.M.; Santos, L.D.; da Silva Menegasso, A.R.; Costa-Manso, E.; Machado, E.A.; Bueno, O.C.; Palma, M.S. Proteomic view of the venom from the fire ant Solenopsis invicta Buren. J. Proteome Res., 2012, 11(9), 4643-4653.
[http://dx.doi.org/10.1021/pr300451g] [PMID: 22881118]
[45]
Lecht, S.; Chiaverelli, R.A.; Gerstenhaber, J.; Calvete, J.J.; Lazarovici, P.; Casewell, N.R.; Harrison, R.; Lelkes, P.I.; Marcinkiewicz, C. Anti-angiogenic activities of snake venom CRISP isolated from Echis carinatus sochureki. Biochim. Biophys. Acta, 2015, 1850(6), 1169-1179.
[http://dx.doi.org/10.1016/j.bbagen.2015.02.002] [PMID: 25665484]
[46]
Zhan, G.J.; Huang, F.J.; Xiao, B.J. Sequence variation and phylogenetic relationship of mitochondrial cytochrome b from Polyrhachis. Genomics Appl. Biol., 2015, 34(10), 2134-2141.
[47]
Xu, J.; Jing, M.D.; Huang, L. Sequence analysis of cytochrome b of Chinese house mice. Anhui Nongye Kexue, 2014, 42(4), 989-991.
[48]
Tasoulis, T.; Isbister, G.K. A review and database of snake venom proteomes. Toxins, 2017, 9(9), 290.
[http://dx.doi.org/10.3390/toxins9090290] [PMID: 28927001]
[49]
Estrada-Gómez, S.; Gomez-Rave, L.; Vargas-Muñoz, L.J.; van der Meijden, A. Characterizing the biological and biochemical profile of six different scorpion venoms from the Buthidae and Scorpionidae family. Toxicon, 2017, 130, 104-115.
[50]
Haney, R.A.; Matte, T.; Forsyth, F.S.; Garb, J.E. Alternative transcription at venom genes and its role as a complementary mechanism for the generation of venom complexity in the common house spider. Front. Ecol. Evol., 2019, 7, 85.
[http://dx.doi.org/10.3389/fevo.2019.00085] [PMID: 31431897]
[51]
Romero-Gutiérrez, M.T.; Santibáñez-López, C.E.; Jiménez-Vargas, J.M.; Batista, C.V.F.; Ortiz, E.; Possani, L.D. Transcriptomic and proteomic analyses reveal the diversity of venom components from the vaejovid scorpion Serradigitus gertschi. Toxins, 2018, 10(9), 359.
[http://dx.doi.org/10.3390/toxins10090359] [PMID: 30189638]
[52]
Zhang, Y.; Jia, Z.; Liu, Y.; Zhou, X.; Kong, Y. Characterization of venoms of Deinagkistrodon acutus and Bungarus multicinctus using proteomics and peptidomics. Curr. Proteomics, 2020, 17(3), 241-254.
[http://dx.doi.org/10.2174/1570164617666191121112319]
[53]
Xu, X.; Liu, J.; Wang, Y.; Si, Y.; Wang, X.; Wang, Z.; Zhang, Q.; Yu, H.; Wang, X. Kunitz-type serine protease inhibitor is a novel participator in anti-bacterial and anti-inflammatory responses in Japanese flounder (Paralichthys olivaceus). Fish Shellfish Immunol., 2018, 80, 22-30.
[http://dx.doi.org/10.1016/j.fsi.2018.05.058] [PMID: 29859305]
[54]
Luna-Ramírez, K.; Quintero-Hernández, V.; Juárez-González, V.R.; Possani, L.D. Whole transcriptome of the venom gland from Urodacus yaschenkoi scorpion. PLoS One, 2015, 10(5), e0127883.
[http://dx.doi.org/10.1371/journal.pone.0127883] [PMID: 26020943]
[55]
Langenegger, N.; Nentwig, W.; Kuhn-Nentwig, L. Spider venom: Components, modes of action, and novel strategies in transcriptomic and proteomic analyses. Toxins, 2019, 11(10), 611.
[http://dx.doi.org/10.3390/toxins11100611] [PMID: 31652611]
[56]
Shen, B.; Cao, Z.; Li, W.; Sabatier, J.M.; Wu, Y. Treating autoimmune disorders with venom-derived peptides. Expert Opin. Biol. Ther., 2017, 17(9), 1065-1075.
[http://dx.doi.org/10.1080/14712598.2017.1346606] [PMID: 28695745]
[57]
Shi, W.; Li, C.Y.; Chen, Y.Q. The effect of melittin on rat red blood cells and its mechanism. J. Nanjing Normal University, 2015, 38(2), 86-92.
[58]
Shu, Y.P.; Zhou, H.; Han, Y.M. Research progress of animal toxin-derived antitumor active peptides. Lishizhen Medicine and Materia Medica Research, 2010, 21(12), 3338-3339.
[59]
Uzair, B.; Bint-E-Irshad, S.; Khan, B.A.; Azad, B.; Mahmood, T.; Rehman, M.U.; Braga, V.A. Scorpion venom peptides as a potential source for human drug candidates. Protein Pept. Lett., 2018, 25(7), 702-708.
[http://dx.doi.org/10.2174/0929866525666180614114307] [PMID: 29921194]
[60]
Liang, H.Y.; Zhang, Q.; Chen, J.J. Research progress of spider venom. Jianyan Yixue Yu Linchuang, 2013, 10(19), 121-122.
[61]
Yan, F.; Meng, Q.X. Molecular mechanism of common animal toxins induce cell apoptosis. J. Biol., 2010, 27(3), 71-74.
[62]
Beraldo, E.; Coelho, G.R.; Sciani, J.M.; Pimenta, D.C. Proteomic characterization of Naja mandalayensis venom. J. Venom. Anim. Toxins Incl. Trop. Dis., 2021, 27, e20200125.
[http://dx.doi.org/10.1590/1678-9199-jvatitd-2020-0125] [PMID: 34394208]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy