Generic placeholder image

Current Enzyme Inhibition

Editor-in-Chief

ISSN (Print): 1573-4080
ISSN (Online): 1875-6662

Mini-Review Article

The Inhibition of Glutathione S-Transferases and Butyrylcholinesterase by Antidepressants: A Mini-Review on Enzyme-Drug Interactions

Author(s): Victor Markus, Özlem Dalmızrak, Kerem Teralı and Nazmi Özer*

Volume 18, Issue 2, 2022

Published on: 13 July, 2022

Page: [82 - 91] Pages: 10

DOI: 10.2174/1573408018666220428100417

Price: $65

conference banner
Abstract

Background: Compromises in the cellular enzymatic defense barrier can increase the duration of exposure to electrophiles and the severity of toxicity they may incur.

Objective: In this mini-review, we discuss the inhibition of the enzymatic defense systems by different antidepressants commonly prescribed worldwide as well as herbal products used for various forms of depression.

Methods: Our work primarily focused on the interactions of two prominent biotransformation enzyme systems, namely glutathione S-transferases and cholinesterases, with tricyclic antidepressants (TCAs), selective serotonin reuptake inhibitors (SSRIs), and hypericin.

Results: The antidepressants exert considerable inhibitory effects against glutathione -transferases and butyrylcholinesterase.

Conclusion: The outcomes of available published studies and their implications for health and disease are discussed here in detail.

Keywords: Major depression, tricyclic antidepressants, selective serotonin reuptake inhibitors, hypericin, glutathione S-transferases, cholinesterases.

« Previous
Graphical Abstract

[1]
Almazroo OA, Miah MK, Venkataramanan R. Drug metabolism in the liver. Clin Liver Dis 2017; 21(1): 1-20.
[http://dx.doi.org/10.1016/j.cld.2016.08.001] [PMID: 27842765]
[2]
Parkinson A, Ogilvie BW, Buckley DB, Kazmi F, Czerwinski M, Parkinson O. Biotransformation of Xenobiotics Casarett and Doull’s Toxicology: The Basic Science of Poisons. 8th ed. McGraw Hill: New York 2013.
[3]
Liska DJ. The detoxification enzyme systems. Altern Med Rev 1998; 3(3): 187-98.
[PMID: 9630736]
[4]
World Health Organization (WHO), Depression: A Global Crisis. World Mental Health Day 2012. Available from: https://www.who.int/mental_health/management/depression/wfmh_paper_depression_wmhd_2012.pdf (Accessed on December 8th, 2021)
[5]
World Health Organization. (2018), Depression: fact sheet. 2018. Available from: https://www.who.int/news-room/fact-sheets/detail/depression (Accessed on December 8th, 2021)
[6]
Schildkraut JJ. The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 1965; 122(5): 509-22.
[http://dx.doi.org/10.1176/ajp.122.5.509] [PMID: 5319766]
[7]
Udechuku A, Nguyen T, Hill R, Szego K. Antidepressants in pregnancy: a systematic review. Aust N Z J Psychiatry 2010; 44(11): 978-96.
[PMID: 21034181]
[8]
Liu B, Liu J, Wang M, Zhang Y, Li L. From serotonin to neuroplasticity: Evolvement of theories for major depressive disorder. Front Cell Neurosci 2017; 11: 305.
[http://dx.doi.org/10.3389/fncel.2017.00305] [PMID: 29033793]
[9]
Boku S, Nakagawa S, Toda H, Hishimoto A. Neural basis of major depressive disorder: Beyond monoamine hypothesis. Psychiatry Clin Neurosci 2018; 72(1): 3-12.
[http://dx.doi.org/10.1111/pcn.12604] [PMID: 28926161]
[10]
Davies J, Read J. A systematic review into the incidence, severity and duration of antidepressant withdrawal effects: Are guidelines evidence-based? Addict Behav 2019; 97: 111-21.
[http://dx.doi.org/10.1016/j.addbeh.2018.08.027] [PMID: 30292574]
[11]
Ereshefsky L, Riesenman C, Lam YW. Antidepressant drug interactions and the cytochrome P450 system. The role of cytochrome P450 2D6. Clin Pharmacokinet 1995; 29(Suppl. 1): 10-8.
[http://dx.doi.org/10.2165/00003088-199500291-00004] [PMID: 8846618]
[12]
Nemeroff CB, DeVane CL, Pollock BG. Newer antidepressants and the cytochrome P450 system. Am J Psychiatry 1996; 153(3): 311-20.
[http://dx.doi.org/10.1176/ajp.153.3.311] [PMID: 8610817]
[13]
Deodhar M, Rihani SBA, Darakjian L, Turgeon J, Michaud V. Assessing the mechanism of fluoxetine-mediated CYP2D6 inhibition. Pharmaceutics 2021; 13(2): 148.
[http://dx.doi.org/10.3390/pharmaceutics13020148] [PMID: 33498694]
[14]
Myren M, Mose T, Mathiesen L, Knudsen LE. The human placenta-an alternative for studying foetal exposure. Toxicol In Vitro 2007; 21(7): 1332-40.
[http://dx.doi.org/10.1016/j.tiv.2007.05.011] [PMID: 17624715]
[15]
Eggermont E. Neonatal effects of maternal therapy with tricyclic antidepressant drugs. Arch Dis Child 1980; 55(1): 81.
[http://dx.doi.org/10.1136/adc.55.1.81] [PMID: 7377828]
[16]
Barańczyk-Kuźma A, Kuźma M, Gutowicz M, Kaźmierczak B, Sawicki J. Glutathione S-transferase pi as a target for tricyclic antidepressants in human brain. Acta Biochim Pol 2004; 51(1): 207-12.
[http://dx.doi.org/10.18388/abp.2004_3612] [PMID: 15094841]
[17]
Banks DB, Chan GN, Evans RA, Miller DS, Cannon RE. Lysophosphatidic acid and amitriptyline signal through LPA1R to reduce P-glycoprotein transport at the blood-brain barrier. J Cereb Blood Flow Metab 2018; 38(5): 857-68.
[http://dx.doi.org/10.1177/0271678X17705786] [PMID: 28447863]
[18]
Emslie G, Judge R. Tricyclic antidepressants and selective serotonin reuptake inhibitors: use during pregnancy, in children/adolescents and in the elderly. Acta Psychiatr Scand Suppl 2000; 403(s403): 26-34.
[http://dx.doi.org/10.1111/j.1600-0447.2000.tb10945.x] [PMID: 11019932]
[19]
Jørgensen CK, Juul S, Siddiqui F, et al. Tricyclic antidepressants versus ‘active placebo’, placebo or no intervention for adults with major depressive disorder: a protocol for a systematic review with meta-analysis and Trial Sequential Analysis. Syst Rev 2021; 10(1): 227.
[http://dx.doi.org/10.1186/s13643-021-01789-0] [PMID: 34389045]
[20]
Dalmizrak O, Kulaksiz-Erkmen G, Ozer N. The inhibition characteristics of human placental glutathione S-transferase-π by tricyclic antidepressants: amitriptyline and clomipramine. Mol Cell Biochem 2011; 355(1-2): 223-31.
[http://dx.doi.org/10.1007/s11010-011-0858-6] [PMID: 21567209]
[21]
Kulaksiz-Erkmen G, Dalmizrak O, Dincsoy-Tuna G, Dogan A, Ogus IH, Ozer N. Amitriptyline may have a supportive role in cancer treatment by inhibiting glutathione S-transferase pi (GST-π) and alpha (GST-α). J Enzyme Inhib Med Chem 2013; 28(1): 131-6.
[http://dx.doi.org/10.3109/14756366.2011.639017] [PMID: 22145766]
[22]
Singh RR, Reindl KM. Glutathione S-Transferases in Cancer. Antioxidants 2021; 10(5): 701.
[http://dx.doi.org/10.3390/antiox10050701] [PMID: 33946704]
[23]
Zhang L, Kim SH, Park KH, et al. Glutathione S-transferase P influences redox homeostasis and response to drugs that induce the unfolded protein response in zebrafish. J Pharmacol Exp Ther 2021; 377(1): 121-32.
[http://dx.doi.org/10.1124/jpet.120.000417] [PMID: 33514607]
[24]
Dalmizrak O, Kulaksiz-Erkmen G, Ozer N. Possible prenatal impact of sertraline on human placental glutathione S-transferase-π. Hum Exp Toxicol 2012; 31(5): 457-64.
[http://dx.doi.org/10.1177/0960327111429585] [PMID: 22144728]
[25]
Dalmizrak O, Kulaksiz-Erkmen G, Ozer N. Fluoxetine-induced toxicity results in human placental glutathione S-transferase-π (GST-π) dysfunction. Drug Chem Toxicol 2016; 39(4): 439-44.
[http://dx.doi.org/10.3109/01480545.2016.1141422] [PMID: 26872722]
[26]
Adler V, Yin Z, Fuchs SY, et al. Regulation of JNK signaling by GSTp. EMBO J 1999; 18(5): 1321-34.
[http://dx.doi.org/10.1093/emboj/18.5.1321] [PMID: 10064598]
[27]
Board PG, Menon D. Glutathione transferases, regulators of cellular metabolism and physiology. Biochim Biophys Acta 2013; 1830(5): 3267-88.
[http://dx.doi.org/10.1016/j.bbagen.2012.11.019] [PMID: 23201197]
[28]
Raijmakers MT, Steegers EA, Peters WH. Glutathione S-transferases and thiol concentrations in embryonic and early fetal tissues. Hum Reprod 2001; 16(11): 2445-50.
[http://dx.doi.org/10.1093/humrep/16.11.2445] [PMID: 11679536]
[29]
Ofordile ON, Prentice AM, Moore SE, Holladay SD. Early pesticide exposure and later mortality in rural Africa: a new hypothesis. J Immunotoxicol 2005; 2(1): 33-40.
[http://dx.doi.org/10.1080/15476910590949452] [PMID: 18958657]
[30]
Pariante CM, Seneviratne G, Howard L. Should we stop using tricyclic antidepressants in pregnancy? Psychol Med 2011; 41(1): 15-7.
[http://dx.doi.org/10.1017/S003329171000022X] [PMID: 20550739]
[31]
den Boer JA, Bosker FJ, Meesters Y. Clinical efficacy of agomelatine in depression: the evidence. Int Clin Psychopharmacol 2006; 21(1)(Suppl. 1): S21-4.
[http://dx.doi.org/10.1097/01.yic.0000195661.37267.86] [PMID: 16436936]
[32]
Tabak F, Gunduz F, Tahan V, Tabak O, Ozaras R. Sertraline hepatotoxicity: report of a case and review of the literature. Dig Dis Sci 2009; 54(7): 1589-91.
[http://dx.doi.org/10.1007/s10620-008-0524-3] [PMID: 18958618]
[33]
Cherin P, Colvez A, Deville de Periere G, Sereni D. Risk of syncope in the elderly and consumption of drugs: a case-control study. J Clin Epidemiol 1997; 50(3): 313-20.
[http://dx.doi.org/10.1016/S0895-4356(96)00385-X] [PMID: 9120531]
[34]
Briscoe VJ, Ertl AC, Tate DB, Dawling S, Davis SN. Effects of a selective serotonin reuptake inhibitor, fluoxetine, on counterregulatory responses to hypoglycemia in healthy individuals. Diabetes 2008; 57(9): 2453-60.
[http://dx.doi.org/10.2337/db08-0236] [PMID: 18567822]
[35]
Lara N, Baker GB, Archer SL, Le Mellédo J-M. Increased cholesterol levels during paroxetine administration in healthy men. J Clin Psychiatry 2003; 64(12): 1455-9.
[http://dx.doi.org/10.4088/JCP.v64n1209] [PMID: 14728107]
[36]
Le Melledo JM, Mailo K, Lara N, et al. Paroxetine-induced increase in LDL cholesterol levels. J Psychopharmacol 2009; 23(7): 826-30.
[http://dx.doi.org/10.1177/0269881108094320] [PMID: 19074543]
[37]
Sadler TW. Selective serotonin reuptake inhibitors (SSRIs) and heart defects: potential mechanisms for the observed associations. Reprod Toxicol 2011; 32(4): 484-9.
[http://dx.doi.org/10.1016/j.reprotox.2011.09.004] [PMID: 21963886]
[38]
Machado DG, Cunha MP, Neis VB, et al. Rosmarinus officinalis L. hydroalcoholic extract, similar to fluoxetine, reverses depressive-like behavior without altering learning deficit in olfactory bulbectomized mice. J Ethnopharmacol 2012; 143(1): 158-69.
[http://dx.doi.org/10.1016/j.jep.2012.06.017] [PMID: 22721880]
[39]
Han P, Han T, Peng W, Wang X-R. Antidepressant-like effects of essential oil and asarone, a major essential oil component from the rhizome of Acorus tatarinowii. Pharm Biol 2013; 51(5): 589-94.
[http://dx.doi.org/10.3109/13880209.2012.751616] [PMID: 23363070]
[40]
Yeung KS, Hernandez M, Mao JJ, Haviland I, Gubili J. Herbal medicine for depression and anxiety: A systematic review with assessment of potential psycho-oncologic relevance. Phytother Res 2018; 32(5): 865-91.
[http://dx.doi.org/10.1002/ptr.6033] [PMID: 29464801]
[41]
Moragrega I, Ríos JL. Medicinal plants in the treatment of depression: evidence from preclinical studies. Planta Med 2021; 87(9): 656-85.
[http://dx.doi.org/10.1055/a-1338-1011] [PMID: 33434941]
[42]
Bilia AR, Gallori S, Vincieri FFSt. St. John’s wort and depression: efficacy, safety and tolerability-an update. Life Sci 2002; 70(26): 3077-96.
[http://dx.doi.org/10.1016/S0024-3205(02)01566-7] [PMID: 12008092]
[43]
Mennini T, Gobbi M. The antidepressant mechanism of Hypericum perforatum. Life Sci 2004; 75(9): 1021-7.
[http://dx.doi.org/10.1016/j.lfs.2004.04.005] [PMID: 15207650]
[44]
Moretti ME, Maxson A, Hanna F, Koren G. Evaluating the safety of St. John’s Wort in human pregnancy. Reprod Toxicol 2009; 28(1): 96-9.
[http://dx.doi.org/10.1016/j.reprotox.2009.02.003] [PMID: 19491000]
[45]
Suzuki O, Katsumata Y, Oya M, Bladt S, Wagner H. Inhibition of monoamine oxidase by hypericin. Planta Med 1984; 50(3): 272-4.
[http://dx.doi.org/10.1055/s-2007-969700] [PMID: 6484033]
[46]
Müller WE, Rolli M, Schäfer C, Hafner U. Effects of hypericum extract (LI 160) in biochemical models of antidepressant activity. Pharmacopsychiatry 1997; 30 (S 2)(Suppl. 2): 102-7.
[http://dx.doi.org/10.1055/s-2007-979528] [PMID: 9342769]
[47]
Chatterjee SS, Nöldner M, Koch E, Erdelmeier C. Antidepressant activity of Hypericum perforatum and hyperforin: the neglected possibility. Pharmacopsychiatry 1998; 31 (S 1)(Suppl. 1): 7-15.
[http://dx.doi.org/10.1055/s-2007-979340] [PMID: 9684942]
[48]
Chatterjee SS, Bhattacharya SK, Wonnemann M, Singer A, Müller WE. Hyperforin as a possible antidepressant component of hypericum extracts. Life Sci 1998; 63(6): 499-510.
[http://dx.doi.org/10.1016/S0024-3205(98)00299-9] [PMID: 9718074]
[49]
Müller WE, Singer A, Wonnemann M, Hafner U, Rolli M, Schäfer C. Hyperforin represents the neurotransmitter reuptake inhibiting constituent of Hypericum extract. Pharmacopsychiatry 1998; 31 (S 1)(Suppl. 1): 16-21.
[http://dx.doi.org/10.1055/s-2007-979341] [PMID: 9684943]
[50]
Singer A, Wonnemann M, Müller WE. Hyperforin, a major antidepressant constituent of St. John’s Wort, inhibits serotonin uptake by elevating free intracellular Na+1. J Pharmacol Exp Ther 1999; 290(3): 1363-8.
[PMID: 10454515]
[51]
Butterweck V, Böckers T, Korte B, Wittkowski W, Winterhoff H. Long-term effects of St. John’s wort and hypericin on monoamine levels in rat hypothalamus and hippocampus. Brain Res 2002; 930(1-2): 21-9.
[http://dx.doi.org/10.1016/S0006-8993(01)03394-7] [PMID: 11879791]
[52]
Assadi A, Zarrindast MR, Jouyban A, Samini M. Comparing of the effects of hypericin and synthetic antidepressants on the expression of morphine-induced conditioned place preference. Iran J Pharm Res 2011; 10(3): 916-26.
[PMID: 24250400]
[53]
Tuna G, Kulaksiz Erkmen G, Dalmizrak O, Dogan A, Ogus IH, Ozer N. Inhibition characteristics of hypericin on rat small intestine glutathione-S-transferases. Chem Biol Interact 2010; 188(1): 59-65.
[http://dx.doi.org/10.1016/j.cbi.2010.07.007] [PMID: 20637187]
[54]
Dalmizrak O, Kulaksiz-Erkmen G, Ozer N. Evaluation of the in vitro inhibitory impact of hypericin on placental glutathione S-transferase pi. Protein J 2012; 31(7): 544-9.
[http://dx.doi.org/10.1007/s10930-012-9433-6] [PMID: 22810152]
[55]
Turk S, Kulaksiz Erkmen G, Dalmizrak O, Ogus IH, Ozer N. Purification of Glutathione S-Transferase pi from erythrocytes and evaluation of the inhibitory effect of hypericin. Protein J 2015; 34(6): 434-43.
[http://dx.doi.org/10.1007/s10930-015-9638-6] [PMID: 26614503]
[56]
Nicolussi S, Drewe J, Butterweck V, Meyer Zu Schwabedissen HE. Clinical relevance of St. John’s wort drug interactions revisited. Br J Pharmacol 2020; 177(6): 1212-26.
[http://dx.doi.org/10.1111/bph.14936] [PMID: 31742659]
[57]
Gregoretti B, Stebel M, Candussio L, Crivellato E, Bartoli F, Decorti G. Toxicity of Hypericum perforatum (St. John’s wort) administered during pregnancy and lactation in rats. Toxicol Appl Pharmacol 2004; 200(3): 201-5.
[http://dx.doi.org/10.1016/j.taap.2004.04.020] [PMID: 15504456]
[58]
Ginsburg A. Cancer-related depression and potential pharmacologic therapies. Proc Bayl Univ Med Cent 2008; 21(4): 439-41.
[http://dx.doi.org/10.1080/08998280.2008.11928449] [PMID: 18982092]
[59]
Kautio AL, Haanpää M, Saarto T, Kalso E. Amitriptyline in the treatment of chemotherapy-induced neuropathic symptoms. J Pain Symptom Manage 2008; 35(1): 31-9.
[http://dx.doi.org/10.1016/j.jpainsymman.2007.02.043] [PMID: 17980550]
[60]
Searchfield L, Price SA, Betton G, Jasani B, Riccardi D, Griffiths DF. Glutathione S-transferases as molecular markers of tumour progression and prognosis in renal cell carcinoma. Histopathology 2011; 58(2): 180-90.
[http://dx.doi.org/10.1111/j.1365-2559.2010.03733.x] [PMID: 21255063]
[61]
Duvoix A, Morceau F, Delhalle S, et al. Induction of apoptosis by curcumin: mediation by glutathione S-transferase P1-1 inhibition. Biochem Pharmacol 2003; 66(8): 1475-83.
[http://dx.doi.org/10.1016/S0006-2952(03)00501-X] [PMID: 14555224]
[62]
Armstrong RN. Glutathione S-transferases: reaction mechanism, structure, and function. Chem Res Toxicol 1991; 4(2): 131-40.
[http://dx.doi.org/10.1021/tx00020a001] [PMID: 1782341]
[63]
Tew KD. Redox in redux: Emergent roles for glutathione S-transferase P (GSTP) in regulation of cell signaling and S-glutathionylation. Biochem Pharmacol 2007; 73(9): 1257-69.
[http://dx.doi.org/10.1016/j.bcp.2006.09.027] [PMID: 17098212]
[64]
Townsend DM, Manevich Y, He L, Hutchens S, Pazoles CJ, Tew KD. Novel role for glutathione S-transferase pi. Regulator of protein S-Glutathionylation following oxidative and nitrosative stress. J Biol Chem 2009; 284(1): 436-45.
[http://dx.doi.org/10.1074/jbc.M805586200] [PMID: 18990698]
[65]
Romero L, Andrews K, Ng L, O’Rourke K, Maslen A, Kirby G. Human GSTA1-1 reduces c-Jun N-terminal kinase signalling and apoptosis in Caco-2 cells. Biochem J 2006; 400(1): 135-41.
[http://dx.doi.org/10.1042/BJ20060110] [PMID: 16836488]
[66]
Colasanti A, Kisslinger A, Liuzzi R, et al. Hypericin photosensitization of tumor and metastatic cell lines of human prostate. J Photochem Photobiol B 2000; 54(2-3): 103-7.
[http://dx.doi.org/10.1016/S1011-1344(99)00149-9] [PMID: 10836538]
[67]
Zhang Q, Li Z-H, Li Y-Y, et al. Hypericin-photodynamic therapy induces human umbilical vein endothelial cell apoptosis. Sci Rep 2015; 5(18398): 18398.
[http://dx.doi.org/10.1038/srep18398] [PMID: 26673286]
[68]
Lin XX, Wang W, Wu SF, Yang C, Chang TS. Treatment of capillary vascular malformation (port-wine stains) with photochemotherapy. Plast Reconstr Surg 1997; 99(7): 1826-30.
[http://dx.doi.org/10.1097/00006534-199706000-00004] [PMID: 9180705]
[69]
Stepankova S, Komers K. Cholinesterase and cholinesterase inhibitors. Curr Enzym Inhib 2008; 4(4): 160-71.
[http://dx.doi.org/10.2174/157340808786733631]
[70]
Lane RM, Potkin SG, Enz A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int J Neuropsychopharmacol 2006; 9(1): 101-24.
[http://dx.doi.org/10.1017/S1461145705005833] [PMID: 16083515]
[71]
Lockridge O, Bartels CF, Vaughan TA, Wong CK, Norton SE, Johnson LL. Complete amino acid sequence of human serum cholinesterase. J Biol Chem 1987; 262(2): 549-57.
[http://dx.doi.org/10.1016/S0021-9258(19)75818-9] [PMID: 3542989]
[72]
Darvesh S, Cash MK, Reid GA, Martin E, Mitnitski A, Geula C. Butyrylcholinesterase is associated with β-amyloid plaques in the transgenic APPSWE/PSEN1dE9 mouse model of Alzheimer disease. J Neuropathol Exp Neurol 2012; 71(1): 2-14.
[http://dx.doi.org/10.1097/NEN.0b013e31823cc7a6] [PMID: 22157615]
[73]
Macdonald IR, Maxwell SP, Reid GA, Cash MK, DeBay DR, Darvesh S. Quantification of butyrylcholinesterase activity as a sensitive and specific biomarker of Alzheimer’s Disease. J Alzheimers Dis 2017; 58(2): 491-505.
[http://dx.doi.org/10.3233/JAD-170164] [PMID: 28453492]
[74]
Grossberg GT. Cholinesterase inhibitors for the treatment of Alzheimer’s disease: getting on and staying on. Curr Ther Res Clin Exp 2003; 64(4): 216-35.
[http://dx.doi.org/10.1016/S0011-393X(03)00059-6] [PMID: 24944370]
[75]
Wang L, Almeida LE, Spornick NA, et al. Modulation of social deficits and repetitive behaviors in a mouse model of autism: the role of the nicotinic cholinergic system. Psychopharmacology (Berl) 2015; 232(23): 4303-16.
[http://dx.doi.org/10.1007/s00213-015-4058-z] [PMID: 26337613]
[76]
Vallés AS, Barrantes FJ. Dysregulation of neuronal nicotinic acetylcholine receptor-cholesterol crosstalk in autism spectrum disorder. Front Mol Neurosci 2021; 14(14): 744597.
[http://dx.doi.org/10.3389/fnmol.2021.744597] [PMID: 34803605]
[77]
Deutsch SI, Urbano MR, Neumann SA, Burket JA, Katz E. Cholinergic abnormalities in autism: is there a rationale for selective nicotinic agonist interventions? Clin Neuropharmacol 2010; 33(3): 114-20.
[http://dx.doi.org/10.1097/WNF.0b013e3181d6f7ad] [PMID: 20190638]
[78]
Wang HF, Yu JT, Tang SW, et al. Efficacy and safety of cholinesterase inhibitors and memantine in cognitive impairment in Parkinson’s disease, Parkinson’s disease dementia, and dementia with Lewy bodies: systematic review with meta-analysis and trial sequential analysis. J Neurol Neurosurg Psychiatry 2015; 86(2): 135-43.
[http://dx.doi.org/10.1136/jnnp-2014-307659] [PMID: 24828899]
[79]
Deutsch SI, Burket JA. An evolving therapeutic rationale for targeting the α7 nicotinic acetylcholine receptor in autism spectrum disorder. Curr Top Behav Neurosci 2020; 45: 167-208.
[http://dx.doi.org/10.1007/7854_2020_136] [PMID: 32468495]
[80]
Bohnen NI, Albin RL. The cholinergic system and Parkinson disease. Behavioural Brain Research 2011; 221(2): 564-73.
[http://dx.doi.org/10.1016/j.bbr.2009.12.048]
[81]
Pagano G, Rengo G, Pasqualetti G, et al. Cholinesterase inhibitors for Parkinson’s disease: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2015; 86(7): 767-73.
[http://dx.doi.org/10.1136/jnnp-2014-308764] [PMID: 25224676]
[82]
Liu C. Targeting the cholinergic system in Parkinson’s disease. Acta Pharmacol Sin 2020; 41(4): 453-63.
[http://dx.doi.org/10.1038/s41401-020-0380-z] [PMID: 32132659]
[83]
Müller TC, Rocha JB, Morsch VM, Neis RT, Schetinger MR, Schetinger MRC. Antidepressants inhibit human acetylcholinesterase and butyrylcholinesterase activity. Biochim Biophys Acta 2002; 1587(1): 92-8.
[http://dx.doi.org/10.1016/S0925-4439(02)00071-6] [PMID: 12009429]
[84]
Teralı K, Dalmizrak O, Uzairu MS, Ozer N. New insights into the interaction between mammalian butyrylcholinesterase and amitriptyline: a combined experimental and computational approach. Turk Biyokim Derg 2019; 44(1): 55-61.
[http://dx.doi.org/10.1515/tjb-2018-0063]
[85]
Dalmizrak O, Teralı K, Yetkin O, Ogus IH, Ozer N. Computational and experimental studies on the interaction between butyrylcholinesterase and fluoxetine: implications in health and disease. Xenobiotica 2019; 49(7): 803-10.
[http://dx.doi.org/10.1080/00498254.2018.1506192] [PMID: 30052110]
[86]
Srinivasan S, Sadasivam SK, Gunalan S, Shanmugam G, Kothandan G. Application of docking and active site analysis for enzyme linked biodegradation of textile dyes. Environ Pollut 2019; 248: 599-608.
[http://dx.doi.org/10.1016/j.envpol.2019.02.080] [PMID: 30836241]
[87]
Avram S, Stan MS, Udrea AM, Buiu C, Boboc AA, Mernea M. 3D-ALMOND-QSAR models to predict the antidepressant effect of some natural compounds. Pharmaceutics 2021; 13(9): 1449.
[http://dx.doi.org/10.3390/pharmaceutics13091449] [PMID: 34575524]
[88]
Singh AV, Ansari MHD, Rosenkranz D, et al. Artificial intelligence and machine learning in computational nanotoxicology: unlocking and empowering nanomedicine. Adv Healthc Mater 2020; 9(17): e1901862.
[http://dx.doi.org/10.1002/adhm.201901862] [PMID: 32627972]
[89]
Singh AV, Chandrasekar V, Janapareddy P, et al. Emerging application of nanorobotics and artificial intelligence to cross the BBB: Advances in design, controlled maneuvering, and targeting of the barriers. ACS Chem Neurosci 2021; 12(11): 1835-53.
[http://dx.doi.org/10.1021/acschemneuro.1c00087] [PMID: 34008957]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy