Generic placeholder image

Current HIV Research

Editor-in-Chief

ISSN (Print): 1570-162X
ISSN (Online): 1873-4251

Research Article

Plasma Free Amino Acid Profile in HIV-Positive Cases

Author(s): Irfan Binici*, Hamit Hakan Alp, Hasan Karsen, Ismail Koyuncu, Ataman Gonel, Hakim Çelik and Mustafa Kasım Karahocagil

Volume 20, Issue 3, 2022

Published on: 22 June, 2022

Page: [228 - 235] Pages: 8

DOI: 10.2174/1570162X20666220428103250

Price: $65

Abstract

Background: Increasing the sensitivity and availability of liquid chromatography tandem mass spectrometry (LC-MS/MS) devices may provide advantages in terms of revealing the changes in metabolic pathways in HIV-positive patients and elucidating the physiopathology.

Introduction: The aim of this study was to determine the difference in amino acid levels between HIV-positive patients and healthy individuals by using LC-MS / MS and investigate its relationship with HIV infection.

Material and Methods: Concentrations of 36 different amino acids and their derivatives were measured and compared in venous plasma samples from 24 HIV-positive patients and 24 healthy individuals by using the LC-MS/MS method (Shimadzu North America, Columbia, MD, USA).

Results: HIV-positive subjects had significantly lower alanine, 1-methyl-L-histidine, valine, aspartate, cysteine, cystine, methionine, lysine, glutamine, imino acid, tyrosine, tryptophan, threonine, sarcosine, and argininosuccinic acid and significantly higher 3-methyl-L -histidine, asparagine, glutamate, and carnosine levels as compared to healthy controls. No significant differences were detected in other amino acids.

Conclusion: The significant differences in amino acid profile between HIV-positive and healthy subjects may represent an auxiliary biomarker of cellular damage in asymptomatic HIV-positive patients that may be examined in more detail in further studies. It may also provide guidance for symptomatic cases in terms of the association between symptoms, clinical manifestations, and deficiency or excess of certain amino acids in the context of the complete metabolomics record of HIVpositive patients.

Keywords: HIV, AIDS, amino acids, LC-MS / MS, nutrition, metabolism.

Graphical Abstract

[1]
Weiss RA. How does HIV cause AIDS? Science 1993; 260(5112): 1273-9.
[http://dx.doi.org/10.1126/science.8493571] [PMID: 8493571]
[2]
Moss JA. HIV/AIDS Review. Radiol Technol 2013; 84(3): 247-67.
[PMID: 23322863]
[3]
Koyuncu I, Gönel A, Ozcan E, et al. Single nucleotide polymorphism analysis in HIV and Kaposi’s Sarcoma disease by microarray tech-nique. Curr HIV Res 2020; 18(3): 154-64.
[http://dx.doi.org/10.2174/1570162X18666200130100654]
[4]
Ziegler TR, Judd SE, Ruff JH, McComsey GA, Eckard AR. Amino acid concentrations in HIV-infected youth compared to healthy controls and associations with CD4 counts and inflammation. AIDS Res Hum Retroviruses 2017; 33(7): 681-9.
[http://dx.doi.org/10.1089/aid.2015.0369] [PMID: 28117597]
[5]
Gostner JM, Becker K, Kurz K, Fuchs D. Disturbed amino acid metabolism in HIV: Association with neuropsychiatric symptoms. Front Psychiatry 2015; 6: 97.
[http://dx.doi.org/10.3389/fpsyt.2015.00097] [PMID: 26236243]
[6]
Longo N. Harrison’s Principles of Internal Medicine. 19th ed. McGraw-Hill Education 2015; pp. 427-84.
[7]
R. Rodwell V. W Bender D A, Botham K M, Kennelly P J, Weil P A Harper’s illustrated biochemistry. New York, NY: McGraw-Hill Education 2018.
[8]
Dunstan R, Sparkes D, Macdonald M, et al. Diverse characteristics of the urinary excretion of amino acids in humans and the use of ami-no acid supplementation to reduce fatigue and sub-health in adults. Nutr J 2017; 16(1): 19.
[http://dx.doi.org/10.1186/s12937-017-0240-y]
[9]
Koyuncu I, Gonel A. JJOC, MEDICINE A. Rapid and sensitive determination of carnitine profiling by tandem mass spectrometry can be a diagnostic marker of paroxysmal atrial fibrillation. J Clın Anal Med 2018; 9(5): 447-51.
[10]
Celik M, Şen A, Koyuncu I, Gönel AJCC, Screening HT. Plasma-Free amino acid profiling of nasal polyposis patients. Comb Chem Throughput Screen 2019; 22(9): 657-62.
[11]
Oz O, Koyuncu I, Gonel A. A pilot study for investigation of plasma amino acid profile in neurofibromatosis type 1 patients. Comb Chem High Throughput Screen 2022; 25(1): 114-22.
[PMID: 33280590]
[12]
Wasim M, Awan FR, Khan HN, Tawab A, Iqbal M, Ayesha H. JBg. Aminoacidopathies: Prevalence, etiology, screening, and treatment options. Biochem Genet 2018; 56(1-2): 7-21.
[13]
Stein TP, Nutinsky C, Condoluci D, Schluter MD, Leskiw MJ. Protein and energy substrate metabolism in AIDS patients. Metabolism 1990; 39(8): 876-81.
[http://dx.doi.org/10.1016/0026-0495(90)90136-Z] [PMID: 2377082]
[14]
Hortin GL, Landt M, Powderly WG. Changes in plasma amino acid concentrations in response to HIV-1 infection. Clin Chem 1994; 40(5): 785-9.
[http://dx.doi.org/10.1093/clinchem/40.5.785] [PMID: 7909726]
[15]
Noyer CM, Simon D, Borczuk A, Brandt LJ, Lee MJ, Nehra V. A double-blind placebo-controlled pilot study of glutamine therapy for abnormal intestinal permeability in patients with AIDS. Am J Gastroenterol 1998; 93(6): 972-5.
[http://dx.doi.org/10.1111/j.1572-0241.1998.00290.x] [PMID: 9647031]
[16]
Shabert JK, Winslow C, Lacey JM, Wilmore DW. Glutamine-antioxidant supplementation increases body cell mass in AIDS patients with weight loss: A randomized, double-blind controlled trial. Nutrition 1999; 15(11-12): 860-4.
[http://dx.doi.org/10.1016/S0899-9007(99)00213-0] [PMID: 10575661]
[17]
Breitkreutz R, Pittack N, Nebe CT, et al. Improvement of immune functions in HIV infection by sulfur supplementation: Two randomized trials. J Mol Med (Berl) 2000; 78(1): 55-62.
[http://dx.doi.org/10.1007/s001099900073] [PMID: 10759030]
[18]
Mak J, Cowan TM, Le A. In Amino Acid Analysis. Springer 2019; pp. 85-109.
[http://dx.doi.org/10.1007/978-1-4939-9639-1_8]
[19]
Ollenschläger G, Jansen S, Schindler J, Rasokat H, Schrappe-Bächer M, Roth E. JCC. Plasma amino acid pattern of patients with HIV infec-tion. Chin Chem 1988; 34(9): 1787-9.
[http://dx.doi.org/10.1093/clinchem/34.9.1781]
[20]
Litwack G. Human Biochemistry. Boston: Academic Press 2018; pp. 161-81.
[http://dx.doi.org/10.1016/B978-0-12-383864-3.00007-7]
[21]
Hu W, Sun L, Gong Y, et al. Relationship between branched-chain amino acids, metabolic syndrome, and cardiovascular risk profile in a chinese population: A cross-sectional study. Int J Endocrinol 2016; 2016: 8173905.
[http://dx.doi.org/10.1155/2016/8173905] [PMID: 27528871]
[22]
Tynkkynen J, Chouraki V, van der Lee SJ, et al. Association of branched-chain amino acids and other circulating metabolites with risk of incident dementia and Alzheimer’s disease: A prospective study in eight cohorts. Alzheimers Dement 2018; 14(6): 723-33.
[http://dx.doi.org/10.1016/j.jalz.2018.01.003] [PMID: 29519576]
[23]
Lopez MJ, Mohiuddin SS. Treasure Island: StatPearls 2020.
[24]
Ren YP, Tang AG, Zhou QX, Xiang ZY. Clinical significance of simultaneous determination of serum tryptophan and tyrosine in patients with lung cancer. J Clin Lab Anal 2011; 25(4): 246-50.
[http://dx.doi.org/10.1002/jcla.20467] [PMID: 21786327]
[25]
Widner B, Sepp N, Kowald E, et al. Enhanced tryptophan degradation in systemic lupus erythematosus. Immunobiology 2000; 201(5): 621-30.
[http://dx.doi.org/10.1016/S0171-2985(00)80079-0] [PMID: 10834318]
[26]
Ehrlich S, Franke L, Schneider N, et al. Aromatic amino acids in weight-recovered females with anorexia nervosa. Int J Eat Disord 2009; 42(2): 166-72.
[http://dx.doi.org/10.1002/eat.20575] [PMID: 18803171]
[27]
Hartai Z, Juhász A, Rimanóczy A, et al. Decreased serum and red blood cell kynurenic acid levels in Alzheimer’s disease. Neurochem Int 2007; 50(2): 308-13.
[http://dx.doi.org/10.1016/j.neuint.2006.08.012] [PMID: 17023091]
[28]
Lewerenz J, Maher P. Chronic glutamate toxicity in neurodegenerative diseases-what is the evidence? Front Neurosci 2015; 9: 469.
[http://dx.doi.org/10.3389/fnins.2015.00469] [PMID: 26733784]
[29]
Shabert JK, Wilmore DW. Glutamine deficiency as a cause of human immunodeficiency virus wasting. Med Hypotheses 1996; 46(3): 252-6.
[http://dx.doi.org/10.1016/S0306-9877(96)90251-0] [PMID: 8676762]
[30]
Ebara S, Toyoshima S, Matsumura T, et al. Cobalamin deficiency results in severe metabolic disorder of serine and threonine in rats. Biochim Biophys Acta 2001; 1568(2): 111-7.
[http://dx.doi.org/10.1016/S0304-4165(01)00207-0] [PMID: 11750758]
[31]
Drábková P, Šanderová J, Kovařík J. kanďár R. An assay of selected serum amino acids in patients with type 2 diabetes mellitus. Adv Clin Exp Med 2015; 24(3): 447-51.
[http://dx.doi.org/10.17219/acem/29223] [PMID: 26467133]
[32]
Zinellu A, Sotgia S, Pisanu E, et al. Quantification of histidine, 1-methylhistidine and 3-methylhistidine in plasma and urine by capillary electrophoresis UV-detection. J Sep Sci 2010; 33(23-24): 3781-5.
[http://dx.doi.org/10.1002/jssc.201000392] [PMID: 20886517]
[33]
Dragsted LO. Biomarkers of meat intake and the application of nutrigenomics. Meat Sci 2010; 84(2): 301-7.
[http://dx.doi.org/10.1016/j.meatsci.2009.08.028] [PMID: 20374789]
[34]
Gonel A, Koyuncu I, Aksoy M, Celik HJCM. Metabolomics in Lipoid Proteinosis. Curr Metabolomics 2020; 7(1): 32-41.
[35]
Saglik A, Koyuncu I, Gonel A, Yalcin H, Adibelli FM, Toptan M. Metabolomics analysis in pterygium tissue. 2019; 39(10): 2325-33.
[http://dx.doi.org/10.1007/s10792-018-01069-2]
[36]
Alonso A, Yu B, Qureshi WT, et al. Metabolomics and incidence of atrial fibrillation in African Americans: The atherosclerosis risk in communities (ARIC) study. PLoS One 2015; 10(11): e0142610.
[http://dx.doi.org/10.1371/journal.pone.0142610] [PMID: 26544570]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy