Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

Interactions Between Meropenem and Renal Drug Transporters

Author(s): Jing Dong, Yanhui Liu, Longxuan Li*, Yunhe Ding, Jun Qian and Zheng Jiao*

Volume 23, Issue 5, 2022

Published on: 14 June, 2022

Page: [423 - 431] Pages: 9

DOI: 10.2174/1389200223666220428081109

Price: $65

Abstract

Background: Meropenem is a carbapenem antibiotic and is commonly used with other antibiotics for the treatment of bacterial infections. It is primarily eliminated renally by glomerular filtration and renal tubular secretion.

Objective: This study aimed to evaluate the roles of renal uptake and efflux transporters in the excretion of meropenem and potential drug interactions mediated by renal drug transporters.

Methods: Uptake and inhibition studies were conducted in human embryonic kidney 293 cells stably transfected with Organic Anion Transporter (OAT) 1, OAT3, Multidrug and Toxin Extrusion Protein (MATE) 1, and MATE2K, as well as membrane vesicles containing breast cancer resistance-related protein (BCRP), multidrug resistance protein 1 (MDR1), and Multidrug Resistance-associated Protein 2 (MRP2). Probenecid and piperacillin were used to assess potential drug interactions with meropenem in rats.

Results: We observed that meropenem was a low-affinity substrate of OAT1/3 and had a weak inhibitory effect on OAT1/3 and MATE2K. BCRP, MDR1, MRP2, MATE1, and MATE2K could not mediate renal excretion of meropenem. Moreover, meropenem was not an inhibitor of BCRP, MDR1, MRP2, or MATE1. Among five tested antibiotics, moderate inhibition on OAT3-mediated meropenem uptake was observed for linezolid (IC50 value was 69.2 μM), weak inhibition was observed for piperacillin, benzylpenicillin, and tazobactam (IC50 values were 282.2, 308.0 and 668.1 μM, respectively), and no inhibition was observed for sulbactam. Although piperacillin had a relatively high drug-drug interaction index (ratio of maximal unbound plasma concentration to IC50 was 1.42) in vitro, no meaningful impact was reported on the pharmacokinetics of meropenem in rats.

Conclusion: Our results indicated that clinically significant interactions between meropenem and these five antibiotics are low.

Keywords: Renal drug transporters, drug-drug interactions, meropenem, antibiotics, renal excretion, pharmacokinetics.

« Previous
Graphical Abstract

[1]
M, I.; Brahim, I.; Hisham, N.; Aladdin, R.; Mohammed, H.; Bahaaeldin, A. Recent updates of carbapenem antibiotics. Eur. J. Med. Chem., 2017, 131, 185-195.
[2]
Salmon-Rousseau, A.; Martins, C.; Blot, M.; Buisson, M.; Mahy, S.; Chavanet, P.; Piroth, L. Comparative review of imipenem/cilastatin ver-sus meropenem. Med. Mal. Infect., 2020, 50(4), 316-322.
[http://dx.doi.org/10.1016/j.medmal.2020.01.001] [PMID: 32035719]
[3]
Harrison, M.P.; Moss, S.R.; Featherstone, A.; Fowkes, A.G.; Sanders, A.M.; Case, D.E. The disposition and metabolism of meropenem in laboratory animals and man. J. Antimicrob. Chemother., 1989, 24(Suppl. A), 265-277.
[http://dx.doi.org/10.1093/jac/24.suppl_A.265]
[4]
Liu, X. Transporter-Mediated drug-drug interactions and their significance. Adv. Exp. Med. Biol., 2019, 1141, 241-291.
[http://dx.doi.org/10.1007/978-981-13-7647-4_5] [PMID: 31571167]
[5]
Yang, X.; Han, L. Roles of renal drug transporter in drug disposition and renal toxicity. Adv. Exp. Med. Biol., 2019, 1141, 341-360.
[http://dx.doi.org/10.1007/978-981-13-7647-4_7] [PMID: 31571169]
[6]
Ivanyuk, A.; Livio, F.; Biollaz, J.; Buclin, T. Renal drug transporters and drug interactions. Clin. Pharmacokinet., 2017, 56(8), 825-892.
[http://dx.doi.org/10.1007/s40262-017-0506-8] [PMID: 28210973]
[7]
Anzai, N.; Kanai, Y.; Endou, H. Organic anion transporter family: Current knowledge. J. Pharmacol. Sci., 2006, 100(5), 411-426.
[http://dx.doi.org/10.1254/jphs.CRJ06006X] [PMID: 16799257]
[8]
Burckhardt, G. Drug transport by organic anion transporters (OATs). Pharmacol. Ther., 2012, 136(1), 106-130.
[http://dx.doi.org/10.1016/j.pharmthera.2012.07.010] [PMID: 22841915]
[9]
Shibayama, T.; Sugiyama, D.; Kamiyama, E.; Tokui, T.; Hirota, T.; Ikeda, T. Characterization of CS-023 (RO4908463), a novel parenteral carbapenem antibiotic, and meropenem as substrates of human renal transporters. Drug Metab. Pharmacokinet., 2007, 22(1), 41-47.
[http://dx.doi.org/10.2133/dmpk.22.41] [PMID: 17329910]
[10]
Nigam, S.K. What do drug transporters really do? Nat. Rev. Drug Discov., 2015, 14(1), 29-44.
[http://dx.doi.org/10.1038/nrd4461] [PMID: 25475361]
[11]
Gessner, A.; König, J.; Fromm, M.F. Clinical aspects of transporter-mediated drug-drug interactions. Clin. Pharmacol. Ther., 2019, 105(6), 1386-1394.
[http://dx.doi.org/10.1002/cpt.1360] [PMID: 30648735]
[12]
König, J.; Müller, F.; Fromm, M.F. Transporters and drug-drug interactions: Important determinants of drug disposition and effects. Pharmacol. Rev., 2013, 65(3), 944-966.
[http://dx.doi.org/10.1124/pr.113.007518] [PMID: 23686349]
[13]
CDER. In Vitro drug interaction studies - cytochrome P450 enzyme - and transporter-mediated drug interactions: Guidance for industry. 2020. Available from: https://www.fda.gov/media/134582/download
[14]
CDER. Clinical drug interaction studies - cytochrome P450 enzymeand transporter-mediated drug interactions: Guidance for industry. 2020. Available from: https://www.fda.gov/media/134581/download
[15]
PMDA. Drug interaction guideline for drug development and labeling recommendations. Drug Interaction Guideline for Drug Development and Labeling Recommendations. 2014, Available from: http://www.nihs.go.jp/mss/T140710-jimu.pdf
[16]
Krähenbühl-Melcher, A.; Schlienger, R.; Lampert, M.; Haschke, M.; Drewe, J.; Krähenbühl, S. Drug-related problems in hospitals: A review of the recent literature. Drug Saf., 2007, 30(5), 379-407.
[http://dx.doi.org/10.2165/00002018-200730050-00003] [PMID: 17472418]
[17]
Uijtendaal, E.V.; van Harssel, L.L.; Hugenholtz, G.W.; Kuck, E.M.; Zwart-van Rijkom, J.E.; Cremer, O.L.; Egberts, T.C. Analysis of potential drug-drug interactions in medical intensive care unit patients. Pharmacotherapy, 2014, 34(3), 213-219.
[http://dx.doi.org/10.1002/phar.1395] [PMID: 24390929]
[18]
Kuscu, F.; Ulu, A.; Inal, A.S.; Suntur, B.M.; Aydemir, H.; Gul, S.; Ecemis, K.; Komur, S.; Kurtaran, B.; Ozkan Kuscu, O.; Tasova, Y. Poten-tial drug-drug interactions with antimicrobials in hospitalized patients: A multicenter point-prevalence study. Med. Sci. Monit., 2018, 24, 4240-4247.
[http://dx.doi.org/10.12659/MSM.908589] [PMID: 29924770]
[19]
Lagacé-Wiens, P.; Rubinstein, E. Adverse reactions to β-lactam antimicrobials. Expert Opin. Drug Saf., 2012, 11(3), 381-399.
[http://dx.doi.org/10.1517/14740338.2012.643866] [PMID: 22220627]
[20]
Norrby, S.R. Neurotoxicity of carbapenem antibacterials. Drug Saf., 1996, 15(2), 87-90.
[http://dx.doi.org/10.2165/00002018-199615020-00001] [PMID: 8884160]
[21]
Cannon, J.P.; Lee, T.A.; Clark, N.M.; Setlak, P.; Grim, S.A. The risk of seizures among the carbapenems: A meta-analysis. J. Antimicrob. Chemother., 2014, 69(8), 2043-2055.
[http://dx.doi.org/10.1093/jac/dku111] [PMID: 24744302]
[22]
Nordmann, P.; Poirel, L. Epidemiology and diagnostics of carbapenem resistance in gram-negative bacteria. Clin. Infect. Dis., 2019, 69(Suppl. 7), S521-S528.
[http://dx.doi.org/10.1093/cid/ciz824] [PMID: 31724045]
[23]
Peri, A.M.; Doi, Y.; Potoski, B.A.; Harris, P.N.A.; Paterson, D.L.; Righi, E. Antimicrobial treatment challenges in the era of carbapenem re-sistance. Diagn. Microbiol. Infect. Dis., 2019, 94(4), 413-425.
[http://dx.doi.org/10.1016/j.diagmicrobio.2019.01.020] [PMID: 30905487]
[24]
Yu, X.; Chu, Z.; Li, J.; He, R.; Wang, Y.; Cheng, C. Pharmacokinetic drug-drug interaction of antibiotics used in sepsis care in china. Curr. Drug Metab., 2021, 22(1), 5-23.
[http://dx.doi.org/10.2174/1389200221666200929115117] [PMID: 32990533]
[25]
Stocker, S.L.; Williams, K.M.; McLachlan, A.J.; Graham, G.G.; Day, R.O. Pharmacokinetic and pharmacodynamic interaction between allopu-rinol and probenecid in healthy subjects. Clin. Pharmacokinet., 2008, 47(2), 111-118.
[http://dx.doi.org/10.2165/00003088-200847020-00004] [PMID: 18193917]
[26]
Hayashi, Y.; Roberts, J.A.; Paterson, D.L.; Lipman, J. Pharmacokinetic evaluation of piperacillin-tazobactam. Expert Opin. Drug Metab. Toxicol., 2010, 6(8), 1017-1031.
[http://dx.doi.org/10.1517/17425255.2010.506187] [PMID: 20636224]
[27]
Foulds, G.; Stankewich, J.P.; Marshall, D.C.; O’Brien, M.M.; Hayes, S.L.; Weidler, D.J.; McMahon, F.G. Pharmacokinetics of sulbactam in humans. Antimicrob. Agents Chemother., 1983, 23(5), 692-699.
[http://dx.doi.org/10.1128/AAC.23.5.692] [PMID: 6307133]
[28]
Yin, L.; Feng, Y.; Tong, J.; Guo, Z.; Zhang, Y.; Zhang, Q.; Sun, Y.; Fawcett, J.P.; Gu, J. Ultrahigh-throughput absolute quantitative analysis of linezolid in human plasma by direct analysis in real time mass spectrometry without chromatographic separation and its application to a pharmacokinetic study. Anal. Bioanal. Chem., 2019, 411(20), 5139-5148.
[http://dx.doi.org/10.1007/s00216-019-01891-2] [PMID: 31179528]
[29]
Rumble, R.H.; Roberts, M.S. Determination of benzylpenicillin in plasma and urine by high-performance liquid chromatography. J. Chromatogr. A, 1985, 342(2), 436-441.
[http://dx.doi.org/10.1016/S0378-4347(00)84540-5] [PMID: 4055968]
[30]
Wolman, A.T.; Gionfriddo, M.R.; Heindel, G.A.; Mukhija, P.; Witkowski, S.; Bommareddy, A.; Vanwert, A.L. Organic anion transporter 3 interacts selectively with lipophilic β-lactam antibiotics. Drug Metab. Dispos., 2013, 41(4), 791-800.
[http://dx.doi.org/10.1124/dmd.112.049569] [PMID: 23344796]
[31]
Parvez, M.M.; Kaisar, N.; Shin, H.J.; Jung, J.A.; Shin, J.G. Inhibitory interaction potential of 22 antituberculosis drugs on organic anion and cation transporters of the SLC22A family. Antimicrob. Agents Chemother., 2016, 60(11), 6558-6567.
[http://dx.doi.org/10.1128/AAC.01151-16] [PMID: 27550354]
[32]
Chan, G.; Houle, R.; Lin, M.; Yabut, J.; Cox, K.; Wu, J.; Chu, X. Role of transporters in the disposition of a novel β-lactamase inhibitor: Relebactam (MK-7655). J. Antimicrob. Chemother., 2019, 74(7), 1894-1903.
[http://dx.doi.org/10.1093/jac/dkz101] [PMID: 30891606]
[33]
Wen, S.; Wang, C.; Duan, Y.; Huo, X.; Meng, Q.; Liu, Z.; Yang, S.; Zhu, Y.; Sun, H.; Ma, X.; Yang, S.; Liu, K. OAT1 and OAT3 also mediate the drug-drug interaction between piperacillin and tazobactam. Int. J. Pharm., 2018, 537(1-2), 172-182.
[http://dx.doi.org/10.1016/j.ijpharm.2017.12.037] [PMID: 29277663]
[34]
Ye, J.; Liu, Q.; Wang, C.; Meng, Q.; Peng, J.; Sun, H.; Kaku, T.; Liu, K. Inhibitory effect of JBP485 on renal excretion of acyclovir by the inhibition of OAT1 and OAT3. Eur. J. Pharm. Sci., 2012, 47(2), 341-346.
[http://dx.doi.org/10.1016/j.ejps.2012.06.004] [PMID: 22728397]
[35]
Morrissey, K.M.; Stocker, S.L.; Wittwer, M.B.; Xu, L.; Giacomini, K.M. Renal transporters in drug development. Annu. Rev. Pharmacol. Toxicol., 2013, 53(1), 503-529.
[http://dx.doi.org/10.1146/annurev-pharmtox-011112-140317] [PMID: 23140242]
[36]
Zhu, Y.; Meng, Q.; Wang, C.; Liu, Q.; Sun, H.; Kaku, T.; Liu, K. Organic anion transporters involved in the excretion of bestatin in the kid-ney. Peptides, 2012, 33(2), 265-271.
[http://dx.doi.org/10.1016/j.peptides.2012.01.007] [PMID: 22273603]
[37]
Wu, W.; Baker, M.E.; Eraly, S.A.; Bush, K.T.; Nigam, S.K. Analysis of a large cluster of SLC22 transporter genes, including novel USTs, reveals species-specific amplification of subsets of family members. Physiol. Genomics, 2009, 38(2), 116-124.
[http://dx.doi.org/10.1152/physiolgenomics.90309.2008] [PMID: 19417012]
[38]
Shibayama, T.; Yamamura, N.; Matsushita, Y.; Tokui, T.; Hirota, T.; Ikeda, T. Renal handling of CS-023 (RO4908463), a novel parenteral carbapenem antibiotic, in rabbits in comparison with meropenem. Xenobiotica, 2006, 36(12), 1273-1287.
[http://dx.doi.org/10.1080/00498250600944326] [PMID: 17162472]
[39]
Bax, R.P.; Bastain, W.; Featherstone, A.; Wilkinson, D.M.; Hutchison, M.; Haworth, S.J. The pharmacokinetics of meropenem in volunteers. J. Antimicrob. Chemother., 1989, 24(Suppl. A), 311-320.
[http://dx.doi.org/10.1093/jac/24.suppl_A.311] [PMID: 2808215]
[40]
Peng, L.; Wang, X.; Dang, H. Simultaneous determination of meropenem and imipenem in rat plasma by LC-MS/MS and its application to a pharmacokinetic study. Biomed. Chromatogr., 2021, 35(11), e5185.
[http://dx.doi.org/10.1002/bmc.5185] [PMID: 34060114]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy