Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

NMDA Inhibitors: A Potential Contrivance to Assist in Management of Alzheimer’s Disease

Author(s): Sakshi Painuli, Prabhakar Semwal, Wissam Zam, Yasaman Taheri, Shahira M. Ezzat, Peijun Zuo, Liping Li, Dileep Kumar, Javad Sharifi-Rad* and Natália Cruz-Martins*

Volume 26, Issue 12, 2023

Published on: 02 March, 2023

Page: [2099 - 2112] Pages: 14

DOI: 10.2174/1386207325666220428112541

Price: $65

Abstract

Alzheimer’s disease (AD) is an increasingly common neurodegenerative disease that attracts the attention of researchers and medical community in order to develop new, safe and more effective drugs. Currently available drugs could only slow the AD progression and relieve the symptoms, in addition to being linked to moderate-to-severe side effects. N-methyl D-aspartate (NMDA) receptors antagonists were reported to have the ability to block the glutamate-mediated excitotoxic activity being good therapeutic targets for several neurodegenerative diseases, including AD. Based on data obtained so far, this review provides an overview over the use of NMDA antagonists for AD treatment, starting with a key emphasis on present features and future aspects regarding the use of NMDA antagonists for AD, and lastly a key focus is also given on its use in precision medicine.

Keywords: Alzheimer disease; Neurodegeneration; N-methyl D-aspartate (NMDA) receptors; precision medicine

Next »
Graphical Abstract

[1]
Samanta, M.K.; Wilson, B.; Santhi, K.; Kumar, K.P.; Suresh, B. Alzheimer disease and its management: A review. Am. J. Ther., 2006, 13(6), 516-526.
[http://dx.doi.org/10.1097/01.mjt.0000208274.80496.f1] [PMID: 17122533]
[2]
Hou, Y.; Dan, X.; Babbar, M.; Wei, Y.; Hasselbalch, S.G.; Croteau, D.L.; Bohr, V.A. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol., 2019, 15(10), 565-581.
[http://dx.doi.org/10.1038/s41582-019-0244-7] [PMID: 31501588]
[3]
Crous-Bou, M.; Minguillón, C.; Gramunt, N.; Molinuevo, J.L. Alzheimer’s disease prevention: From risk factors to early intervention. Alzheimers Res. Ther., 2017, 9(1), 71.
[http://dx.doi.org/10.1186/s13195-017-0297-z] [PMID: 28899416]
[4]
Zuo, P.; Qu, W.; Cooper, R.N.; Goyer, R.A.; Diwan, B.A.; Waalkes, M.P. Potential role of alpha-synuclein and metallothionein in lead-induced inclusion body formation. Toxicol. Sci., 2009, 111(1), 100-108.
[http://dx.doi.org/10.1093/toxsci/kfp132] [PMID: 19542206]
[5]
Gosztyla, M.L.; Brothers, H.M.; Robinson, S.R. Alzheimer’s Amyloid-β is an antimicrobial peptide: A review of the evidence. J. Alzheimers Dis., 2018, 62(4), 1495-1506.
[http://dx.doi.org/10.3233/JAD-171133] [PMID: 29504537]
[6]
Zhang, L.; Qin, Z.; Sharmin, F.; Lin, W.; Ricke, K.M.; Zasloff, M.A.; Stewart, A.F.R.; Chen, H-H. Tyrosine phosphatase PTP1B impairs presynaptic NMDA receptor-mediated plasticity in a mouse model of Alzheimer’s disease. Neurobiol. Dis., 2021, 156, 105402.
[http://dx.doi.org/10.1016/j.nbd.2021.105402] [PMID: 34044147]
[7]
Athar, T.; Al Balushi, K.; Khan, S.A. Recent advances on drug development and emerging therapeutic agents for Alzheimer’s disease. Mol. Biol. Rep., 2021, 48(7), 5629-5645.
[http://dx.doi.org/10.1007/s11033-021-06512-9] [PMID: 34181171]
[8]
Gulsun, T.; Ucar, B.; Sahin, S.; Humpel, C. The organic cation transporter 2 inhibitor quinidine modulates the neuroprotective effect of nerve growth factor and memantine on cholinergic neurons of the basal nucleus of meynert in organotypic brain slices. Pharmacology, 2021, 106(7-8), 390-399.
[http://dx.doi.org/10.1159/000515907] [PMID: 33979803]
[9]
Zhu, D.; Wu, X.; Strauss, K.I.; Lipsky, R.H.; Qureshi, Z.; Terhakopian, A.; Novelli, A.; Banaudha, K.; Marini, A.M. N-methyl-D-aspartate and TrkB receptors protect neurons against glutamate excitotoxicity through an extracellular signal-regulated kinase pathway. J. Neurosci. Res., 2005, 80(1), 104-113.
[http://dx.doi.org/10.1002/jnr.20422] [PMID: 15744743]
[10]
Majláth, Z.; Vécsei, L. NMDA antagonists as Parkinson’s disease therapy: Disseminating the evidence. Neurodegener. Dis. Manag., 2014, 4(1), 23-30.
[http://dx.doi.org/10.2217/nmt.13.77] [PMID: 24640976]
[11]
Fox, M. ‘Evolutionary medicine’ perspectives on Alzheimer’s disease: Review and new directions. Ageing Res. Rev., 2018, 47, 140-148.
[http://dx.doi.org/10.1016/j.arr.2018.07.008] [PMID: 30059789]
[12]
Glass, D.J.; Arnold, S.E. Why Are Humans Vulnerable to Alzheimer’s Disease? Evolutionary Thinking in Medicine; Springer, 2016, pp. 329-345.
[http://dx.doi.org/10.1007/978-3-319-29716-3_21]
[13]
Steen, E.; Terry, B.M.; Rivera, E.J.; Cannon, J.L.; Neely, T.R.; Tavares, R.; Xu, X.J.; Wands, J.R.; de la Monte, S.M. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease--is this type 3 diabetes? J. Alzheimers Dis., 2005, 7(1), 63-80.
[http://dx.doi.org/10.3233/JAD-2005-7107] [PMID: 15750215]
[14]
Amtul, Z.; Wang, L.; Westaway, D.; Rozmahel, R.F. Neuroprotective mechanism conferred by 17beta-estradiol on the biochemical basis of Alzheimer’s disease. Neuroscience, 2010, 169(2), 781-786.
[http://dx.doi.org/10.1016/j.neuroscience.2010.05.031] [PMID: 20493928]
[15]
Goodenough, S.; Schleusner, D.; Pietrzik, C.; Skutella, T.; Behl, C. Glycogen synthase kinase 3β links neuroprotection by 17β-estradiol to key Alzheimer processes. Neuroscience, 2005, 132(3), 581-589.
[http://dx.doi.org/10.1016/j.neuroscience.2004.12.029] [PMID: 15837120]
[16]
Nilsen, J.; Irwin, R.W.; Gallaher, T.K.; Brinton, R.D. Estradiol in vivo regulation of brain mitochondrial proteome. J. Neurosci., 2007, 27, 14069-14077.
[17]
Rogers, J.; Strohmeyer, R.; Kovelowski, C.J.; Li, R. Microglia and inflammatory mechanisms in the clearance of amyloid β peptide. Glia, 2002, 40(2), 260-269.
[http://dx.doi.org/10.1002/glia.10153] [PMID: 12379913]
[18]
Demerath, E.W.; Towne, B.; Chumlea, W.C.; Sun, S.S.; Czerwinski, S.A.; Remsberg, K.E.; Siervogel, R.M. Recent decline in age at menarche: the Fels Longitudinal Study. Am. J. Hum. Biol., 2004, 16(4), 453-457.
[http://dx.doi.org/10.1002/ajhb.20039] [PMID: 15214063]
[19]
Allan, M.; Fagel, N.; Van Rampelbergh, M.; Baldini, J.; Riotte, J.; Cheng, H.; Edwards, R.L.; Gillikin, D.; Quinif, Y.; Verheyden, S. Lead concentrations and isotope ratios in speleothems as proxies for atmospheric metal pollution since the industrial revolution. Chem. Geol., 2015, 401, 140-150.
[http://dx.doi.org/10.1016/j.chemgeo.2015.02.035]
[20]
Clapp, B.W. Environmental History of Britain since the Industrial Revolution, 1st ed; Routledge, 1994.
[21]
Block, M.L.; Calderón-Garcidueñas, L. Air pollution: Mechanisms of neuroinflammation and CNS disease. Trends Neurosci., 2009, 32(9), 506-516.
[http://dx.doi.org/10.1016/j.tins.2009.05.009] [PMID: 19716187]
[22]
Florianne, Monnet-Tschudi; Marie-Gabrielle, Z.; Corina, B.; Anne, C.; Paul, H. Involvement of environmental mercury and lead in the etiology of neurodegenerative diseases. Rev. Environ. Health, 2006, 21, 105-118.
[23]
Notarachille, G.; Arnesano, F.; Calò, V.; Meleleo, D. Heavy metals toxicity: Effect of cadmium ions on amyloid beta protein 1-42. Possible implications for Alzheimer’s disease. Biometals, 2014, 27(2), 371-388.
[http://dx.doi.org/10.1007/s10534-014-9719-6] [PMID: 24557150]
[24]
Coon, K.D.; Myers, A.J.; Halperin, R.F.; Marlowe, L.; Kaleem, M.; Walker, D.G.; Ravid, R.; Heward, C.B.; Rogers, J.; Papassotiropoulos, A.; Reiman, E.M.; Hardy, J.; Craig, D.W.; Stephan, D.A.; Webster, J.A.; Pearson, J.V.; Hu, Lince; Zismann, V.L.; Beach, T.G.; Leung, D.; Bryden, L. A high-density whole-genome association study reveals that APOE is the major susceptibility gene for sporadic late-onset Alzheimer’s disease. J. Clin. Psychiatry, 2007, 68(4), 613-618.
[25]
Liu, Y.; Yu, J-T.; Wang, H-F.; Han, P-R.; Tan, C-C.; Wang, C.; Meng, X-F.; Risacher, S.L.; Saykin, A.J.; Tan, L. APOE genotype and neuroimaging markers of Alzheimer’s disease: Systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry, 2015, 86(2), 127-134.
[http://dx.doi.org/10.1136/jnnp-2014-307719] [PMID: 24838911]
[26]
Mota, S.I.; Ferreira, I.L.; Rego, A.C. Dysfunctional synapse in Alzheimer’s disease - A focus on NMDA receptors Neuropharmacology, 2014, 76(Pt A), 16-26.
[http://dx.doi.org/10.1016/j.neuropharm.2013.08.013] [PMID: 23973316]
[27]
Ferreira, I.L.; Resende, R.; Ferreiro, E.; Rego, A.C.; Pereira, C.F. Multiple defects in energy metabolism in Alzheimer’s disease. Curr. Drug Targets, 2010, 11(10), 1193-1206.
[http://dx.doi.org/10.2174/1389450111007011193] [PMID: 20840064]
[28]
Kocahan, S.; Akillioglu, K. Effects of NMDA receptor blockade during the early development period on the retest performance of adult Wistar rats in the elevated plus maze. Neurochem. Res., 2013, 38(7), 1496-1500.
[http://dx.doi.org/10.1007/s11064-013-1051-y] [PMID: 23619560]
[29]
Kandel, E.R.; Schwartz, J.H. Molecular biology of learning: Modulation of transmitter release. Science, 1982, 218(80), 433-443.
[30]
Yu, W.; Lu, B. Synapses and dendritic spines as pathogenic targets in Alzheimer’s disease. Neural Plast., 2012, 2012, 247150.
[http://dx.doi.org/10.1155/2012/247150] [PMID: 22474602]
[31]
Avila, J.; Llorens-Martín, M.; Pallas-Bazarra, N.; Bolós, M.; Perea, J.R.; Rodríguez-Matellán, A.; Hernández, F. Cognitive decline in neuronal aging and Alzheimer’s disease: Role of NMDA receptors and associated proteins. Front. Neurosci., 2017, 11, 626.
[http://dx.doi.org/10.3389/fnins.2017.00626] [PMID: 29176942]
[32]
Bloom, G.S. Amyloid-β and tau: The trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol., 2014, 71(4), 505-508.
[http://dx.doi.org/10.1001/jamaneurol.2013.5847] [PMID: 24493463]
[33]
Morris, G.P.; Clark, I.A.; Vissel, B. Questions concerning the role of amyloid-β in the definition, aetiology and diagnosis of Alzheimer’s disease. Acta Neuropathol., 2018, 136(5), 663-689.
[http://dx.doi.org/10.1007/s00401-018-1918-8] [PMID: 30349969]
[34]
Gardoni, F.; Mauceri, D.; Malinverno, M.; Polli, F.; Costa, C.; Tozzi, A.; Siliquini, S.; Picconi, B.; Cattabeni, F.; Calabresi, P.; Di Luca, M. Decreased NR2B subunit synaptic levels cause impaired long-term potentiation but not long-term depression. J. Neurosci., 2009, 29, 669-677.
[http://dx.doi.org/10.1523/JNEUROSCI.3921-08.2009]
[35]
Kodis, E.J.; Choi, S.; Swanson, E.; Ferreira, G.; Bloom, G.S. N-methyl-D-aspartate receptor-mediated calcium influx connects amyloid-β oligomers to ectopic neuronal cell cycle reentry in Alzheimer’s disease. Alzheimers Dement., 2018, 14(10), 1302-1312.
[http://dx.doi.org/10.1016/j.jalz.2018.05.017] [PMID: 30293574]
[36]
Lin, C-H.; Lane, H-Y. The role of N-Methyl-D-aspartate receptor neurotransmission and precision medicine in behavioral and psychological symptoms of dementia. Front. Pharmacol., 2019, 10, 540.
[http://dx.doi.org/10.3389/fphar.2019.00540] [PMID: 31191302]
[37]
Nakazawa, T.; Komai, S.; Watabe, A.M.; Kiyama, Y.; Fukaya, M.; Arima-Yoshida, F.; Horai, R.; Sudo, K.; Ebine, K.; Delawary, M.; Goto, J.; Umemori, H.; Tezuka, T.; Iwakura, Y.; Watanabe, M.; Yamamoto, T.; Manabe, T. NR2B tyrosine phosphorylation modulates fear learning as well as amygdaloid synaptic plasticity. EMBO J., 2006, 25(12), 2867-2877.
[http://dx.doi.org/10.1038/sj.emboj.7601156] [PMID: 16710293]
[38]
Zhao, M-G.; Toyoda, H.; Lee, Y-S.; Wu, L-J.; Ko, S.W.; Zhang, X-H.; Jia, Y.; Shum, F.; Xu, H.; Li, B-M.; Kaang, B-K.; Zhuo, M. Roles of NMDA NR2B subtype receptor in prefrontal long-term potentiation and contextual fear memory. Neuron, 2005, 47(6), 859-872.
[http://dx.doi.org/10.1016/j.neuron.2005.08.014] [PMID: 16157280]
[39]
Kemp, J.A.; McKernan, R.M. NMDA receptor pathways as drug targets. Nat. Neurosci., 2002, 5(S11)(Suppl.), 1039-1042.
[http://dx.doi.org/10.1038/nn936] [PMID: 12403981]
[40]
Braak, H.; Braak, E.; Yilmazer, D.; de Vos, R.A.I.; Jansen, E.N.H.; Bohl, J.; Jellinger, K. Amygdala pathology in Parkinson’s disease. Acta Neuropathol., 1994, 88(6), 493-500.
[http://dx.doi.org/10.1007/BF00296485] [PMID: 7879596]
[41]
Butterfield, D.A.; Pocernich, C.B. The glutamatergic system and Alzheimer’s disease: Therapeutic implications. CNS Drugs, 2003, 17(9), 641-652.
[http://dx.doi.org/10.2165/00023210-200317090-00004] [PMID: 12828500]
[42]
Danysz, W.; Parsons, C.G. Alzheimer’s disease, β-amyloid, glutamate, NMDA receptors and memantine--searching for the connections. Br. J. Pharmacol., 2012, 167(2), 324-352.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02057.x] [PMID: 22646481]
[43]
Hölscher, C. Possible causes of Alzheimer’s disease: Amyloid fragments, free radicals, and calcium homeostasis. Neurobiol. Dis., 1998, 5(3), 129-141.
[http://dx.doi.org/10.1006/nbdi.1998.0193] [PMID: 9848086]
[44]
Choi, D.W. Ionic dependence of glutamate neurotoxicity. J. Neurosci., 1987, 7(2), 369-379.
[http://dx.doi.org/10.1523/JNEUROSCI.07-02-00369.1987] [PMID: 2880938]
[45]
Choi, D.W. Excitotoxic cell death. J. Neurobiol., 1992, 23(9), 1261-1276.
[http://dx.doi.org/10.1002/neu.480230915] [PMID: 1361523]
[46]
Tymianski, M.; Charlton, M.P.; Carlen, P.L.; Tator, C.H. Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons. J. Neurosci., 1993, 13(5), 2085-2104.
[http://dx.doi.org/10.1523/JNEUROSCI.13-05-02085.1993] [PMID: 8097530]
[47]
Wang, R.; Reddy, P.H. Role of glutamate and NMDA receptors in Alzheimer’s disease. J. Alzheimers Dis., 2017, 57(4), 1041-1048.
[http://dx.doi.org/10.3233/JAD-160763] [PMID: 27662322]
[48]
Albensi, B.C. The NMDA receptor/ion channel complex: A drug target for modulating synaptic plasticity and excitotoxicity. Curr. Pharm. Des., 2007, 13(31), 3185-3194.
[http://dx.doi.org/10.2174/138161207782341321] [PMID: 18045168]
[49]
Kocahan, S.; Doğan, Z. Mechanisms of Alzheimer’s Disease pathogenesis and prevention: The brain, neural pathology, n-methyl-d-aspartate receptors, tau protein and other risk factors. Clin. Psychopharmacol. Neurosci., 2017, 15(1), 1-8.
[http://dx.doi.org/10.9758/cpn.2017.15.1.1] [PMID: 28138104]
[50]
Paoletti, P.; Bellone, C.; Zhou, Q. NMDA receptor subunit diversity: Impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci., 2013, 14(6), 383-400.
[http://dx.doi.org/10.1038/nrn3504] [PMID: 23686171]
[51]
Liu, J.; Chang, L.; Song, Y.; Li, H.; Wu, Y. The role of NMDA receptors in Alzheimer’s disease. Front. Neurosci., 2019, 13, 43.
[http://dx.doi.org/10.3389/fnins.2019.00043] [PMID: 30800052]
[52]
Hardingham, G.E.; Bading, H. Synaptic versus extrasynaptic NMDA receptor signalling: Implications for neurodegenerative disorders. Nat. Rev. Neurosci., 2010, 11(10), 682-696.
[http://dx.doi.org/10.1038/nrn2911] [PMID: 20842175]
[53]
Hogan-Cann, A.D.; Anderson, C.M. Physiological roles of non-neuronal NMDA receptors. Trends Pharmacol. Sci., 2016, 37(9), 750-767.
[http://dx.doi.org/10.1016/j.tips.2016.05.012] [PMID: 27338838]
[54]
Anaparti, V.; Ilarraza, R.; Orihara, K.; Stelmack, G.L.; Ojo, O.O.; Mahood, T.H.; Unruh, H.; Halayko, A.J.; Moqbel, R. NMDA receptors mediate contractile responses in human airway smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol., 2015, 308(12), L1253-L1264.
[http://dx.doi.org/10.1152/ajplung.00402.2014] [PMID: 25888577]
[55]
Anderson, M.; Suh, J.M.; Kim, E.Y.; Dryer, S.E. Functional NMDA receptors with atypical properties are expressed in podocytes. Am. J. Physiol. Cell Physiol., 2011, 300(1), C22-C32.
[http://dx.doi.org/10.1152/ajpcell.00268.2010] [PMID: 20739624]
[56]
Deng, A.; Thomson, S.C. Renal NMDA receptors independently stimulate proximal reabsorption and glomerular filtration. Am. J. Physiol. Renal Physiol., 2009, 296(5), F976-F982.
[http://dx.doi.org/10.1152/ajprenal.90391.2008] [PMID: 19279130]
[57]
Hinoi, E.; Fujimori, S.; Yoneda, Y. Modulation of cellular differentiation by N-methyl-D-aspartate receptors in osteoblasts. FASEB J., 2003, 17(11), 1532-1534.
[http://dx.doi.org/10.1096/fj.02-0820fje] [PMID: 12824297]
[58]
Inagaki, N.; Kuromi, H.; Gonoi, T.; Okamoto, Y.; Ishida, H.; Seino, Y.; Kaneko, T.; Iwanaga, T.; Seino, S. Expression and role of ionotropic glutamate receptors in pancreatic islet cells. FASEB J., 1995, 9(8), 686-691.
[http://dx.doi.org/10.1096/fasebj.9.8.7768362] [PMID: 7768362]
[59]
Li, J.L.; Zhao, L.; Cui, B.; Deng, L.F.; Ning, G.; Liu, J.M. Multiple signaling pathways involved in stimulation of osteoblast differentiation by N-methyl-D-aspartate receptors activation in vitro. Acta Pharmacol. Sin., 2011, 32(7), 895-903.
[http://dx.doi.org/10.1038/aps.2011.38] [PMID: 21685927]
[60]
Marquard, J.; Otter, S.; Welters, A.; Stirban, A.; Fischer, A.; Eglinger, J.; Herebian, D.; Kletke, O.; Klemen, M.S.; Stožer, A.; Wnendt, S.; Piemonti, L.; Köhler, M.; Ferrer, J.; Thorens, B.; Schliess, F.; Rupnik, M.S.; Heise, T.; Berggren, P-O.; Klöcker, N.; Meissner, T.; Mayatepek, E.; Eberhard, D.; Kragl, M.; Lammert, E. Characterization of pancreatic NMDA receptors as possible drug targets for diabetes treatment. Nat. Med., 2015, 21(4), 363-372.
[http://dx.doi.org/10.1038/nm.3822] [PMID: 25774850]
[61]
Molnár, E.; Váradi, A.; McIlhinney, R.A.J.; Ashcroft, S.J.H. Identification of functional ionotropic glutamate receptor proteins in pancreatic β-cells and in islets of Langerhans. FEBS Lett., 1995, 371(3), 253-257.
[http://dx.doi.org/10.1016/0014-5793(95)00890-L] [PMID: 7556603]
[62]
Sproul, A.; Steele, S.L.; Thai, T.L.; Yu, S.; Klein, J.D.; Sands, J.M.; Bell, P.D. N-methyl-D-aspartate receptor subunit NR3a expression and function in principal cells of the collecting duct. Am. J. Physiol. Renal Physiol., 2011, 301(1), F44-F54.
[http://dx.doi.org/10.1152/ajprenal.00666.2010] [PMID: 21429969]
[63]
András, I.E.; Deli, M.A.; Veszelka, S.; Hayashi, K.; Hennig, B.; Toborek, M. The NMDA and AMPA/KA receptors are involved in glutamate-induced alterations of occludin expression and phosphorylation in brain endothelial cells. J. Cereb. Blood Flow Metab., 2007, 27(8), 1431-1443.
[http://dx.doi.org/10.1038/sj.jcbfm.9600445] [PMID: 17245419]
[64]
Basuroy, S.; Leffler, C.W.; Parfenova, H. CORM-A1 prevents blood-brain barrier dysfunction caused by ionotropic glutamate receptor-mediated endothelial oxidative stress and apoptosis. Am. J. Physiol. Cell Physiol., 2013, 304(11), C1105-C1115.
[http://dx.doi.org/10.1152/ajpcell.00023.2013] [PMID: 23576575]
[65]
Traynelis, S.F.; Wollmuth, L.P.; McBain, C.J.; Menniti, F.S.; Vance, K.M.; Ogden, K.K.; Hansen, K.B.; Yuan, H.; Myers, S.J.; Dingledine, R. Glutamate receptor ion channels: Structure, regulation, and function. Pharmacol. Rev., 2010, 62(3), 405-496.
[http://dx.doi.org/10.1124/pr.109.002451] [PMID: 20716669]
[66]
Mayer, M.L.; Westbrook, G.L.; Guthrie, P.B. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature, 1984, 309(5965), 261-263.
[http://dx.doi.org/10.1038/309261a0] [PMID: 6325946]
[67]
Nowak, L.; Bregestovski, P.; Ascher, P.; Herbet, A.; Prochiantz, A. Magnesium gates glutamate-activated channels in mouse central neurones. Nature, 1984, 307(5950), 462-465.
[http://dx.doi.org/10.1038/307462a0] [PMID: 6320006]
[68]
Seeburg, P.H.; Burnashev, N.; Köhr, G.; Kuner, T.; Sprengel, R.; Monyer, H. The NMDA receptor channel: Molecular design of a coincidence detector In: Recent Progress in Hormone Research; Academic Press: Boston, 1995; 50, pp. 19-34.
[69]
Blanke, M.; VanDongen, A. Activation Mechanisms of the NMDA Receptor.Biology of the NMDA Receptor; Van Dongen, A., Ed.; CRC Press/Taylor & Francis, 2009.
[70]
Hashimoto, K.; Fukushima, T.; Shimizu, E.; Okada, S.; Komatsu, N.; Okamura, N.; Koike, K.; Koizumi, H.; Kumakiri, C.; Imai, K.; Iyo, M. Possible role of D-serine in the pathophysiology of Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2004, 28(2), 385-388.
[http://dx.doi.org/10.1016/j.pnpbp.2003.11.009] [PMID: 14751437]
[71]
Lowe, S.L.; Bowen, D.M.; Francis, P.T.; Neary, D. Ante mortem cerebral amino acid concentrations indicate selective degeneration of glutamate-enriched neurons in Alzheimer’s disease. Neuroscience, 1990, 38(3), 571-577.
[http://dx.doi.org/10.1016/0306-4522(90)90051-5] [PMID: 1980143]
[72]
Procter, A.W.; Wong, E.H.; Stratmann, G.C.; Lowe, S.L.; Bowen, D.M. Reduced glycine stimulation of [3H]MK-801 binding in Alzheimer’s disease. J. Neurochem., 1989, 53(3), 698-704.
[http://dx.doi.org/10.1111/j.1471-4159.1989.tb11760.x] [PMID: 2569500]
[73]
Roselli, F.; Tirard, M.; Lu, J.; Hutzler, P.; Lamberti, P.; Livrea, P.; Morabito, M.; Almeida, O.F.X. Soluble β-Amyloid 1-40 Induces NMDA-Dependent Degradation of Postsynaptic Density-95 at Glutamatergic Synapses. J. Neurosci., 2005, 25, 11061-11070.
[74]
Chang, L.; Zhang, Y.; Liu, J.; Song, Y.; Lv, A.; Li, Y.; Zhou, W.; Yan, Z.; Almeida, O.F.X.; Wu, Y. Differential regulation of N-Methyl-D-aspartate receptor subunits is an early event in the actions of soluble amyloid-β(1-40) oligomers on hippocampal neurons. J. Alzheimers Dis., 2016, 51(1), 197-212.
[http://dx.doi.org/10.3233/JAD-150942] [PMID: 26836185]
[75]
Li, Y.; Chang, L.; Song, Y.; Gao, X.; Roselli, F.; Liu, J.; Zhou, W.; Fang, Y.; Ling, W.; Li, H.; Almeida, O.F.X.; Wu, Y. Astrocytic GluN2A and GluN2B oppose the synaptotoxic effects of amyloid-β1-40 in hippocampal cells. J. Alzheimers Dis., 2016, 54(1), 135-148.
[http://dx.doi.org/10.3233/JAD-160297] [PMID: 27497478]
[76]
Ferreira, I.L.; Bajouco, L.M.; Mota, S.I.; Auberson, Y.P.; Oliveira, C.R.; Rego, A.C. Amyloid beta peptide 1-42 disturbs intracellular calcium homeostasis through activation of GluN2B-containing N-methyl-d-aspartate receptors in cortical cultures. Cell Calcium, 2012, 51(2), 95-106.
[http://dx.doi.org/10.1016/j.ceca.2011.11.008] [PMID: 22177709]
[77]
Texidó, L.; Martín-Satué, M.; Alberdi, E.; Solsona, C.; Matute, C. Amyloid β peptide oligomers directly activate NMDA receptors. Cell Calcium, 2011, 49(3), 184-190.
[http://dx.doi.org/10.1016/j.ceca.2011.02.001] [PMID: 21349580]
[78]
Sun, X-Y.; Tuo, Q-Z.; Liuyang, Z-Y.; Xie, A-J.; Feng, X-L.; Yan, X.; Qiu, M.; Li, S.; Wang, X-L.; Cao, F-Y.; Wang, X-C.; Wang, J-Z.; Liu, R. Extrasynaptic NMDA receptor-induced tau overexpression mediates neuronal death through suppressing survival signaling ERK phosphorylation. Cell Death Dis., 2016, 7(11), e2449-e2449.
[http://dx.doi.org/10.1038/cddis.2016.329] [PMID: 27809304]
[79]
Groveman, B.R.; Feng, S.; Fang, X-Q.; Pflueger, M.; Lin, S-X.; Bienkiewicz, E.A.; Yu, X. The regulation of N-methyl-D-aspartate receptors by Src kinase. FEBS J., 2012, 279(1), 20-28.
[http://dx.doi.org/10.1111/j.1742-4658.2011.08413.x] [PMID: 22060915]
[80]
Tezuka, T.; Umemori, H.; Akiyama, T.; Nakanishi, S.; Yamamoto, T. PSD-95 promotes Fyn-mediated tyrosine phosphorylation of the N-methyl-D-aspartate receptor subunit NR2A. Proc. Natl. Acad. Sci. USA, 1999, 96(2), 435-440.
[http://dx.doi.org/10.1073/pnas.96.2.435] [PMID: 9892651]
[81]
Thomas, S.M.; Brugge, J.S. Cellular functions regulated by Src family kinases. Annu. Rev. Cell Dev. Biol., 1997, 13(1), 513-609.
[http://dx.doi.org/10.1146/annurev.cellbio.13.1.513] [PMID: 9442882]
[82]
Decker, J.M.; Krüger, L.; Sydow, A.; Dennissen, F.J.; Siskova, Z.; Mandelkow, E.; Mandelkow, E-M. The Tau/A152T mutation, a risk factor for frontotemporal-spectrum disorders, leads to NR2B receptor-mediated excitotoxicity. EMBO Rep., 2016, 17(4), 552-569.
[http://dx.doi.org/10.15252/embr.201541439] [PMID: 26931569]
[83]
Ittner, L.M.; Ke, Y.D.; Delerue, F.; Bi, M.; Gladbach, A.; van Eersel, J.; Wölfing, H.; Chieng, B.C.; Christie, M.J.; Napier, I.A.; Eckert, A.; Staufenbiel, M.; Hardeman, E.; Götz, J. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell, 2010, 142(3), 387-397.
[http://dx.doi.org/10.1016/j.cell.2010.06.036] [PMID: 20655099]
[84]
Maeda, S.; Djukic, B.; Taneja, P.; Yu, G-Q.; Lo, I.; Davis, A.; Craft, R.; Guo, W.; Wang, X.; Kim, D.; Ponnusamy, R.; Gill, T.M.; Masliah, E.; Mucke, L. Expression of A152T human tau causes age-dependent neuronal dysfunction and loss in transgenic mice. EMBO Rep., 2016, 17(4), 530-551.
[http://dx.doi.org/10.15252/embr.201541438] [PMID: 26931567]
[85]
Roberson, E.D.; Scearce-Levie, K.; Palop, J.J.; Yan, F.; Cheng, I.H.; Wu, T.; Gerstein, H.; Yu, G-Q.; Mucke, L. Reducing endogenous tau ameliorates amyloid SS-induced deficits in an Alzheimer’s disease mouse model. Science, 2007, 316(80), 750-754.
[86]
Lindsley, C.W.; Shipe, W.D.; Wolkenberg, S.E.; Theberge, C.R.; Williams, D.L., Jr; Sur, C.; Kinney, G.G. Progress towards validating the NMDA receptor hypofunction hypothesis of schizophrenia. Curr. Top. Med. Chem., 2006, 6(8), 771-785.
[http://dx.doi.org/10.2174/156802606777057599] [PMID: 16719816]
[87]
Olney, J.W.; Farber, N.B. Glutamate receptor dysfunction and schizophrenia. Arch. Gen. Psychiatry, 1995, 52(12), 998-1007.
[http://dx.doi.org/10.1001/archpsyc.1995.03950240016004] [PMID: 7492260]
[88]
Esclaire, F.; Lesort, M.; Blanchard, C.; Hugon, J. Glutamate toxicity enhances tau gene expression in neuronal cultures. J. Neurosci. Res., 1997, 49(3), 309-318.
[http://dx.doi.org/10.1002/(SICI)1097-4547(19970801)49:3<309::AID-JNR6>3.0.CO;2-G] [PMID: 9260742]
[89]
Sindou, P.; Couratier, P.; Barthe, D.; Hugon, J. A dose-dependent increase of Tau immunostaining is produced by glutamate toxicity in primary neuronal cultures. Brain Res., 1992, 572(1-2), 242-246.
[http://dx.doi.org/10.1016/0006-8993(92)90476-P] [PMID: 1351785]
[90]
Sindou, P.; Lesort, M.; Couratier, P.; Yardin, C.; Esclaire, F.; Hugon, J. Glutamate increases tau phosphorylation in primary neuronal cultures from fetal rat cerebral cortex. Brain Res., 1994, 646(1), 124-128.
[http://dx.doi.org/10.1016/0006-8993(94)90064-7] [PMID: 7914466]
[91]
Haake, A.; Nguyen, K.; Friedman, L.; Chakkamparambil, B.; Grossberg, G.T. An update on the utility and safety of cholinesterase inhibitors for the treatment of Alzheimer’s disease. Expert Opin. Drug Saf., 2020, 19(2), 147-157.
[http://dx.doi.org/10.1080/14740338.2020.1721456] [PMID: 31976781]
[92]
Zong, N.; Li, F.; Deng, Y.; Shi, J.; Jin, F.; Gong, Q. Icariin, a major constituent from Epimedium brevicornum, attenuates ibotenic acid-induced excitotoxicity in rat hippocampus. Behav. Brain Res., 2016, 313, 111-119.
[http://dx.doi.org/10.1016/j.bbr.2016.06.055] [PMID: 27368415]
[93]
Lee, E.; Williams, Z.; Goodman, C.B.; Oriaku, E.T.; Harris, C.; Thomas, M.; Soliman, K.F.A. Effects of NMDA receptor inhibition by phencyclidine on the neuronal differentiation of PC12 cells. Neurotoxicology, 2006, 27(4), 558-566.
[http://dx.doi.org/10.1016/j.neuro.2006.02.006] [PMID: 16580729]
[94]
Bressan, R.A.; Erlandsson, K.; Stone, J.M.; Mulligan, R.S.; Krystal, J.H.; Ell, P.J.; Pilowsky, L.S. Impact of schizophrenia and chronic antipsychotic treatment on [123I]CNS-1261 binding to N-methyl-D-aspartate receptors in vivo. Biol. Psychiatry, 2005, 58(1), 41-46.
[http://dx.doi.org/10.1016/j.biopsych.2005.03.016] [PMID: 15992521]
[95]
Morris, B.J.; Cochran, S.M.; Pratt, J.A. PCP: From pharmacology to modelling schizophrenia. Curr. Opin. Pharmacol., 2005, 5(1), 101-106.
[http://dx.doi.org/10.1016/j.coph.2004.08.008] [PMID: 15661633]
[96]
Gilbert, M.E. The NMDA-receptor antagonist, MK-801, suppresses limbic kindling and kindled seizures. Brain Res., 1988, 463(1), 90-99.
[http://dx.doi.org/10.1016/0006-8993(88)90530-6] [PMID: 2848609]
[97]
Smalheiser, N.R. Ketamine: A neglected therapy for Alzheimer disease. Front. Aging Neurosci., 2019, 11, 186.
[http://dx.doi.org/10.3389/fnagi.2019.00186] [PMID: 31396078]
[98]
Haberny, K.A.; Paule, M.G.; Scallet, A.C.; Sistare, F.D.; Lester, D.S.; Hanig, J.P.; Slikker, W., Jr Ontogeny of the N-methyl-D-aspartate (NMDA) receptor system and susceptibility to neurotoxicity. Toxicol. Sci., 2002, 68(1), 9-17.
[http://dx.doi.org/10.1093/toxsci/68.1.9] [PMID: 12075105]
[99]
Ikonomidou, C.; Bosch, F.; Miksa, M.; Bittigau, P.; Vöckler, J.; Dikranian, K.; Tenkova, T.I.; Stefovska, V.; Turski, L.; Olney, J.W. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science, 1999, 283(80), 70-74.
[100]
Smith, P.F. Therapeutic N-methyl-D-aspartate receptor antagonists: Will reality meet expectation? Curr. Opin. Investig. Drugs, 2003, 4(7), 826-832.
[PMID: 14619404]
[101]
Chenard, B.L.; Bordner, J.; Butler, T.W.; Chambers, L.K.; Collins, M.A.; De Costa, D.L.; Ducat, M.F.; Dumont, M.L.; Fox, C.B.; Mena, E.E. (1S,2S)-1-(4-hydroxyphenyl)-2-(4-hydroxy-4-phenylpiperidino)-1-propanol: A potent new neuroprotectant which blocks N-methyl-D-aspartate responses. J. Med. Chem., 1995, 38(16), 3138-3145.
[http://dx.doi.org/10.1021/jm00016a017] [PMID: 7636876]
[102]
Fischer, G.; Mutel, V.; Trube, G.; Malherbe, P.; Kew, J.N.; Mohacsi, E.; Heitz, M.P.; Kemp, J.A. Ro 25-6981, a highly potent and selective blocker of N-methyl-D-aspartate receptors containing the NR2B subunit. Characterization in vitro. J. Pharmacol. Exp. Ther., 1997, 283(3), 1285-1292.
[PMID: 9400004]
[103]
Kvist, T.; Greenwood, J.R.; Hansen, K.B.; Traynelis, S.F.; Bräuner-Osborne, H. Structure-based discovery of antagonists for GluN3-containing N-methyl-D-aspartate receptors. Neuropharmacology, 2013, 75, 324-336.
[http://dx.doi.org/10.1016/j.neuropharm.2013.08.003] [PMID: 23973313]
[104]
Swanger, S.A.; Vance, K.M.; Acker, T.M.; Zimmerman, S.S.; DiRaddo, J.O.; Myers, S.J.; Bundgaard, C.; Mosley, C.A.; Summer, S.L.; Menaldino, D.S.; Jensen, H.S.; Liotta, D.C.; Traynelis, S.F. A novel negative allosteric modulator selective for GluN2C/2D-containing NMDA receptors inhibits synaptic transmission in hippocampal interneurons. ACS Chem. Neurosci., 2018, 9(2), 306-319.
[http://dx.doi.org/10.1021/acschemneuro.7b00329] [PMID: 29043770]
[105]
Williams, K. Ifenprodil discriminates subtypes of the N-Methyl-D-aspartate receptor: Selectivity and mechanisms at recombinant heteromeric receptors. Mol. Pharmacol., 1993, 44, 851-859.
[106]
Gerzon, K.; Krumkalns, E.V.; Brindle, R.L.; Marshall, F.J.; Root, M.A. The adamantyl group in medicinal agents. I. Hypoglycemic N-Arylsulfonyl-N’-Adamantylureas. J. Med. Chem., 1963, 6(6), 760-763.
[http://dx.doi.org/10.1021/jm00342a029] [PMID: 14184942]
[107]
Chen, H.S.; Lipton, S.A. Mechanism of memantine block of NMDA-activated channels in rat retinal ganglion cells: Uncompetitive antagonism. J. Physiol., 1997, 499(Pt 1), 27-46.
[108]
Pierson, T.M.; Yuan, H.; Marsh, E.D.; Fuentes-Fajardo, K.; Adams, D.R.; Markello, T.; Golas, G.; Simeonov, D.R.; Holloman, C.; Tankovic, A.; Karamchandani, M.M.; Schreiber, J.M.; Mullikin, J.C.; Tifft, C.J.; Toro, C.; Boerkoel, C.F.; Traynelis, S.F.; Gahl, W.A. PhD for the NISC Comparative Sequencing Program. GRIN2A mutation and early-onset epileptic encephalopathy: Personalized therapy with memantine. Ann. Clin. Transl. Neurol., 2014, 1(3), 190-198.
[http://dx.doi.org/10.1002/acn3.39] [PMID: 24839611]
[109]
Song, X.; Jensen, M.Ø.; Jogini, V.; Stein, R.A.; Lee, C-H.; Mchaourab, H.S.; Shaw, D.E.; Gouaux, E. Mechanism of NMDA receptor channel block by MK-801 and memantine. Nature, 2018, 556(7702), 515-519.
[http://dx.doi.org/10.1038/s41586-018-0039-9] [PMID: 29670280]
[110]
Parsons, C.G.; Stöffler, A.; Danysz, W. Memantine: A NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system-too little activation is bad, too much is even worse. Neuropharmacology, 2007, 53(6), 699-723.
[http://dx.doi.org/10.1016/j.neuropharm.2007.07.013] [PMID: 17904591]
[111]
Wu, H-M.; Tzeng, N-S.; Qian, L.; Wei, S-J.; Hu, X.; Chen, S-H.; Rawls, S.M.; Flood, P.; Hong, J-S.; Lu, R-B. Novel neuroprotective mechanisms of memantine: Increase in neurotrophic factor release from astroglia and anti-inflammation by preventing microglial activation. Neuropsychopharmacology, 2009, 34(10), 2344-2357.
[http://dx.doi.org/10.1038/npp.2009.64] [PMID: 19536110]
[112]
Althobaiti, Y.S. Development of memantine as a drug for Alzheimer’s disease: A review of preclinical and clinical studies. Trop. J. Pharm. Res., 2020, 19(7), 1535-1540.
[http://dx.doi.org/10.4314/tjpr.v19i7.28]
[113]
Howard, R.; McShane, R.; Lindesay, J.; Ritchie, C.; Baldwin, A.; Barber, R.; Burns, A.; Dening, T.; Findlay, D.; Holmes, C.; Hughes, A.; Jacoby, R.; Jones, R.; Jones, R.; McKeith, I.; Macharouthu, A.; O’Brien, J.; Passmore, P.; Sheehan, B.; Juszczak, E.; Katona, C.; Hills, R.; Knapp, M.; Ballard, C.; Brown, R.; Banerjee, S.; Onions, C.; Griffin, M.; Adams, J.; Gray, R.; Johnson, T.; Bentham, P.; Phillips, P. Donepezil and memantine for moderate-to-severe Alzheimer’s disease. N. Engl. J. Med., 2012, 366(10), 893-903.
[http://dx.doi.org/10.1056/NEJMoa1106668] [PMID: 22397651]
[114]
Kabir, M.T.; Uddin, M.S.; Mamun, A.A.; Jeandet, P.; Aleya, L.; Mansouri, R.A.; Ashraf, G.M.; Mathew, B.; Bin-Jumah, M.N.; Abdel-Daim, M.M. Combination drug therapy for the management of Alzheimer’s disease. Int. J. Mol. Sci., 2020, 21(9), 3272.
[http://dx.doi.org/10.3390/ijms21093272] [PMID: 32380758]
[115]
Deardorff, W.J.; Grossberg, G.T. Pharmacotherapeutic strategies in the treatment of severe Alzheimer’s disease. Expert Opin. Pharmacother., 2016, 17(13), 1789-1800.
[http://dx.doi.org/10.1080/14656566.2016.1215431] [PMID: 27450461]
[116]
Farlow, M.; Anand, R.; Messina, J., Jr; Hartman, R.; Veach, J. A 52-week study of the efficacy of rivastigmine in patients with mild to moderately severe Alzheimer’s disease. Eur. Neurol., 2000, 44(4), 236-241.
[http://dx.doi.org/10.1159/000008243] [PMID: 11096224]
[117]
Choi, D.W. Glutamate neurotoxicity and diseases of the nervous system. Neuron, 1988, 1(8), 623-634.
[http://dx.doi.org/10.1016/0896-6273(88)90162-6] [PMID: 2908446]
[118]
MacDonald, J.F.; Jackson, M.F.; Beazely, M.A. Hippocampal long-term synaptic plasticity and signal amplification of NMDA receptors. Crit. Rev. Neurobiol., 2006, 18(1-2), 71-84.
[http://dx.doi.org/10.1615/CritRevNeurobiol.v18.i1-2.80] [PMID: 17725510]
[119]
Semwal, P.; Kapoor, T.; Anthwal, P.; Sati, B.; Thapliyal, A. Herbal extract as potential modulator and drug for synaptic plasticity and neurodegenerative disorders. Int. J. Pharm. Sci. Rev. Res., 2014, 25(1), 69-79.
[120]
Huang, Y-J.; Lin, C-H.; Lane, H-Y.; Tsai, G.E. NMDA neurotransmission dysfunction in behavioral and psychological symptoms of Alzheimer’s disease. Curr. Neuropharmacol., 2012, 10(3), 272-285.
[http://dx.doi.org/10.2174/157015912803217288] [PMID: 23450042]
[121]
Kamenetz, F.; Tomita, T.; Hsieh, H.; Seabrook, G.; Borchelt, D.; Iwatsubo, T.; Sisodia, S.; Malinow, R. APP processing and synaptic function. Neuron, 2003, 37(6), 925-937.
[http://dx.doi.org/10.1016/S0896-6273(03)00124-7] [PMID: 12670422]
[122]
Shankar, G.M.; Bloodgood, B.L.; Townsend, M.; Walsh, D.M.; Selkoe, D.J.; Sabatini, B.L. Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J. Neurosci., 2007, 27(11), 2866-2875.
[http://dx.doi.org/10.1523/JNEUROSCI.4970-06.2007] [PMID: 17360908]
[123]
Alam, S.; Lingenfelter, K.S.; Bender, A.M.; Lindsley, C.W. Classics in chemical neuroscience. Memantine. ACS Chem. Neurosci., 2017, 8(9), 1823-1829.
[http://dx.doi.org/10.1021/acschemneuro.7b00270] [PMID: 28737885]
[124]
Kishi, T.; Matsunaga, S.; Iwata, N. The effects of memantine on behavioral disturbances in patients with Alzheimer’s disease: A meta-analysis. Neuropsychiatr. Dis. Treat., 2017, 13, 1909-1928.
[http://dx.doi.org/10.2147/NDT.S142839] [PMID: 28790827]
[125]
Defina, P.A.; Moser, R.S.; Glenn, M.; Lichtenstein, J.D.; Fellus, J. Alzheimer’s disease clinical and research update for health care practitioners. J. Aging Res., 2013, 2013, 207178.
[http://dx.doi.org/10.1155/2013/207178] [PMID: 24083026]
[126]
Clerici, F.; Vanacore, N.; Elia, A.; Spila-Alegiani, S.; Pomati, S.; Da Cas, R.; Raschetti, R.; Mariani, C.; Group, T.M.L.S. Memantine Lombardy Study Group. Memantine effects on behaviour in moderately severe to severe Alzheimer’s disease: A post-marketing surveillance study. Neurol. Sci., 2012, 33(1), 23-31.
[http://dx.doi.org/10.1007/s10072-011-0618-0] [PMID: 21584738]
[127]
Gauthier, S.; Loft, H.; Cummings, J. Improvement in behavioural symptoms in patients with moderate to severe Alzheimer’s disease by memantine: A pooled data analysis. Int. J. Geriatr. Psychiatry, 2008, 23(5), 537-545.
[http://dx.doi.org/10.1002/gps.1949] [PMID: 18058838]
[128]
Wilcock, G.K.; Ballard, C.G.; Cooper, J.A.; Loft, H. Memantine for agitation/aggression and psychosis in moderately severe to severe Alzheimer’s disease: A pooled analysis of 3 studies. J. Clin. Psychiatry, 2008, 69(3), 341-348.
[http://dx.doi.org/10.4088/JCP.v69n0302] [PMID: 18294023]
[129]
Abeysinghe, A.A.D.T.; Deshapriya, R.D.U.S.; Udawatte, C. Alzheimer’s disease; a review of the pathophysiological basis and therapeutic interventions. Life Sci., 2020, 256, 117996.
[http://dx.doi.org/10.1016/j.lfs.2020.117996] [PMID: 32585249]
[130]
Calhoun, A.; King, C.; Khoury, R.; Grossberg, G.T. An evaluation of memantine ER + donepezil for the treatment of Alzheimer’s disease. Expert Opin. Pharmacother., 2018, 19(15), 1711-1717.
[http://dx.doi.org/10.1080/14656566.2018.1519022] [PMID: 30244611]
[131]
Tariot, P.N.; Farlow, M.R.; Grossberg, G.T.; Graham, S.M.; McDonald, S.; Gergel, I. Memantine Study Group. Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: A randomized controlled trial. JAMA, 2004, 291(3), 317-324.
[http://dx.doi.org/10.1001/jama.291.3.317] [PMID: 14734594]
[132]
Hodson, R. Precision medicine. Nature, 2016, 537, S49.
[http://dx.doi.org/10.1038/537S49a]
[133]
Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; Costafreda, S.G.; Dias, A.; Fox, N.; Gitlin, L.N.; Howard, R.; Kales, H.C.; Kivimäki, M.; Larson, E.B.; Ogunniyi, A.; Orgeta, V.; Ritchie, K.; Rockwood, K.; Sampson, E.L.; Samus, Q.; Schneider, L.S.; Selbæk, G.; Teri, L.; Mukadam, N. Dementia prevention, intervention, and care: 2020 report of the Lancet commission. Lancet, 2020, 396(10248), 413-446.
[http://dx.doi.org/10.1016/S0140-6736(20)30367-6] [PMID: 32738937]
[134]
Chen, H.; Kwong, J.C.; Copes, R.; Tu, K.; Villeneuve, P.J.; van Donkelaar, A.; Hystad, P.; Martin, R.V.; Murray, B.J.; Jessiman, B.; Wilton, A.S.; Kopp, A.; Burnett, R.T. Living near major roads and the incidence of dementia, Parkinson’s disease, and multiple sclerosis: A population-based cohort study. Lancet, 2017, 389(10070), 718-726.
[http://dx.doi.org/10.1016/S0140-6736(16)32399-6] [PMID: 28063597]
[135]
Peng, X.; Xing, P.; Li, X.; Qian, Y.; Song, F.; Bai, Z.; Han, G.; Lei, H. Towards personalized intervention for Alzheimer’s disease. Genomics Proteomics Bioinformatics, 2016, 14(5), 289-297.
[http://dx.doi.org/10.1016/j.gpb.2016.01.006] [PMID: 27693548]
[136]
Friedland, R.P.; Chapman, M.R. The role of microbial amyloid in neurodegeneration. PLoS Pathog., 2017, 13(12), e1006654-e1006654.
[http://dx.doi.org/10.1371/journal.ppat.1006654] [PMID: 29267402]
[137]
Leblhuber, F.; Geisler, S.; Steiner, K.; Fuchs, D.; Schütz, B. Elevated fecal calprotectin in patients with Alzheimer’s dementia indicates leaky gut. J. Neural Transm. (Vienna), 2015, 122(9), 1319-1322.
[http://dx.doi.org/10.1007/s00702-015-1381-9] [PMID: 25680441]
[138]
Pistollato, F.; Iglesias, R.C.; Ruiz, R.; Aparicio, S.; Crespo, J.; Lopez, L.D.; Manna, P.P.; Giampieri, F.; Battino, M. Nutritional patterns associated with the maintenance of neurocognitive functions and the risk of dementia and Alzheimer’s disease: A focus on human studies. Pharmacol. Res., 2018, 131, 32-43.
[http://dx.doi.org/10.1016/j.phrs.2018.03.012] [PMID: 29555333]
[139]
Cani, P.D.; Bibiloni, R.; Knauf, C.; Waget, A.; Neyrinck, A.M.; Delzenne, N.M.; Burcelin, R. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet–induced obesity and diabetes in mice. Diabetes, 2008, 57, 1470-1481.
[http://dx.doi.org/10.2337/db07-1403]
[140]
Wang, X.; Sun, G.; Feng, T.; Zhang, J.; Huang, X.; Wang, T.; Xie, Z.; Chu, X.; Yang, J.; Wang, H.; Chang, S.; Gong, Y.; Ruan, L.; Zhang, G.; Yan, S.; Lian, W.; Du, C.; Yang, D.; Zhang, Q.; Lin, F.; Liu, J.; Zhang, H.; Ge, C.; Xiao, S.; Ding, J.; Geng, M. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res., 2019, 29(10), 787-803.
[http://dx.doi.org/10.1038/s41422-019-0216-x] [PMID: 31488882]
[141]
Moco, S.; Martin, F-P.J.; Rezzi, S. Metabolomics view on gut microbiome modulation by polyphenol-rich foods. J. Proteome Res., 2012, 11(10), 4781-4790.
[http://dx.doi.org/10.1021/pr300581s] [PMID: 22905879]
[142]
Wang, T.; Hu, X.; Liang, S.; Li, W.; Wu, X.; Wang, L.; Jin, F. Lactobacillus fermentum NS9 restores the antibiotic induced physiological and psychological abnormalities in rats. Benef. Microbes, 2015, 6(5), 707-717.
[http://dx.doi.org/10.3920/BM2014.0177] [PMID: 25869281]
[143]
Kim, M-S.; Kim, Y.; Choi, H.; Kim, W.; Park, S.; Lee, D.; Kim, D.K.; Kim, H.J.; Choi, H.; Hyun, D-W.; Lee, J-Y.; Choi, E.Y.; Lee, D-S.; Bae, J-W.; Mook-Jung, I. Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer’s Disease animal model. Gut, 2020, 69, 283-294.
[http://dx.doi.org/10.1136/gutjnl-2018-317431]
[144]
Mahley, R.W.; Apolipoprotein, E. Cholesterol transport protein with expanding role in cell biology. Science, 1988, 240, 622-630.
[145]
Berkowitz, C.L.; Mosconi, L.; Rahman, A.; Scheyer, O.; Hristov, H.; Isaacson, R.S. Clinical application of APOE in Alzheimer’s prevention: A precision medicine approach. J. Prev. Alzheimers Dis., 2018, 5(4), 245-252.
[PMID: 30298183]
[146]
Corder, E.H.; Saunders, A.M.; Risch, N.J.; Strittmatter, W.J.; Schmechel, D.E.; Gaskell, P.C., Jr; Rimmler, J.B.; Locke, P.A.; Conneally, P.M.; Schmader, K.E.; Small, G.W.; Roses, A.D.; Haines, J.L.; Pericak-Vance, M.A. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat. Genet., 1994, 7(2), 180-184.
[http://dx.doi.org/10.1038/ng0694-180] [PMID: 7920638]
[147]
Head, D.; Bugg, J.M.; Goate, A.M.; Fagan, A.M.; Mintun, M.A.; Benzinger, T.; Holtzman, D.M.; Morris, J.C. Exercise engagement as a moderator of the effects of APOE genotype on amyloid deposition. Arch. Neurol., 2012, 69(5), 636-643.
[http://dx.doi.org/10.1001/archneurol.2011.845] [PMID: 22232206]
[148]
Farrer, L.A.; Cupples, L.A.; Haines, J.L.; Hyman, B.; Kukull, W.A.; Mayeux, R.; Myers, R.H.; Pericak-Vance, M.A.; Risch, N.; van Duijn, C.M. APOE and Alzheimer Disease Meta Analysis Consortium. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. JAMA, 1997, 278(16), 1349-1356.
[http://dx.doi.org/10.1001/jama.1997.03550160069041] [PMID: 9343467]
[149]
Bien-Ly, N.; Gillespie, A.K.; Walker, D.; Yoon, S.Y.; Huang, Y. Reducing human apolipoprotein E levels attenuates age-dependent Aβ accumulation in mutant human amyloid precursor protein transgenic mice. J. Neurosci., 2012, 32, 4803-4811.
[150]
Vandenberghe, R.; Rinne, J.O.; Boada, M.; Katayama, S.; Scheltens, P.; Vellas, B.; Tuchman, M.; Gass, A.; Fiebach, J.B.; Hill, D.; Lobello, K.; Li, D.; McRae, T.; Lucas, P.; Evans, I.; Booth, K.; Luscan, G.; Wyman, B.T.; Hua, L.; Yang, L.; Brashear, H.R.; Black, R.S.; Investigators, B. Bapineuzumab for mild to moderate Alzheimer’s disease in two global, randomized, phase 3 trials. Alzheimers Res. Ther., 2016, 8(1), 18.
[http://dx.doi.org/10.1186/s13195-016-0189-7] [PMID: 27176461]
[151]
Gupta, V.B.; Laws, S.M.; Villemagne, V.L.; Ames, D.; Bush, A.I.; Ellis, K.A.; Lui, J.K.; Masters, C.; Rowe, C.C.; Szoeke, C.; Taddei, K.; Martins, R.N. Plasma apolipoprotein E and Alzheimer disease risk. Neurology, 2011, 76, 1091-1098.
[152]
Cramer, P.E.; Cirrito, J.R.; Wesson, D.W.; Lee, C.Y.D.; Karlo, J.C.; Zinn, A.E.; Casali, B.T.; Restivo, J.L.; Goebel, W.D.; James, M.J.; Brunden, K.R.; Wilson, D.A.; Landreth, G.E. ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models. Science, 2012, 335(6075), 1503-1506.
[http://dx.doi.org/10.1126/science.1217697] [PMID: 22323736]
[153]
Vanmierlo, T.; Rutten, K.; Dederen, J.; Bloks, V.W.; van Vark-van der Zee, L.C.; Kuipers, F.; Kiliaan, A.; Blokland, A.; Sijbrands, E.J.G.; Steinbusch, H.; Prickaerts, J.; Lütjohann, D.; Mulder, M.; Liver, X. Liver X receptor activation restores memory in aged AD mice without reducing amyloid. Neurobiol. Aging, 2011, 32(7), 1262-1272.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.07.005] [PMID: 19674815]
[154]
Kim, J.; Eltorai, A.E.M.; Jiang, H.; Liao, F.; Verghese, P.B.; Kim, J.; Stewart, F.R.; Basak, J.M.; Holtzman, D.M. Anti-apoE immunotherapy inhibits amyloid accumulation in a transgenic mouse model of Aβ amyloidosis. J. Exp. Med., 2012, 209(12), 2149-2156.
[http://dx.doi.org/10.1084/jem.20121274] [PMID: 23129750]
[155]
Liao, F.; Hori, Y.; Hudry, E.; Bauer, A.Q.; Jiang, H.; Mahan, T.E.; Lefton, K.B.; Zhang, T.J.; Dearborn, J.T.; Kim, J.; Culver, J.P.; Betensky, R.; Wozniak, D.F.; Hyman, B.T.; Holtzman, D.M. Anti-ApoE antibody given after plaque onset decreases Aβ accumulation and improves brain function in a mouse model of Aβ amyloidosis. J. Neurosci., 2014, 34(21), 7281-7292.
[http://dx.doi.org/10.1523/JNEUROSCI.0646-14.2014] [PMID: 24849360]
[156]
Liao, F.; Li, A.; Xiong, M.; Bien-Ly, N.; Jiang, H.; Zhang, Y.; Finn, M.B.; Hoyle, R.; Keyser, J.; Lefton, K.B.; Robinson, G.O.; Serrano, J.R.; Silverman, A.P.; Guo, J.L.; Getz, J.; Henne, K.; Leyns, C.E.G.; Gallardo, G.; Ulrich, J.D.; Sullivan, P.M.; Lerner, E.P.; Hudry, E.; Sweeney, Z.K.; Dennis, M.S.; Hyman, B.T.; Watts, R.J.; Holtzman, D.M. Targeting of nonlipidated, aggregated apoE with antibodies inhibits amyloid accumulation. J. Clin. Invest., 2018, 128(5), 2144-2155.
[http://dx.doi.org/10.1172/JCI96429] [PMID: 29600961]
[157]
Bennett, C.F.; Baker, B.F.; Pham, N.; Swayze, E.; Geary, R.S. Pharmacology of antisense drugs. Annu. Rev. Pharmacol. Toxicol., 2017, 57(1), 81-105.
[http://dx.doi.org/10.1146/annurev-pharmtox-010716-104846] [PMID: 27732800]
[158]
Kumar, V.B.; Farr, S.A.; Flood, J.F.; Kamlesh, V.; Franko, M.; Banks, W.A.; Morley, J.E. Site-directed antisense oligonucleotide decreases the expression of amyloid precursor protein and reverses deficits in learning and memory in aged SAMP8 mice. Peptides, 2000, 21(12), 1769-1775.
[http://dx.doi.org/10.1016/S0196-9781(00)00339-9] [PMID: 11150636]
[159]
Farr, S.A.; Erickson, M.A.; Niehoff, M.L.; Banks, W.A.; Morley, J.E. Central and peripheral administration of antisense oligonucleotide targeting amyloid-β protein precursor improves learning and memory and reduces neuroinflammatory cytokines in Tg2576 (AβPPswe) mice. J. Alzheimers Dis., 2014, 40(4), 1005-1016.
[http://dx.doi.org/10.3233/JAD-131883] [PMID: 24577464]
[160]
Hinrich, A.J.; Jodelka, F.M.; Chang, J.L.; Brutman, D.; Bruno, A.M.; Briggs, C.A.; James, B.D.; Stutzmann, G.E.; Bennett, D.A.; Miller, S.A.; Rigo, F.; Marr, R.A.; Hastings, M.L. Therapeutic correction of ApoER2 splicing in Alzheimer’s disease mice using antisense oligonucleotides. EMBO Mol. Med., 2016, 8(4), 328-345.
[http://dx.doi.org/10.15252/emmm.201505846] [PMID: 26902204]
[161]
DeVos, S.L.; Miller, R.L.; Schoch, K.M.; Holmes, B.B.; Kebodeaux, C.S.; Wegener, A.J.; Chen, G.; Shen, T.; Tran, H.; Nichols, B.; Zanardi, T.A.; Kordasiewicz, H.B.; Swayze, E.E.; Bennett, C.F.; Diamond, M.I.; Miller, T.M. Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Sci. Transl. Med., 2017, 9(374), eaag0481.
[http://dx.doi.org/10.1126/scitranslmed.aag0481] [PMID: 28123067]
[162]
Schoch, K.M.; DeVos, S.L.; Miller, R.L.; Chun, S.J.; Norrbom, M.; Wozniak, D.F.; Dawson, H.N.; Bennett, C.F.; Rigo, F.; Miller, T.M. Increased 4R-Tau induces pathological changes in a human-tau mouse model. Neuron, 2016, 90(5), 941-947.
[http://dx.doi.org/10.1016/j.neuron.2016.04.042] [PMID: 27210553]
[163]
Litvinchuk, A.; Huynh, T.V.; Shi, Y.; Jackson, R.J.; Finn, M.B.; Manis, M.; Francis, C.M.; Tran, A.C.; Sullivan, P.M.; Ulrich, J.D.; Hyman, B.T.; Cole, T.; Holtzman, D.M. Apolipoprotein E4 reduction with antisense oligonucleotides decreases neurodegeneration in a tauopathy model. Ann. Neurol., 2021, 89(5), 952-966.
[http://dx.doi.org/10.1002/ana.26043] [PMID: 33550655]
[164]
Chen, H-K.; Liu, Z.; Meyer-Franke, A.; Brodbeck, J.; Miranda, R.D.; McGuire, J.G.; Pleiss, M.A.; Ji, Z-S.; Balestra, M.E.; Walker, D.W.; Xu, Q.; Jeong, D.E.; Budamagunta, M.S.; Voss, J.C.; Freedman, S.B.; Weisgraber, K.H.; Huang, Y.; Mahley, R.W. Small molecule structure correctors abolish detrimental effects of apolipoprotein E4 in cultured neurons. J. Biol. Chem., 2012, 287(8), 5253-5266.
[http://dx.doi.org/10.1074/jbc.M111.276162] [PMID: 22158868]
[165]
Offen, D.; Rabinowitz, R.; Michaelson, D.; Ben-Zur, T. Towards gene-editing treatment for Alzheimer’s disease: Apoe4 allele-specific knockout using a CRISPR Cas9 variant. Cytotherapy, 2018, 20(5), S18.
[http://dx.doi.org/10.1016/j.jcyt.2018.02.036]
[166]
Komor, A.C.; Kim, Y.B.; Packer, M.S.; Zuris, J.A.; Liu, D.R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 2016, 533(7603), 420-424.
[http://dx.doi.org/10.1038/nature17946] [PMID: 27096365]
[167]
Wadhwani, A.R.; Affaneh, A.; Van Gulden, S.; Kessler, J.A. Neuronal apolipoprotein E4 increases cell death and phosphorylated tau release in Alzheimer disease. Ann. Neurol., 2019, 85(5), 726-739.
[http://dx.doi.org/10.1002/ana.25455] [PMID: 30840313]
[168]
Safieh, M.; Korczyn, A.D.; Michaelson, D.M. ApoE4: An emerging therapeutic target for Alzheimer’s disease. BMC Med., 2019, 17(1), 64.
[http://dx.doi.org/10.1186/s12916-019-1299-4] [PMID: 30890171]
[169]
Minami, S.S.; Cordova, A.; Cirrito, J.R.; Tesoriero, J.A.; Babus, L.W.; Davis, G.C.; Dakshanamurthy, S.; Turner, R.S.; Pak, D.Ts.; Rebeck, G.W.; Paige, M.; Hoe, H-S.; Apo, E. ApoE mimetic peptide decreases Abeta production in vitro and in vivo. Mol. Neurodegener., 2010, 5(1), 16.
[http://dx.doi.org/10.1186/1750-1326-5-16] [PMID: 20406479]
[170]
Handattu, S.P.; Monroe, C.E.; Nayyar, G.; Palgunachari, M.N.; Kadish, I.; van Groen, T.; Anantharamaiah, G.M.; Garber, D.W. In vivo and in vitro effects of an apolipoprotein e mimetic peptide on amyloid-β pathology. J. Alzheimers Dis., 2013, 36(2), 335-347.
[http://dx.doi.org/10.3233/JAD-122377] [PMID: 23603398]
[171]
Ghosal, K.; Stathopoulos, A.; Thomas, D.; Phenis, D.; Vitek, M.P.; Pimplikar, S.W. The apolipoprotein-E-mimetic COG112 protects amyloid precursor protein intracellular domain-overexpressing animals from Alzheimer’s disease-like pathological features. Neurodegener. Dis., 2013, 12(1), 51-58.
[http://dx.doi.org/10.1159/000341299] [PMID: 22965147]
[172]
Holtzman, D.M.; Herz, J.; Bu, G.; Apolipoprotein, E.; Apolipoprotein, E. Apolipoprotein E and apolipoprotein E receptors: Normal biology and roles in Alzheimer disease. Cold Spring Harb. Perspect. Med., 2012, 2(3), a006312-a006312.
[http://dx.doi.org/10.1101/cshperspect.a006312] [PMID: 22393530]
[173]
Kanekiyo, T.; Cirrito, J.R.; Liu, C-C.; Shinohara, M.; Li, J.; Schuler, D.R.; Shinohara, M.; Holtzman, D.M.; Bu, G. Neuronal clearance of amyloid-β by endocytic receptor LRP1. J. Neurosci., 2013, 33(49), 19276-19283.
[http://dx.doi.org/10.1523/JNEUROSCI.3487-13.2013] [PMID: 24305823]
[174]
Qosa, H.; Abuznait, A.H.; Hill, R.A.; Kaddoumi, A. Enhanced brain amyloid-β clearance by rifampicin and caffeine as a possible protective mechanism against Alzheimer’s disease. J. Alzheimers Dis., 2012, 31(1), 151-165.
[http://dx.doi.org/10.3233/JAD-2012-120319] [PMID: 22504320]
[175]
Husain, M.A.; Laurent, B.; Plourde, M. APOE and Alzheimer’s Disease: From lipid transport to physiopathology and therapeutics. Front. Neurosci., 2021, 15, 630502.
[http://dx.doi.org/10.3389/fnins.2021.630502] [PMID: 33679311]
[176]
Román, G.C.; Mancera-Páez, O.; Bernal, C. Epigenetic factors in late-onset Alzheimer’s Disease: MTHFR and CTH gene polymorphisms, metabolic transsulfuration and methylation pathways, and B vitamins. Int. J. Mol. Sci., 2019, 20(2), 319.
[http://dx.doi.org/10.3390/ijms20020319] [PMID: 30646578]
[177]
Seshadri, S.; Beiser, A.; Selhub, J.; Jacques, P.F.; Rosenberg, I.H.; D’Agostino, R.B.; Wilson, P.W.F.; Wolf, P.A. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N. Engl. J. Med., 2002, 346(7), 476-483.
[http://dx.doi.org/10.1056/NEJMoa011613] [PMID: 11844848]
[178]
Douaud, G.; Refsum, H.; de Jager, C.A.; Jacoby, R.; Nichols, T.E.; Smith, S.M.; Smith, A.D. Preventing Alzheimer’s disease-related gray matter atrophy by B-vitamin treatment. Proc. Natl. Acad. Sci. USA, 2013, 110(23), 9523-9528.
[http://dx.doi.org/10.1073/pnas.1301816110] [PMID: 23690582]
[179]
Hekmatdoost, A.; Vahid, F.; Yari, Z.; Sadeghi, M.; Eini-Zinab, H.; Lakpour, N.; Arefi, S. Methyltetrahydrofolate vs folic acid supplementation in idiopathic recurrent miscarriage with respect to methylenetetrahydrofolate reductase C677T and A1298C polymorphisms: A randomized controlled trial. PLoS One, 2015, 10(12), e0143569-e0143569.
[http://dx.doi.org/10.1371/journal.pone.0143569] [PMID: 26630680]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy