Generic placeholder image

Central Nervous System Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5249
ISSN (Online): 1875-6166

Review Article

Biomedical Applications of Polyurethane Hydrogels, Polyurethane Aerogels, and Polyurethane-graphene Nanocomposite Materials

Author(s): Saganuwan Alhaji Saganuwan*

Volume 22, Issue 2, 2022

Published on: 02 August, 2022

Page: [79 - 87] Pages: 9

DOI: 10.2174/1871524922666220429115124

Price: $65

Abstract

Background: The emergence of new diseases poses therapeutic challenges in modern medicine. Polyurethane hydrogels that comprise polyol, copolymer and extender could be prepared from diverse chemical compounds with adjuvants such as ascorbic acid and sorbitol, among others. Their mechano-physicochemical properties are functions of their biological activities. Therefore, there is a need to assess their therapeutic potentials.

Methods: Relevant literature on the synthesis and medical uses of polyurethane-hydrogels, polyurethane- aerogels, and polyurethane-graphene nanocomposite materials was searched in order to identify their sources, synthesis, mechanical and physiochemical properties, biomedical applications, chirality, and the relevance of Lipinski's rule of five in the synthesis of oral polyurethane nanocomposite materials.

Results: The prepared hydrogels and aerogels could be used as polymer carriers for intradermal, cutaneous, and intranasal drugs. They can be fabricated and used as prosthetics. In addition, the strength modulus (tensile stress-tensile strain ratio), biodegradability, biocompatibility, and nontoxic effects of the polyurethane hydrogels and aerogels are highly desirable properties. However, body and environmental temperatures may contribute to their instability; hence, there is need to improve the synthesis of aerogels and hydrogels of polyurethane in order to ensure that they can last for many years. Alcoholism, diabetes, pyrogenic diseases, mechanical and physical forces, and physiological variability may also reduce the life span of polyurethane aerogels and hydrogels.

Conclusion: Synthesis of polyurethane hydrogel-aerogel complex that can be used in complex, rare biomedical cases is of paramount importance. These hydrogels and aerogels may be hydrophobic, hydrophilic, aerophobic-aerophilic or amphiphilic, and sometimes lipophilic, depending on structural components and the intended biomedical uses. Polyurethane graphene nanocomposite materials are used in the treatment of a myriad of diseases, including cancer and bacterial infection.

Keywords: Polyurethane, hydrogel, aerogel, biomedical use, synthesis, amphiphilic, graphene.

« Previous
Graphical Abstract

[1]
Stegman, J.K. Stedman’s Medical Dictionary. In: Lippincott Williams and Wilkins, 28th ed.; A Wolters Kluver Company: Baltimore, USA,, 2006.
[2]
Sandhu, H.; Rampal, S. Essentials of veterinary pharmacology and therapeutics; Kalyani Publishers: New Delhi, India, 2006.
[3]
Pivec, T.; Smole, M.S.; Gasparic, P.; Kleinschek, K.S. Polyurethanes for medical use. Tekstilec, 2017, 60(4), 27-48.
[http://dx.doi.org/10.14502/Tekstilec2017.60.182-197]
[4]
Behrendt, G.; Naber, B. Chemical recycling of polyurethanes. J. Univ. Chem. Technol. Metallur., 2009, 44(1), 3-23.
[5]
Szostak-kotow, J. Biodeterioraction of textiles. Int. Biodeterior. Biodegradation, 2004, 53(3), 165-170.
[http://dx.doi.org/10.1016/S0964-8305(03)00090-8]
[6]
Rogulska, M.; Podkoscielny, W.; Kulttis, A.; Pikus, S.; Pozdzik, E. Studies on thermoplastic polyurethanes bases on new diphenylethane- derivative diols. 1. Synthesis and characterization of nonsegmented polyurethanes from HDI and MDI. Eur. Polym. J., 2006, 42(8), 1786-1797.
[http://dx.doi.org/10.1016/j.eurpolymj.2006.02.014]
[7]
Tan, D.; Li, Z.; Yao, X.; Xiang, C.; Tan, H.; Fu, Q. The influence of fluorocarbon chain and phosphorylcholine on the improvement of hemocompatibility: A comparative study in polyurethanes. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(10), 1344-1353.
[http://dx.doi.org/10.1039/C3TB21473G] [PMID: 32261449]
[8]
Liu, C.; Guan, Y.; Su, Y.; Zhao, L.; Meng, F.; Yao, Y.; Luo, J. Surface change switchable and are cross-linked polyurethane micelles as a reduction-triggered drug delivery system for cancer therapy. RSC Advances, 2017, 7(18), 11021-11029.
[http://dx.doi.org/10.1039/C7RA00346C]
[9]
Yu, S.; He, C.; Ding, J.; Cheng, Y.; Song, W.; Zhuang, X.; Chen, X. pH and reduction dual responsive polyurethane triblock copolymers for efficient intracellular drug delivery. Soft Matter, 2013, 9(9), 2637-2645.
[http://dx.doi.org/10.1039/c2sm27616j]
[10]
Kurt, C.F.; Daniel, K. Advances in Urethane: Science and Technology; CRC Press: USA, 1996, p. 8.
[11]
Gharibi, R.; Yeganeh, H.; Rezapour-Lactoee, A.; Hassan, Z.M. Stimulation of wound healing by electroactive antibacterial, and antioxidant polyurethane/siloxane dressing membranes in vitro and In vivo evaluations. ACS Appl. Mater. Interfaces, 2015, 7(43), 24296-24311.
[http://dx.doi.org/10.1021/acsami.5b08376] [PMID: 26473663]
[12]
Sharifpoor, S.; Labow, R.S.; Santerre, J.P. Synthesis and characterization of degradable polar hydrophobic ionic polyurethane scaffolds for vascular tissue engineering applications. Biomacromolecules, 2009, 10(10), 2729-2739.
[http://dx.doi.org/10.1021/bm9004194] [PMID: 19754121]
[13]
Gradinaru, L.M.; Ciobanu, C.; Vlad, S.; Bercea, M.; Popa, M. Thermoreversible poly (isopropyl lactate diol)-based polyurethane hydrogels:Effect of isocyanate on some physical properties. Ind. Eng. Chem. Res., 2013, 51(38), 12344-12354.
[14]
Gennen, S.; Grignard, B.; Thomasin, J-M.; Gilbert, B.; Vertrayen, B.; Jerone, C.; Detrembleur, C. Polyhydroxyurethane hydrogels: Synthesis and characterization. Eur. Polym. J., 2016, 84, 849-862.
[http://dx.doi.org/10.1016/j.eurpolymj.2016.07.013]
[15]
Wendels, S.; Avérous, L. Biobased polyurethanes for biomedical applications. Bioact. Mater., 2020, 6(4), 1083-1106.
[http://dx.doi.org/10.1016/j.bioactmat.2020.10.002] [PMID: 33102948]
[16]
Krol, P. Synthesis methods, chemical strucures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Prog. Mater. Sci., 2007, 52(6), 915-1015.
[http://dx.doi.org/10.1016/j.pmatsci.2006.11.001]
[17]
Forresst, M.J. Chemical characterization of polyurethanes. In: Rapra Review Reports; Rapra Technology Ltd.: Shrewsbury, UK, 1999.
[18]
Vermette, P.; Griesser, J.H.; Laroche, G.; Guidom, R. Biomedical applications of polyurethanes Eurekah.com Landes Bioscience: Texas, US; , 2001.
[19]
Gerkin, R.M.; Hilker, B.L. Segmented Block Copolymer. In: Encyclopedia of Membranes; Springer: Berlin, Heidelberg, 2008.
[20]
Guantillake, P.; Meijs, G. Polyurethanes in Biomedical Engineering; Elsevier: Amsterdam, 2001, pp. 7746-7752.
[21]
Ergels, H.W.; Pirki, H.G.; Albers, R.; Albach, R.W.; Krause, J.; Hoffmann, A. Cassel – Mann, H.; Dormish, J. Polyurethanes: Versatile materials and sustainable problem solver for today’s challenges. Angew. Chem. Int. Ed., 2013, 52(36), 9422-9441.
[http://dx.doi.org/10.1002/anie.201302766]
[22]
Borcan, F.; Soica, C.M.; Ganta, S.; Amiji, M.M.; Dehelean, C.A.; Munteanu, M.F. Synthesis and preliminary in vivo evaluations of polyurethane microstructures for transdermal drug delivery. Chem. Cent. J., 2012, 6(1), 87.
[http://dx.doi.org/10.1186/1752-153X-6-87] [PMID: 22892194]
[23]
Prisacarius, C. Structural studies on polyurethane elastomers. In: Polyurethane elastomers: Firm morphology mechanical aspects; Springer: Vienna, 2011; pp. 23-60.
[http://dx.doi.org/10.1007/978-3-7091-0514-6_2]
[24]
Lelah, M.D. Cooper SL Polyurethane in Medicine; CRC Press: Florida, USA, 1986.
[25]
Petrini, P.; Farè, S.; Piva, A.; Tanzi, M.C. Design, synthesis and properties of polyurethane hydrogels for tissue engineering. J. Mater. Sci. Mater. Med., 2003, 14(8), 683-686.
[http://dx.doi.org/10.1023/A:1024955531173] [PMID: 15348408]
[26]
Blackbourn, L.; Amish, N. Scaffold-based cell delivery for cordiac repair. In stem cell and gene therapy for cardiovascular disease; Elsevier Inc., 2016.
[27]
Oveissi, F.; Nafiry, S.; Le, T.Y.L.; Fletcher, D.F.; Dehghani, F. Tough hydrophilic polyurethane-based hydrogels with mechanical properties similar to human soft tissues. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(22), 3512-3519.
[http://dx.doi.org/10.1039/C9TB00080A]
[28]
Zhang, F.; Hu, C.; Kong, Q.; Luo, R.; Wang, Y. Peptide/drug-directed self-assembly of hybrid polyurethane hydrogels for wound healing. ACS Appl. Mater. Interfaces, 2019, 11(40), 37147-37155.
[http://dx.doi.org/10.1021/acsami.9b13708] [PMID: 31513742]
[29]
Tatai, L.; Moore, T.G.; Adhikari, R.; Malherbe, F.; Jayasekara, R.; Griffiths, I.; Gunatillake, P.A. Thermoplastic biodegradable polyurethanes: The effect of chain extender structure on properties and in-vitro degradation. Biomaterials, 2007, 28(36), 5407-5417.
[http://dx.doi.org/10.1016/j.biomaterials.2007.08.035] [PMID: 17915310]
[30]
Mathebula, S.D. Polyol pathway: A possible mechanism of diabetes complications in the eye. Afr. Vision Eye Health, 2015, 74(1), 1-5.
[http://dx.doi.org/10.4102/aveh.v74i1.13]
[31]
Saganuwan, S.A. Drugs with inhibitory potential on polyol pathways of diabetic neuropathy: An overview. Diabet. Complicat., 2020, 4(3), 1-7.
[http://dx.doi.org/10.33425/2639-9326.1074]
[32]
Lorenzi, M. The polyol pathway as a mechanism for diabetic retinopathy: Attractive, elusive and resilient; Exper. Diabet, 2007, p. 1061038.
[http://dx.doi.org/10.1155/2007/61038]
[33]
McLennan, S.; Yue, D.K.; Fisher, E.; Capogreco, C.; Heffernan, S.; Ross, G.R.; Turtle, J.R. Deficiency of ascorbic acid in experimental diabetes. Relationship with collagen and polyol pathway abnormalities. Diabetes, 1988, 37(3), 359-361.
[http://dx.doi.org/10.2337/diab.37.3.359] [PMID: 2836250]
[34]
Yan, L.J. Redox imbalance stress in diabetes mellitus: Role of the polyol pathway. Animal Model. Exp. Med., 2018, 1(1), 7-13.
[http://dx.doi.org/10.1002/ame2.12001] [PMID: 29863179]
[35]
Beyer-Mears, A.; Ku, L.; Cohen, M.P. Beyer- Mears, A.; Ku, L.; Cohen, M. P. Glomerular polyol accumulation in diabetes and its prevention by oral sorbinil. Diabetes, 1984, 33(6), 604-606.
[http://dx.doi.org/10.2337/diab.33.6.604]
[36]
Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res., 2015, 6(2), 105-121.
[http://dx.doi.org/10.1016/j.jare.2013.07.006] [PMID: 25750745]
[37]
Miotke, M.; Justyna, S.; Jerzy, K.; Michał, S.; Marek, J. Transport of paracetamol in swellable and relaxing polyurethane nanocomposite hydrogels. Polym. Bull., 2020, 1(77), 483-499.
[http://dx.doi.org/10.1007/s00289-019-02755-6]
[38]
Lai, Y.C.; Baccei, L.J. Novel polyurethane hydrogels for biomedical applications. J. Appl. Polym. Sci., 1991, 42(12), 3173-3179.
[http://dx.doi.org/10.1002/app.1991.070421210]
[39]
Could, F.E.; Johnston, C.W.; Seems, G.E. Thermal reversible polyurethane hydrogels and cosmetic, and biological and medical uses. US Patent, WO1989007117A1, 1991.
[40]
Burke, A.; Hasirci, N. Polyurethanes in biomedical applications. Adv. Exp. Med. Biol., 2004, 553, 83-101.
[http://dx.doi.org/10.1007/978-0-306-48584-8_7] [PMID: 15503449]
[41]
Wen, J.; Zhang, X.; Pan, M.; Yuan, J.; Jia, Z.; Zhu, L. A robust, tough and multifunctional polyurethane tannic acid hdydrogel fabricated by physical-chemical dual cross-linking. Polymer (Guildf.), 2020, 12(299), 1-15.
[42]
Calo, E.; Khutoryanskily, V.V. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J., 2015, 65, 252-267.
[http://dx.doi.org/10.1016/j.eurpolymj.2014.11.024]
[43]
Maldonado-Codina, C.; Efron, N. Hydrogel lenses-materials and manufacture. Optometry Practice, 2003, 4, 101-115.
[44]
Joseph, J.; Patel, R.M.; Wenham, A.; Smith, J.R. Biomedical applications of polyurethane materials and coatings. J. Transact. IMF, 2018, 96(3), 778.
[http://dx.doi.org/10.1080/00202967.2018.1450209]
[45]
Davis, F.J.; Mitchell, G.R. Polyurethane based materials with applications in medical device. In: Bio-materials and Prototyping Applications in Medicine; Springer: Berlin, Hielderberg,, 2008, pp. 27-48.
[http://dx.doi.org/10.1007/978-0-387-47683-4_3]
[46]
Arevalo-Alzuichire, S.; Valero, M. Castor oil polyurethane as biomaterials; IntechOpen, 2017.
[47]
Vasile, C.; Pamfil, D.; Stoleru, E.; Baican, M. New developments in medical application of hybiod hydrogels containing natural polymers. Molecule, 2020, 25(1539), 1-68.
[48]
Jiang, Z.; Hao, J.; You, Y.; Liu, Y.; Wang, Z.; Deng, X. Biodegradable and thermoreversible hydrogels of poly(ethylene glycol)-poly(epsilon-caprolactone-co-glycolide)-poly(ethylene glycol) aqueous solutions. J. Biomed. Mater. Res. A, 2008, 87(1), 45-51.
[http://dx.doi.org/10.1002/jbm.a.31699] [PMID: 18080306]
[49]
Varghese, S.; Elisseeff, J.H. Hydrogels for musculoskeletal tissue engineering. Adv. Polym. Sci., 2006, 203, 95-144.
[http://dx.doi.org/10.1007/12_072]
[50]
Higuchi, A.; Aoki, N.; Yamamoto, T.; Miyazaki, T.; Fukushima, H.; Tak, T.M.; Jyujyoji, S.; Egashira, S.; Matsuoka, Y.; Natori, S.H. Temperature-induced cell detachment on immobilized pluronic surface. J. Biomed. Mater. Res. A, 2006, 79(2), 380-392.
[http://dx.doi.org/10.1002/jbm.a.30773] [PMID: 16883586]
[51]
Saganuwan, S.A. Biomedical application of polymers: A case study of non-CNS drugs becoming CNS acting drugs. Cent. Nerv. Syst. Agents Med. Chem., 2018, 18(1), 32-38.
[http://dx.doi.org/10.2174/1871524917666170821115748] [PMID: 28828968]
[52]
Malakooti, S.; Rostami, S.; Churu, H.G.; Luo, H.; Clark, J.; Casarez, F.; Rettenmaier, O.; Daryadel, S.; Minary-Jolandan, M.; Sotiriou-Leventis, C.; Leventis, N.; Lu, H. Scalable, hydrophobic and highly-stretchable poly (isocyanurate-urethane) aerogels. RSC Advances, 2018, 8(38), 21214-21225.
[http://dx.doi.org/10.1039/C8RA03085E]
[53]
Rewatkar, P.M.; Saeed, A.M.; Hojat, M.F.; Suraj, D. Polyurethane aerogels based on cyclodextrins: High-capacity desiccants regenerated at room temperature by reducing the relative humidity of the environment. ACS Appl. Mater. Interfaces, 2019, 11(37), 34292-34304.
[54]
Saganuwan, S.A. Physiochemical and structure-activity properties of piroxicam – a mini review. Comp. Clin. Pathol., 2016, 25(5), 941-945.
[http://dx.doi.org/10.1007/s00580-016-2284-3]
[55]
Martin, D.; Agarwal, R.K. Enhancement of mechanical and thermal characteristics of polyurethane-based composite with silica aerogel. Mater. Sci. Forum, 2019, 951, 63-67.
[http://dx.doi.org/10.4028/www.scientific.net/MSF.951.63]
[56]
Gurav, J.L.; Jung, I.K.; Park, H.H.; Kang, E.S.; Nadargi, D.T. Silica aerogel: Synthesis and applications. J. Nanomater., 2010, 2010, 1040810.
[57]
Cheng, K.J.; Wang, T.Z.; Peng, K.C.; Tsai, H.B.; Chen, J.R.; Huang, C.T.; Ho, K.S.; Lien, W.F. Preparation of silica aerogel/polyurethane composites for the application of thermal insulation. J. Polym. Res., 2014, 21(338), 338.
[http://dx.doi.org/10.1007/s10965-013-0338-7]
[58]
Diascorn, N.; Calas, S.; Sallee, H.; Achard, P.; Rigacci, A. Polyurethane aerogels synthesis for thermal insulation-textural, thermal and mechanical properties. J. Supercrit. Fluids, 2015, 106, 76-84.
[http://dx.doi.org/10.1016/j.supflu.2015.05.012]
[59]
Rigacci, A.; Achard, P. Cellulosic and polyurethane aerogels. In: Aerogels Handbook; Springer: Berlin, Heidelberg, 2011; pp. 191-214.
[http://dx.doi.org/10.1007/978-1-4419-7589-8_10]
[60]
Parwani, P.; Choi, A.D.; Lopez-Mattei, J.; Raza, S.; Chen, T.; Narang, A.; Michos, E.D.; Erwin, J.P., III; Mamas, M.A.; Gulati, M. Understanding social media: Opportunities for cardiovascular medicine. J. Am. Coll. Cardiol., 2019, 73(9), 1089-1093.
[http://dx.doi.org/10.1016/j.jacc.2018.12.044] [PMID: 30846102]
[61]
Saganuwan, S.A.; Orinya, O.A. Toxico-neurological effects of piroxicam in monogastric animals. J. Exp. Neurosci., 2016, 10, 121-128.
[http://dx.doi.org/10.4137/JEN.S40144] [PMID: 27773993]
[62]
Chidambareswarapattar, C.; Loebs, J.M.; Larimore, Z.J. From flexible to hard polyurethane aerogels: The effect of molecular functionality vs. molecular rigidity. Proc. Libr. Anch, 2012, 11, 1403-1737.
[63]
Biesmans, G.; Randall, D.; Francais, E.; Perrut, M. Polyurethane-based aerogels for use as environemtnally acceptable super insulants in the future appliance market. J. Cell. Plast., 1998, 6, 2-6.
[64]
Hostettler, F.; Rhum, D.; Forman, M.R.; Helmus, M.N.; Ding, N. Process for preparation of slippery, tenaciously adhering hydrophilic polyurethane hydrogel coating, coated polymer and metal substrate materials, and coated medical devices. United States Patent, 6,080,488, 2000.
[65]
Saganuwan, S.A. In vivo piroxicam metabolites: Possible source for synthesis of central nervous system (CNS) acting depressants. Cent. Nerv. Syst. Agents Med. Chem., 2017, 17(3), 172-177.
[http://dx.doi.org/10.2174/1871524917666161111093759] [PMID: 27834137]
[66]
Elizabeth, C.V.; Sreekumar, K. Theoretical and experimental studies of chiral polyurethanes. J. Polym. Res., 2012, 19(3), 19.
[http://dx.doi.org/10.1007/s10965-011-9760-x]
[67]
Gudeangadi, P.; Sakamoto, T.; Shichibu, T.; Konishi, K.; Nakano, T. Chiral polyurethane synthesis leading to a-stacked 2/1-helical polymer and cyclic compounds. ACS Macro Lett., 2015, 4(9), 901-906.
[http://dx.doi.org/10.1021/acsmacrolett.5b00477]
[68]
Kizuka, K.; Inoue, S.I. Synthesis and properties of chiral polyurethane elastomers using tartaric acids. Open J. Organ. Polymer Material., 2016, 06(01), 38-52.
[http://dx.doi.org/10.4236/ojopm.2016.61005]
[69]
Kumpuga, B.T.; Ptsuno, S. Synthesis of chiral polyurethanes of cinchona alkaloids for the enantioselective synthesis in assymetric cartalysis. Catal. Commun., 2019, 118, 5-9.
[http://dx.doi.org/10.1016/j.catcom.2018.09.010]
[70]
Dez, I.; Gruetzmacher, H.; Levolois-Mitjaville, J.; De Jaegger, R. New chiral polyurethane polymers based on functionalized cyclotriphosphazenes. Phospo Sulf. Silic. Relat. Elem, 1999, 147(1), 101.
[http://dx.doi.org/10.1080/10426509908053531]
[71]
Saganuwan, S.A. Conversion of benzimidazoles; imidazothazoles, and imidazoles into more potent central nervous system acting drugs. Cent. Nerv. Syst. Agents Med. Chem., 2019, 19, 1-10.
[72]
Saganuwan, S.A. Proxicam: Source for synthesis of central nervous system (CNS) acting drugs. Cent. Nerv. Syst. Agents Med. Chem., 2017, 17, 1-6.
[73]
Saganuwan, S.A. Chirality of central nervous system (CNS) acting drugs: A formidable therapeutic hurdle against CNS diseases. Cent. Nerv. Syst. Agents Med. Chem., 2019, 19(3), 171-179.
[http://dx.doi.org/10.2174/1871524919666190624150214] [PMID: 31232237]
[74]
Bhal, S.K.; Kassam, K.; Peirson, I.G.; Pearl, G.M. The rule of five revisited: Applying log D in place of log P in drug-likeness filters. Mol. Pharm., 2007, 4(4), 556-560.
[http://dx.doi.org/10.1021/mp0700209] [PMID: 17530776]
[75]
Walters, W.P. Going further than Lipinski’s rule in drug design. Expert Opin. Drug Discov., 2012, 7(2), 99-107.
[http://dx.doi.org/10.1517/17460441.2012.648612] [PMID: 22468912]
[76]
Chagas, C.M.; Moss, S.; Alisaraie, L. Drug metabolites and their effects on the development of adverse reactions: Revisiting Lipinski’s Rule of Five. Int. J. Pharm., 2018, 549(1-2), 133-149.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.046] [PMID: 30040971]
[77]
Pollastri, M.P. Overview on the rule of five. Curr. Protocols Pharmacol., 2010, 9(49), 12.
[PMID: 22294375]
[78]
Chen, X.; Li, H.; Tran, L.; Li, Q.; Luo, J.; Zhang, Y. Analysis of the physiochemical properties of acaricides based on lipinski’s rule of 5. J. Curr. Bbiol., 2020, 27, 1-10.
[79]
Zhang, M.Q.; Wilkinson, B. Drug discovery beyond the ‘rule-of-five’. Curr. Opin. Biotechnol., 2007, 18(6), 478-488.
[http://dx.doi.org/10.1016/j.copbio.2007.10.005] [PMID: 18035532]
[80]
Di, L.; Kerns, E.; Li, Q.S.; Carter, G.T. Comparision of lytochrome p450 inhibition assays for dry discovery using human liver microsomes with LC - MS, rhcyp450 enzymes with fluorescence and double cocktail with LC - MS. Int. J. Pharmaceutic., 2007, 335, 1-11.
[http://dx.doi.org/10.1016/j.ijpharm.2006.10.039] [PMID: 17137735]
[81]
Bahrami, S.; Solouk, A.; Mirzadeh, H.; Seifalian, A.M. Electroconductive polyurethane/graphene nanocomposite for biomedical applications. Compos., Part B Eng., 2019, 168, 421-431.
[http://dx.doi.org/10.1016/j.compositesb.2019.03.044]
[82]
Kaur, G.; Raju, A.; Peter, C.; Mark, B.; Pathiraja, G. Electrically conductive polymers and composites for biomedical applications. RSC Advances, 2015, 47(5), 37553-37567.
[http://dx.doi.org/10.1039/C5RA01851J]
[83]
Cristofolini, L.; Guidetti, G.; Morellato, K.; Gibertini, M.; Calvaresi, M.; Zerbetto, F.; Montalti, M.; Falini, G. Graphene materials strengthen aqueous polyurethane adhesives. ACS Omega, 2018, 3(8), 8829-8835.
[http://dx.doi.org/10.1021/acsomega.8b01342] [PMID: 31459016]
[84]
Cunha, E.; Paiva, M.C. Composite films of waterborne polyurethane and few-layer grapheme-enhancing barrier, mechanical, and electrical properties. J. Composit. Sci., 2019, 3(2), 35.
[http://dx.doi.org/10.3390/jcs3020035]
[85]
Larraza, I.; Alonso-Lerma, B.; Gonzalez, K.; Gabilondo, N.; Perez-Jimenez, R.; Corcuera, M.A.; Arbelaiz, A.; Eceiza, A. Waterborne polyurethane and graphene/graphene oxide-based nanocomposites: Reinforcement and electrical conductivity. Express Polym. Lett., 2020, 11(14), 6-8.
[86]
Alberto, M.; Iliut, M.; Pitchan, M.K.; Behnsen, J. High-grip and hard-wearing graphene reinforced polyurethane coatings. Compos., Part B Eng., 2021, (213), 108727.
[87]
Albozahid, M.; Habeeb, S.A.; Alhilo, N.A.I.; Saiani, A. The impact of graphene nanofiller loading on the morphology and rheology behaviour of highly rigid polyurethane copolymer. Mater. Res. Express, 2020, 7(12), 125304.
[http://dx.doi.org/10.1088/2053-1591/aba5ce]
[88]
Wang, T.; Zhao, L.; Shen, J.N.; Wu, L.G.; Van der Bruggen, B. Enhanced performance of polyurethane hybrid membranes for CO2 separation by incorporating graphene oxide: The relationship between membrane performance and morphology of graphene oxide. Environ. Sci. Technol., 2015, 49(13), 8004-8011.
[http://dx.doi.org/10.1021/acs.est.5b00138] [PMID: 26024066]
[89]
Shen, H.; Zhang, L.; Liu, M.; Zhang, Z. Biomedical applications of graphene. Theranostics, 2012, 2(3), 283-294.
[http://dx.doi.org/10.7150/thno.3642] [PMID: 22448195]
[90]
Lalfa, C.K.; Merugu, R. Biological and medical application of graphene nano particles. Int. J. Chem. Math. Phys., 2017, 1(1), 55-61.
[91]
Kusuma, K.B.; Manju, M.; Ravikumar, C.R.; Nagaswarupa, H.P.; Shilpa Amulya, M.A.; Anilkumar, M.R.; Avinash, B.; Gurushantha, K.; Ravikantha, N. Photocatalytic and electrochemical sensor for direct detection of paracetamol comprising γ-aluminium oxide nanoparticles synthesized via sonochemical route. Sensor Int., 2020, 1(1), 100039.
[http://dx.doi.org/10.1016/j.sintl.2020.100039]
[92]
Soares, S.; Sousa, J.; Pais, A.; Vitorino, C. Nanomedicine: Principles, properties, and regulatory issues. Front Chem., 2018, 6(6), 360.
[http://dx.doi.org/10.3389/fchem.2018.00360] [PMID: 30177965]
[93]
Zhang, T. A nanostructured Fabry-Perot interferometer for label-free biodetection Dissertation, Louisiana Tech University, Ruston, USA, August, 2012.
[94]
Guo, X.; Mei, N. Assessment of the toxic potential of graphene family nanomaterials. J. Food Drug Anal, 2014, 22(1), 105-115.
[http://dx.doi.org/10.1016/j.jfda.2014.01.009] [PMID: 24673908]
[95]
Syama, S.; Mohanan, P.V. Comprehensive application of graphene: Emphasis on biomedical concerns. Nano-Micro Lett., 2019, 11(1), 6.
[http://dx.doi.org/10.1007/s40820-019-0237-5] [PMID: 34137957]
[96]
Yang, Y.; Abdullah, M.A.; Zhiwen, T.; Dan, D.; Lin, Y. Graphene based materials for biomedical applications. Mater. Today, 2013, 10(16), 365-373.
[http://dx.doi.org/10.1016/j.mattod.2013.09.004]
[97]
Wang, R.; Paul, S.B.; Wayne, M.M. Nanomedicine in action: An overview of cancer nanomedicine on the market and in clinical trials. J. Nanomater., 2013, 13, 3-7.
[http://dx.doi.org/10.1155/2013/629681]
[98]
Vo-Dinh, T.; Cullum, D. Biosensors and biochips: Advances in biological and medical diagnostics. J. Anal. Chem., 2000, 366, 540-551.
[99]
Koyun, A.; Ahlatcioglu, E.; Ipek, Y.K. Biosensor and their principles. In: Roadmap of Biomedical Engineering and Milestone; IntechOpen, 2012; pp. 1-142.
[http://dx.doi.org/10.5772/48824]
[100]
Anthony, T.; George, N. Fundamentals and Applications; Oxford University Press: Oxford, UK, 1987, p. 770.
[101]
Eggins, B.R. Chemical sensors and biosensors; John Wiley & Sons, 2002, Vol. 2, pp. 2-12.
[102]
Mehrotra, P. Biosensors and their applications - A review. J. Oral Biol. Craniofac. Res., 2016, 6(2), 153-159.
[http://dx.doi.org/10.1016/j.jobcr.2015.12.002] [PMID: 27195214]
[103]
King, Q.; Liu, W.; Pan, Y.; Silberschmidt, V.V.; Dong, L.L.Z. Chemical functionalization of graphene oxide for improving mechanical and thermal properties of polyurethane composites. Design, 2015, 85, 1-20.
[104]
Liao, K-H.; Park, Y.T.; Abdala, A.; Macosko, C. Aqueous reduced graphene/thermoplastic polyurethane nanocomposites. Polymer (Guildf.), 2013, 54(17), 4555-4559.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy