Generic placeholder image

Current Applied Polymer Science

Editor-in-Chief

ISSN (Print): 2452-2716
ISSN (Online): 2452-2724

Review Article

Poly[vinylidene difluoride] [PVDF] Nanofibrous Web-Based Piezoelectric Material: A Futuristic Solution for Flexible Piezoelectric Energy Harvester

Author(s): Swagata Banerjee, Satyaranjan Bairagi, Mohammad Shahadat* and S. Wazed Ali*

Volume 5, Issue 1, 2022

Published on: 17 June, 2022

Page: [15 - 25] Pages: 11

DOI: 10.2174/2452271605666220428101732

Price: $65

Abstract

Piezoelectric materials are gradually becoming attractive materials for research as far as energy harvesting technologies are concerned. The piezoelectric effect is a pressure-driven phenomenon that is exhibited by various kinds of crystals, ceramics, polymers, and composites. However, polymers are preferred in piezoelectric applications owing to their flexibility and lightweight. They can easily be incorporated into electronic wearables that cover the demand for flexibility which is one of the most important requirements to improve technology. In this regard, the piezoelectric polymers are found as suitable candidates for energy harvesting. The present review provides a conclusive outlook of polymer-based piezoelectric materials in terms of doping of different fillers in different piezoelectric polymers with a special focus on polyvinylidene fluoride [PVDF] polymer to develop flexible energy harvesters. Moreover, the electrospinning process, a composite fabrication technique has been discussed to cover all the aspects of processing and optimization. Based on significant energy storage capacity PVDF-based flexible electrospun web could be effectively used in day-to-day life.

Keywords: PVDF, piezoelectricity, electrospun web, energy harvesting, flexible material, piezoelectric effect.

Graphical Abstract

[1]
Abouelfadl S. Global warming – causes, effects and solution’s trials. JES J Eng Sci 2012; 40(4): 1233-54.
[http://dx.doi.org/10.21608/jesaun.2012.114490]
[2]
Dahiya RS, Valle M. Robotic tactile sensing: Technologies and system. In: Robotic Tactile Sensing: Technologies and System. 2014; 9789400705: pp. 1-245.
[3]
Surmenev RA, Orlova T, Chernozem RV, et al. Hybrid lead-free polymer-based nanocomposites with improved piezoelectric response for biomedical energy-harvesting applications: A review. Nano Energy 2019; 62: 475-506.
[http://dx.doi.org/10.1016/j.nanoen.2019.04.090]
[4]
Vives AA. Piezoelectric transducers and applications. In: Piezoelectric Transducers and Applications. Springer 2008.
[http://dx.doi.org/10.1007/978-3-540-77508-9]
[5]
Li H, Tian C, Deng ZD. Energy harvesting from low frequency applications using piezoelectric materials. Appl Phys Rev 2014; 1(4): 041301.
[http://dx.doi.org/10.1063/1.4900845]
[6]
Mishra S, Unnikrishnan L, Nayak SK, Mohanty S. Advances in piezoelectric polymer composites for energy harvesting applications: A systematic review. Macromol Mater Eng 2019; 304(1): 1-25.
[http://dx.doi.org/10.1002/mame.201800463]
[7]
Kholkin AL, Pertsev NA, Goltsev AV. Piezoelectricity and crystal symmetry. In: Piezoelectric Acoust Mater Transducer Appl. 2008; pp. 17-38.
[8]
Ramadass N. ABOa-type oxides -- their structure and properties -- a bird’s eye view. Mater Sci Eng 1978; 36(2): 231-9.
[http://dx.doi.org/10.1016/0025-5416(78)90076-9]
[9]
Smith AJ, Welch AJE. Some mixed metal oxides of perovskite structure. Acta Crystallogr 1960; 13(8): 653-6.
[http://dx.doi.org/10.1107/S0365110X60001540]
[10]
Maeder MD, Damjanovic D, Setter N. Lead free piezoelectric materials. J Electroceram 2004; 13(1–3): 385-92.
[http://dx.doi.org/10.1007/s10832-004-5130-y]
[11]
Li Y. Multilayer assembly of electrospun/electrosprayed PVDF-based nanofibers and beads with enhanced piezoelectricity and high sensitivity. Chem Eng J 2019; 2020: 388.
[12]
Nunes-Pereira J, Sencadas V, Correia V, Rocha JG, Lanceros-Méndez S. Energy harvesting performance of piezoelectric electrospun polymer fibers and polymer/ceramic composites. Sens Actuators A Phys 2013; 196: 55-62.
[http://dx.doi.org/10.1016/j.sna.2013.03.023]
[13]
Kalimuldina G, Turdakyn N, Abay I, et al. A review of piezoelectric pvdf film by electrospinning and its applications. Sensors (Basel) 2020; 20(18): 1-42.
[http://dx.doi.org/10.3390/s20185214] [PMID: 32932744]
[14]
Shi X, Zhou W, Ma D, Ma Q, Bridges D. Review article electrospinning of nanofibers and their applications for electrospinning of nano-fibers and their applications for. J Nanomater 2015; 2015: 1-20.
[15]
Kim HS, Kim J-H, Kim J. A review of piezoelectric energy harvesting based on vibration 2011; 12(6): 1129-41.
[http://dx.doi.org/10.1007/s12541-011-0151-3]
[16]
Safaei M, Sodano HA, Anton SR. A review of energy harvesting using piezoelectric materials: State-of-the-art a decade later (2008-2018). Smart Mater Struct 2019; 28(11): 113001.
[http://dx.doi.org/10.1088/1361-665X/ab36e4]
[17]
Kim HA, Bowen S. Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ Sci 2014; 7(1): 25-44.
[18]
Howells CA. Piezoelectric energy harvesting. Energy Convers Manage 2009; 50(7): 1847-50.
[http://dx.doi.org/10.1016/j.enconman.2009.02.020]
[19]
Soin N, Anand SC, Shah TH. Energy harvesting and storage textiles. In: Handbook of Technical Textiles. 2nd ed. Elsevier Ltd. 2016; pp. 357-96.
[http://dx.doi.org/10.1016/B978-1-78242-465-9.00012-4]
[20]
Steinem CAJ. Principles of piezoelectric sensors. Sensors (Basel) 2005; 269-76.
[21]
Dineva P. Dynamic fracture of piezoelectric materials. piezoelectric materials 2014. http://link.springer.com/10.1007/978-3-319-03961-9
[http://dx.doi.org/10.1007/978-3-319-03961-9]
[22]
Priya S, Song H, Zhou Y, et al. A review on piezoelectric energy harvesting. Materials, methods, and circuits. Energy Harvest Sys 2017; 4(1): 3-39.
[23]
Wang ZL. Progress in piezotronics and piezo-phototronics. Adv Mater 2012; 24(34): 4632-46.
[http://dx.doi.org/10.1002/adma.201104365] [PMID: 22331639]
[24]
Damjanovic D. Lead-Based Piezoelectric Materials. Springer Science 2008; pp. 59-79.
[25]
Rödel J, Webber KG, Dittmer R, Jo W, Kimura M, Damjanovic D. Transferring lead-free piezoelectric ceramics into application. J Eur Ceram Soc 2015; 35(6): 1659-81.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2014.12.013]
[26]
Wei H, Wang H, Xia Y, et al. An overview of lead-free piezoelectric materials and devices and devices. J Mater Chem C Mater Opt Electron Devices 2018; 6(46): 12446-67.
[http://dx.doi.org/10.1039/C8TC04515A]
[27]
Wu J, Xiao D, Zhu J. Potassium-sodium niobate lead-free piezoelectric materials: Past, present, and future of phase boundaries. Chem Rev 2015; 115(7): 2559-95.
[http://dx.doi.org/10.1021/cr5006809] [PMID: 25792114]
[28]
Covaci C, Gontean A. Piezoelectric energy harvesting solutions: A review. Sensors (Basel) 2020; 20(12): 1-37.
[http://dx.doi.org/10.3390/s20123512] [PMID: 32575888]
[29]
Mayeen A, Kalarikkal N. Development of ceramic-controlled piezoelectric devices for biomedical applications. In: Fundamental Bio-materials: Ceramics. Elsevier Ltd. 2018; pp. 47-62.
[http://dx.doi.org/10.1016/B978-0-08-102203-0.00002-0]
[30]
Alamin Dow AB, Schmid U, Kherani NP. Unimorph and bimorph piezoelectric energy harvester stimulated by β-emitting radioisotopes: A modeling study. Microsyst Technol 2014; 20(4-5): 933-44.
[http://dx.doi.org/10.1007/s00542-014-2093-z]
[31]
Shung KK, Cannata JM, Zhou QF. Piezoelectric materials for high frequency medical imaging applications: A review. J Electroceram 2007; 19(1): 139-45.
[http://dx.doi.org/10.1007/s10832-007-9044-3]
[32]
Kimura K, Ohigashi H, Ohigashi H, Itoh T, Kimura K, Fukada E, et al. Piezoelectric polymers and their applications. Jpn J Appl Phys 1983; 22(3): 3-6.
[33]
Ramadan KS, Sameoto D, and Evoy S, et al. A review of piezoelectric polymers as functional materials for electromechanical transducers. In: Smart Materials and Structures. 2014; 23: p. 26.
[34]
Kim JY, Cheng A, Tai Y. Parylene-C as a piezoelectric material piezoelectric film preparation. MEMS 2011; (c): 473-6.
[35]
Sezer N, Koç M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy 2021; 80: 105567.
[http://dx.doi.org/10.1016/j.nanoen.2020.105567]
[36]
Walubita LF, Djebou DCS, Faruk ANM, Lee SI, Dessouky S, Hu X. Prospective of societal and environmental benefits of piezoelectric technology in road energy harvesting. Sustainability (Basel) 2018; 10(2): 1-13.
[http://dx.doi.org/10.3390/su10020383]
[37]
Martins P, Lopes AC, Lanceros-Mendez S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog Polym Sci 2014; 39(4): 683-706.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.07.006]
[38]
Liu F, Grainger DW. Biomaterials science: An introduction to materials. In: Fluorinated Biomaterials. 3rd ed. Elsevier 2013; pp. 92-103.
[http://dx.doi.org/10.1016/B978-0-08-087780-8.00011-5]
[39]
Gregorio R Jr, Ueno EM. Effect of crystalline phase, orientation and temperature on the dielectric properties of poly (vinylidene fluoride) (PVDF). J Mater Sci 1999; 34(18): 4489-500.
[http://dx.doi.org/10.1023/A:1004689205706]
[40]
Vinogradov A, Holloway F. Electro-mechanical properties of the piezoelectric polymer PVDF. Ferroelectrics 2011; (226): 169-81.
[41]
Ruan L, Yao X, Chang Y, Zhou L, Qin G, Zhang X. Properties and Applications of the β Phase Poly(vinylidene fluoride). Polymers (Basel) 2018; 10(3): 1-27.
[http://dx.doi.org/10.3390/polym10030228] [PMID: 30966263]
[42]
Ebnesajjad S. Introduction to fluoropolymers. In: Applied Plastics Engineering Handbook. 2nd ed. Elsevier Inc. 2017; pp. 55-71.
[43]
Sajkiewicz P, Wasiak AL, Gocłowski Z. Phase transitions during stretching of poly (vinylidene ¯ uoride). Eur Polym J 1999; 35(March): 423-9.
[http://dx.doi.org/10.1016/S0014-3057(98)00136-0]
[44]
Sencadas V, Gregorio R Jr, Lanceros-Méndez S. α to β phase transformation and microestructural changes of PVDF films induced by uniaxial stretch. J Macromol Sci Part B Phys 2009; 48(3): 514-25.
[http://dx.doi.org/10.1080/00222340902837527]
[45]
Bairagi S, Ali SW. Poly (vinylidine fluoride) (PVDF)/Potassium Sodium Niobate (KNN) nanorods based flexible nanocomposite film: Influence of KNN concentration in the performance of nanogenerator. Org Electron 2020; 78: 105547.
[http://dx.doi.org/10.1016/j.orgel.2019.105547]
[46]
Bairagi S, Ali SW. Effects of surface modification on electrical properties of KNN nanorod-incorporated PVDF composites. J Mater Sci 2019; 54(17): 11462-84.
[http://dx.doi.org/10.1007/s10853-019-03719-x]
[47]
Bairagi S, Ali SW. Investigating the role of carbon nanotubes (CNTs) in the piezoelectric performance of a PVDF/KNN-based electrospun nanogenerator. Soft Matter 2020; 16(20): 4876-86.
[http://dx.doi.org/10.1039/D0SM00438C] [PMID: 32424391]
[48]
Bairagi S, Ali SW. A hybrid piezoelectric nanogenerator comprising of KNN/ZnO nanorods incorporated PVDF electrospun nanocomposite webs. Int J Energy Res 2020; 44(7): 5545-63.
[http://dx.doi.org/10.1002/er.5306]
[49]
Kang HB, Han CS, Pyun JC, Ryu WH, Kang CY, Cho YS. (Na,K)NbO3 nanoparticle-embedded piezoelectric nanofiber composites for flexible nanogenerators. Compos Sci Technol 2015; 111: 1-8.
[http://dx.doi.org/10.1016/j.compscitech.2015.02.015]
[50]
Gee S, Johnson B, Smith AL. Optimizing electrospinning parameters for piezoelectric PVDF nano fiber membranes. J Membr Sci 2018; 563: 804-12.
[http://dx.doi.org/10.1016/j.memsci.2018.06.050]
[51]
Al-Hazeem NZA. Nanofibers and electrospinning method. In: Nov Nanomater - Synth Appl. 2018.
[http://dx.doi.org/10.5772/intechopen.72060]
[52]
Maria L, Costa M, Elida R, Bretas S, Gregorio R. Effect of solution concentration on the electrospray / electrospinning transition and on the crystalline phase of PVDF. Mater Sci Appl 2010; 247-52.
[53]
Hwang YJ, Choi S, Kim HS. Structural deformation of PVDF nanoweb due to electrospinning behavior affected by solvent ratio. E-Polymers 2018; 18(4): 339-45.
[http://dx.doi.org/10.1515/epoly-2018-0037]
[54]
Zaarour B, Zhu L, Huang C, Jin X. Enhanced piezoelectric properties of randomly oriented and aligned electrospun PVDF fibers by regulating the surface morphology. J Appl Polym Sci 2018; 47049: 1-8.
[55]
Shao H, Wang H, Fang J. Piezoelectric energy conversion performance of electrospun nanofibers. In: Energy Harvesting Properties of Electrospun Nanofibers. 2019; pp. 1-42.
[http://dx.doi.org/10.1088/978-0-7503-2005-4ch4]
[56]
Ponnamma D, Parangusan H, Tanvir A, Al M, Alma A. Smart and robust electrospun fabrics of piezoelectric polymer nanocomposite for self-powering electronic textiles. Mater Des 2019; 184: 108176.
[http://dx.doi.org/10.1016/j.matdes.2019.108176]
[57]
Eddiai A, Meddad M, Farhan R, Mazroui M, Rguiti M, Guyomar D. Using PVDF piezoelectric polymers to maximize power harvested by mechanical structure. Superlattices Microstruct 2019; 127: 20-6.
[http://dx.doi.org/10.1016/j.spmi.2018.03.044]
[58]
Guo W, Tan C, Shi K, et al. Wireless piezoelectric devices based on electrospun PVDF/BaTiO3 NW nanocomposite fibers for human motion monitoring. Nanoscale 2018; 10(37): 17751-60.
[59]
Nw B. Nanoscale wireless piezoelectric devices based on 2018; 17751-60.
[60]
Liu Y, Khanbareh H, Halim MA, et al. Piezoelectric energy harvesting for self‐powered wearable upper limb applications. Nano Sel 2021; 2(8): 1459-79.
[http://dx.doi.org/10.1002/nano.202000242]
[61]
Ju B, Oh J, Yun C, Park CH. Development of a superhydrophobic electrospun poly (vinylidene fl uoride) web via plasma etching. RSC Advances 2018; (8): 28825-35.
[http://dx.doi.org/10.1039/C8RA04652B]
[62]
Gheibi A, Latifi M, Merati AA. Piezoelectric electrospun nanofibrous materials for self-powering wearable piezoelectric electrospun nano-fibrous materials for self-powering wearable electronic textiles applications. J Polym Res 2014; 1-7.
[63]
Bairagi S, Ali SW. Flexible lead-free PVDF/SM-KNN electrospun nanocomposite based piezoelectric materials: Significant enhancement of energy harvesting efficiency of the nanogenerator. Energy 2020; 198: 117385.
[http://dx.doi.org/10.1016/j.energy.2020.117385]
[64]
Guo S, Duan X, Xie M, Aw KC, Xue Q. Composites, fabrication and application of polyvinylidene fluoride for flexible electromechanical devices: A review. Micromachines (Basel) 2020; 11(12): 1-29.
[http://dx.doi.org/10.3390/mi11121076] [PMID: 33287450]
[65]
Shi K, Sun B, Huang X, Jiang P. Synergistic effect of graphene nanosheet and BaTiO3 nanoparticles on performance enhancement of electrospun PVDF nanofiber mat for flexible piezoelectric nanogenerators. Nano Energy 2018; 52: 153-62.
[http://dx.doi.org/10.1016/j.nanoen.2018.07.053]
[66]
Baji A, Mai Y, Li Q, Liu Y. Nanoscale investigation of ferroelectric properties in electrospun barium titanate / polyvinylidene fluoride composite fibers using piezoresponse force microscopy. Compos Sci Technol 2011; 71(11): 1435-40.
[http://dx.doi.org/10.1016/j.compscitech.2011.05.017]
[67]
Wu CM, Chou MH. Polymorphism, piezoelectricity and sound absorption of electrospun PVDF membranes with and without carbon nanotubes. Compos Sci Technol 2016; 127: 127-33.
[http://dx.doi.org/10.1016/j.compscitech.2016.03.001]
[68]
Ponnamma D, Aljarod O, Parangusan H. Al-Maadeed. Electrospun nanofibers of PVDF-HFP composites containing magnetic nickel ferrite for energy harvesting application. Mater Chem Phys 2020; 239: 122257.
[http://dx.doi.org/10.1016/j.matchemphys.2019.122257]
[69]
Tiwari S, Gaur A, Kumar C, Maiti P. Enhanced piezoelectric response in nanoclay induced electrospun PVDF nanofibers for energy harvesting. Energy 2019; 171: 485-92.
[http://dx.doi.org/10.1016/j.energy.2019.01.043]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy