Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Mini-Review Article

Smart Advancements for Targeting Solid Tumors via Protein and Peptide Drug Delivery (PPD)

Author(s): Siddharth Singh, Priyanka Sanwal, Samir Bhargava, Ashok Behera, Shuchi Upadhyay, Md. Habban Akhter, Manish Gupta and Shraddha Manish Gupta*

Volume 20, Issue 6, 2023

Published on: 22 August, 2022

Page: [669 - 682] Pages: 14

DOI: 10.2174/1567201819666220427132734

Price: $65

Abstract

Proteins and peptides possess considerable potential in treating solid tumors because of their unique properties. At present, there are over 100 peptide-based formulations on the market. Today, peptides and proteins are in more demand due to their selective nature and high target-binding efficiency. Targeting solid tumors with compounds of molecular weight less than 10 kDa are much more desirable because they undergo excessive penetration in view of the fact that they are small sized. The solid tumors have thick tissues and possess excessive interstitial fluid pressure, because of which high molecular compounds cannot enter. The properties of proteins and peptides induce low toxic effects and lessen the major side effects caused by chemical-based drugs. However, their delivery is quite challenging as most proteins and peptides stop functioning therapeutically when following a parenteral route of administration. This paper elaborates on the importance of new age formulations of peptides and proteins followed by their recently documented advancements that increase their stability and delay their metabolism, which helps to target solid tumors.

Keywords: Solid tumors, protein, peptide drug delivery, metabolism, molecular weight, fluid pressure.

Graphical Abstract

[1]
Bhutia, S.K.; Maiti, T.K. Targeting tumors with peptides from natural sources. Trends Biotechnol., 2008, 26(4), 210-217.
[http://dx.doi.org/10.1016/j.tibtech.2008.01.002] [PMID: 18295917]
[2]
Willingham, S.B.; Volkmer, J.P.; Gentles, A.J.; Sahoo, D.; Dalerba, P.; Mitra, S.S.; Wang, J.; Contreras-Trujillo, H.; Martin, R.; Cohen, J.D.; Lovelace, P.; Scheeren, F.A.; Chao, M.P.; Weiskopf, K.; Tang, C.; Volkmer, A.K.; Naik, T.J.; Storm, T.A.; Mosley, A.R.; Edris, B.; Schmid, S.M.; Sun, C.K.; Chua, M.S.; Murillo, O.; Rajendran, P.; Cha, A.C.; Chin, R.K.; Kim, D.; Adorno, M.; Raveh, T.; Tseng, D.; Jaiswal, S.; Enger, P.Ø.; Steinberg, G.K.; Li, G.; So, S.K.; Majeti, R.; Harsh, G.R.; van de Rijn, M.; Teng, N.N.; Sunwoo, J.B.; Alizadeh, A.A.; Clarke, M.F.; Weissman, I.L. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc. Natl. Acad. Sci. USA, 2012, 109(17), 6662-6667.
[http://dx.doi.org/10.1073/pnas.1121623109] [PMID: 22451913]
[3]
Jaracz, S.; Chen, J.; Kuznetsova, L.V.; Ojima, I. Recent advances in tumor-targeting anticancer drug conjugates. Bioorg. Med. Chem., 2005, 13(17), 5043-5054.
[http://dx.doi.org/10.1016/j.bmc.2005.04.084] [PMID: 15955702]
[4]
Simón-Gracia, L.; Scodeller, P.; Fuentes, S.S.; Vallejo, V.G.; Ríos, X.; San Sebastián, E.; Sidorenko, V.; Di Silvio, D.; Suck, M.; De Lorenzi, F.; Rizzo, L.Y.; von Stillfried, S.; Kilk, K.; Lammers, T.; Moya, S.E.; Teesalu, T. Application of polymersomes engineered to target p32 protein for detection of small breast tumors in mice. Oncotarget, 2018, 9(27), 18682-18697.
[http://dx.doi.org/10.18632/oncotarget.24588] [PMID: 29721153]
[5]
Wonder, E.; Simón-Gracia, L.; Scodeller, P.; Majzoub, R.N.; Kotamraju, V.R.; Ewert, K.K.; Teesalu, T.; Safinya, C.R. Competition of charge-mediated and specific binding by peptide-tagged cationic liposome-DNA nanoparticles in vitro and in vivo. Biomaterials, 2018, 166, 52-63.
[http://dx.doi.org/10.1016/j.biomaterials.2018.02.052] [PMID: 29544111]
[6]
Bruno, B.J.; Miller, G.D.; Lim, C.S. Basics and recent advances in peptide and protein drug delivery. Ther. Deliv., 2013, 4(11), 1443-1467.
[http://dx.doi.org/10.4155/tde.13.104] [PMID: 24228993]
[7]
Scodeller, P.; Asciutto, E.K. Targeting tumors using peptides. Molecules, 2020, 25(4), 808.
[http://dx.doi.org/10.3390/molecules25040808] [PMID: 32069856]
[8]
Mahato, R.I.; Narang, A.S.; Thoma, L.; Miller, D.D. Emerging trends in oral delivery of peptide and protein drugs. Crit. Rev. Ther. Drug Carrier Syst., 2003, 20(2-3), 153-214.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v20.i23.30] [PMID: 14584523]
[9]
Veuillez, F.; Kalia, Y.N.; Jacques, Y.; Deshusses, J.; Buri, P. Factors and strategies for improving buccal absorption of peptides. Eur. J. Pharm. Biopharm., 2001, 51(2), 93-109.
[http://dx.doi.org/10.1016/S0939-6411(00)00144-2] [PMID: 11226816]
[10]
Al-Tahami, K.; Singh, J. Smart polymer based delivery systems for peptides and proteins. Recent Pat. Drug Deliv. Formul., 2007, 1(1), 65-71.
[http://dx.doi.org/10.2174/187221107779814113] [PMID: 19075875]
[11]
Brown, L.R. Commercial challenges of protein drug delivery. Expert Opin. Drug Deliv., 2005, 2(1), 29-42.
[http://dx.doi.org/10.1517/17425247.2.1.29] [PMID: 16296733]
[12]
Tyagi, A.; Tuknait, A.; Anand, P.; Gupta, S.; Sharma, M.; Mathur, D.; Joshi, A.; Singh, S.; Gautam, A.; Raghava, G.P. CancerPPD: A database of anticancer peptides and proteins. Nucleic Acids Res., 2015, 43(Database issue), D837-D843.
[http://dx.doi.org/10.1093/nar/gku892] [PMID: 25270878]
[13]
Thundimadathil, J. Cancer treatment using peptides: Current therapies and future prospects. Journal of Amino Acids, 2012, 2012
[http://dx.doi.org/10.1155/2012/967347]
[14]
Otvos, L. Jr Peptide-based drug design: Here and now. Methods Mol. Biol., 2008, 494, 1-8.
[http://dx.doi.org/10.1007/978-1-59745-419-3_1] [PMID: 18726565]
[15]
Hoskin, D.W.; Ramamoorthy, A. Studies on anticancer activities of antimicrobial peptides. Biochim. Biophys. Acta, 2008, 1778(2), 357-375.
[http://dx.doi.org/10.1016/j.bbamem.2007.11.008] [PMID: 18078805]
[16]
Simons, K.; Ikonen, E. How cells handle cholesterol. Science, 2000, 290(5497), 1721-1726.
[http://dx.doi.org/10.1126/science.290.5497.1721] [PMID: 11099405]
[17]
Sok, M.; Sentjurc, M.; Schara, M. Membrane fluidity characteristics of human lung cancer. Cancer Lett., 1999, 139(2), 215-220.
[http://dx.doi.org/10.1016/S0304-3835(99)00044-0] [PMID: 10395181]
[18]
Schweizer, F. Cationic amphiphilic peptides with cancer-selective toxicity. Eur. J. Pharmacol., 2009, 625(1-3), 190-194.
[http://dx.doi.org/10.1016/j.ejphar.2009.08.043] [PMID: 19835863]
[19]
Harris, F.; Dennison, S.R.; Singh, J.; Phoenix, D.A. On the selectivity and efficacy of defense peptides with respect to cancer cells. Med. Res. Rev., 2013, 33(1), 190-234.
[http://dx.doi.org/10.1002/med.20252] [PMID: 21922503]
[20]
Roudi, R.; Syn, N.L.; Roudbary, M. Antimicrobial peptides as biologic and immunotherapeutic agents against cancer: A comprehensive overview. Front. Immunol., 2017, 8, 1320.
[http://dx.doi.org/10.3389/fimmu.2017.01320] [PMID: 29081781]
[21]
Zhang, B.; Shi, W.; Li, J.; Liao, C.; Yang, L.; Huang, W.; Qian, H. Synthesis and biological evaluation of novel peptides based on antimicrobial peptides as potential agents with antitumor and multidrug resistance-reversing activities. Chem. Biol. Drug Des., 2017, 90(5), 972-980.
[http://dx.doi.org/10.1111/cbdd.13023] [PMID: 28524273]
[22]
Chi, E.Y.; Krishnan, S.; Randolph, T.W.; Carpenter, J.F. Physical stability of proteins in aqueous solution: Mechanism and driving forces in nonnative protein aggregation. Pharm. Res., 2003, 20(9), 1325-1336.
[http://dx.doi.org/10.1023/A:1025771421906] [PMID: 14567625]
[23]
Mei, E.; Tang, J.; Vanderkooi, J.M.; Hochstrasser, R.M. Motions of single molecules and proteins in trehalose glass. J. Am. Chem. Soc., 2003, 125(9), 2730-2735.
[http://dx.doi.org/10.1021/ja021197t] [PMID: 12603162]
[24]
Webb, S.D.; Cleland, J.L.; Carpenter, J.F.; Randolph, T.W. A new mechanism for decreasing aggregation of recombinant human interferon-gamma by a surfactant: Slowed dissolution of lyophilized formulations in a solution containing 0.03% polysorbate 20. J. Pharm. Sci., 2002, 91(2), 543-558.
[http://dx.doi.org/10.1002/jps.10033] [PMID: 11835212]
[25]
Ragoonanan, V.; Aksan, A. Protein stabilization. Transfus. Med. Hemother., 2007, 34(4), 246-252.
[http://dx.doi.org/10.1159/000104678]
[26]
Bobo, D.; Robinson, K.J.; Islam, J.; Thurecht, K.J.; Corrie, S.R. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm. Res., 2016, 33(10), 2373-2387.
[http://dx.doi.org/10.1007/s11095-016-1958-5] [PMID: 27299311]
[27]
Gou, Y.; Miao, D.; Zhou, M.; Wang, L.; Zhou, H.; Su, G. Bio-inspired protein-based nanoformulations for cancer theranostics. Front. Pharmacol., 2018, 9, 421.
[http://dx.doi.org/10.3389/fphar.2018.00421] [PMID: 29755355]
[28]
Hoogenboezem, E.N.; Duvall, C.L. Harnessing albumin as a carrier for cancer therapies. Adv. Drug Deliv. Rev., 2018, 130, 73-89.
[http://dx.doi.org/10.1016/j.addr.2018.07.011] [PMID: 30012492]
[29]
Caster, J.M.; Patel, A.N.; Zhang, T.; Wang, A. Investigational nanomedicines in 2016: A review of nanotherapeutics currently undergoing clinical trials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2017, 9(1)
[http://dx.doi.org/10.1002/wnan.1416] [PMID: 27312983]
[30]
Fuentes, AC; Szwed, E; Spears, CD; Thaper, S; Dang, LH Dang, NH Denileukin diftitox (Ontak) as maintenance therapy for peripheral Tcell lymphomas: Three cases with sustained remission. Case Rep Oncol Med., 2015, 2015.
[31]
Rehan, F.; Ahemad, N.; Islam, R.A.; Gupta, M.; Gan, S.H.; Chowdhury, E.H. Optimization and formulation of nanostructured and self-assembled caseinate micelles for enhanced cytotoxic effects of paclitaxel on breast cancer cells. Pharmaceutics, 2020, 12(10), 984.
[http://dx.doi.org/10.3390/pharmaceutics12100984] [PMID: 33080962]
[32]
Guo, S.; Vieweger, M.; Zhang, K.; Yin, H.; Wang, H.; Li, X.; Li, S.; Hu, S.; Sparreboom, A.; Evers, B.M.; Dong, Y.; Chiu, W.; Guo, P. Ultra-thermostable RNA nanoparticles for solubilizing and high-yield loading of paclitaxel for breast cancer therapy. Nat. Commun., 2020, 11(1), 972.
[http://dx.doi.org/10.1038/s41467-020-14780-5] [PMID: 32080195]
[33]
Barick, K.C.; Tripathi, A.; Dutta, B.; Shelar, S.B.; Hassan, P.A. Curcumin encapsulated casein nanoparticles: Enhanced bioavailability and anticancer efficacy. J. Pharm. Sci., 2021, 110(5), 2114-2120.
[http://dx.doi.org/10.1016/j.xphs.2020.12.011] [PMID: 33338492]
[34]
Gandhi, S.; Roy, I. Doxorubicin-loaded casein nanoparticles for drug delivery: Preparation, characterization and in vitro evaluation. Int. J. Biol. Macromol., 2019, 121, 6-12.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.005] [PMID: 30290258]
[35]
Zhang, W.; Yu, L.; Ji, T.; Wang, C. Tumor microenvironment-responsive peptide-based supramolecular drug delivery system. Front Chem., 2020, 8, 549.
[http://dx.doi.org/10.3389/fchem.2020.00549] [PMID: 32775317]
[36]
Kalimuthu, K.; Lubin, B.C.; Bazylevich, A.; Gellerman, G.; Shpilberg, O.; Luboshits, G.; Firer, M.A. Gold nanoparticles stabilize peptide-drug-conjugates for sustained targeted drug delivery to cancer cells. J. Nanobiotechnology, 2018, 16(1), 34.
[http://dx.doi.org/10.1186/s12951-018-0362-1] [PMID: 29602308]
[37]
Cho, J.H.; Sung, B.H.; Kim, S.C. Buforins: Histone H2A-derived antimicrobial peptides from toad stomach. Biochim. Biophys. Acta, 2009, 1788(8), 1564-1569.
[http://dx.doi.org/10.1016/j.bbamem.2008.10.025] [PMID: 19041293]
[38]
Li, D.; Xu, Y. Buforin IIb induced cell cycle arrest in liver cancer. Anim. Cells Syst., 2019, 23(3), 176-183.
[http://dx.doi.org/10.1080/19768354.2019.1595139] [PMID: 31231581]
[39]
Moghaddam, F.D.; Akbarzadeh, I.; Marzbankia, E.; Farid, M.; Reihani, A.H.; Javidfar, M.; Mortazavi, P. Delivery of melittin-loaded niosomes for breast cancer treatment: An in vitro and in vivo evaluation of anti-cancer effect. Cancer Nanotechnol., 2021, 12(1), 1-35.
[http://dx.doi.org/10.1186/s12645-021-00085-9] [PMID: 33456622]
[40]
Menacho-Melgar, R.; Decker, J.S.; Hennigan, J.N.; Lynch, M.D. A review of lipidation in the development of advanced protein and peptide therapeutics. J. Control. Release, 2019, 295, 1-12.
[http://dx.doi.org/10.1016/j.jconrel.2018.12.032] [PMID: 30579981]
[41]
Wang, Y.; Bi, X.; Chu, Q.; Xu, T. Discovery of toll-like receptor 13 exists in the teleost fish: Miiuy croaker (Perciformes, Sciaenidae). Dev. Comp. Immunol., 2016, 61, 25-33.
[http://dx.doi.org/10.1016/j.dci.2016.03.005] [PMID: 26952767]
[42]
Wang, J.; Chow, D.; Heiati, H.; Shen, W.C. Reversible lipidization for the oral delivery of salmon calcitonin. J. Control. Release, 2003, 88(3), 369-380.
[http://dx.doi.org/10.1016/S0168-3659(03)00008-7] [PMID: 12644363]
[43]
Trier, S.; Linderoth, L.; Bjerregaard, S.; Strauss, H.M.; Rahbek, U.L.; Andresen, T.L. Acylation of salmon calcitonin modulates in vitro intestinal peptide flux through membrane permeability enhancement. Eur. J. Pharm. Biopharm., 2015, 96, 329-337.
[http://dx.doi.org/10.1016/j.ejpb.2015.09.001] [PMID: 26347924]
[44]
Wang, H.; Zhu, Z.; Zhang, G.; Lin, F.; Liu, Y.; Zhang, Y.; Feng, J.; Chen, W.; Meng, Q.; Chen, L. AS1411 aptamer/hyaluronic acid-bifunctionalized microemulsion co-loading shikonin and docetaxel for enhanced antiglioma therapy. J. Pharm. Sci., 2019, 108(11), 3684-3694.
[http://dx.doi.org/10.1016/j.xphs.2019.08.017] [PMID: 31465736]
[45]
Fang, R.H.; Hu, C.M.; Luk, B.T.; Gao, W.; Copp, J.A.; Tai, Y.; O’Connor, D.E.; Zhang, L. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett., 2014, 14(4), 2181-2188.
[http://dx.doi.org/10.1021/nl500618u] [PMID: 24673373]
[46]
Luo, M.; Wang, H.; Wang, Z.; Cai, H.; Lu, Z.; Li, Y.; Du, M.; Huang, G.; Wang, C.; Chen, X.; Porembka, M.R.; Lea, J.; Frankel, A.E.; Fu, Y.X.; Chen, Z.J.; Gao, J. A STING-activating nanovaccine for cancer immunotherapy. Nat. Nanotechnol., 2017, 12(7), 648-654.
[http://dx.doi.org/10.1038/nnano.2017.52] [PMID: 28436963]
[47]
Gagliardi, A.; Giuliano, E.; Venkateswararao, E.; Fresta, M.; Bulotta, S.; Awasthi, V.; Cosco, D. Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Front. Pharmacol., 2021, 12601626
[http://dx.doi.org/10.3389/fphar.2021.601626] [PMID: 33613290]
[48]
Zeng, Q.; Li, H.; Jiang, H.; Yu, J.; Wang, Y.; Ke, H.; Gong, T.; Zhang, Z.; Sun, X. Tailoring polymeric hybrid micelles with lymph node targeting ability to improve the potency of cancer vaccines. Biomaterials, 2017, 122, 105-113.
[http://dx.doi.org/10.1016/j.biomaterials.2017.01.010] [PMID: 28110170]
[49]
Wang, J.; Hu, X.; Xiang, D. Nanoparticle drug delivery systems: An excellent carrier for tumor peptide vaccines. Drug Deliv., 2018, 25(1), 1319-1327.
[http://dx.doi.org/10.1080/10717544.2018.1477857] [PMID: 29869539]
[50]
Gu, Z.; Biswas, A.; Zhao, M.; Tang, Y. Tailoring nanocarriers for intracellular protein delivery. Chem. Soc. Rev., 2011, 40(7), 3638-3655.
[http://dx.doi.org/10.1039/c0cs00227e] [PMID: 21566806]
[51]
Li, R.; Wang, Y.; Du, J.; Wang, X.; Duan, A.; Gao, R.; Liu, J.; Li, B. Graphene oxide loaded with tumor-targeted peptide and anti-cancer drugs for cancer target therapy. Sci. Rep., 2021, 11(1), 1725.
[http://dx.doi.org/10.1038/s41598-021-81218-3] [PMID: 33462277]
[52]
Xie, M.; Zhang, F.; Liu, L.; Zhang, Y.; Li, Y.; Li, H.; Xie, J. Surface modification of graphene oxide nanosheets by protamine sulfate/sodium alginate for anti-cancer drug delivery application. Appl. Surf. Sci., 2018, 440, 853-860.
[http://dx.doi.org/10.1016/j.apsusc.2018.01.175]
[53]
Xu, Y.; Kong, Y.; Xu, J.; Li, X.; Gou, J.; Yin, T.; He, H.; Zhang, Y.; Tang, X. Doxorubicin intercalated copper diethyldithiocarbamate functionalized layered double hydroxide hybrid nanoparticles for targeted therapy of hepatocellular carcinoma. Biomater. Sci., 2020, 8(3), 897-911.
[http://dx.doi.org/10.1039/C9BM01394F] [PMID: 31825410]
[54]
Mottaghitalab, F.; Kiani, M.; Farokhi, M.; Kundu, S.C.; Reis, R.L.; Gholami, M.; Bardania, H.; Dinarvand, R.; Geramifar, P.; Beiki, D.; Atyabi, F. Targeted delivery system based on gemcitabine-loaded silk fibroin nanoparticles for lung cancer therapy. ACS Appl. Mater. Interfaces, 2017, 9(37), 31600-31611.
[http://dx.doi.org/10.1021/acsami.7b10408] [PMID: 28836425]
[55]
Bowerman, C.J.; Byrne, J.D.; Chu, K.S.; Schorzman, A.N.; Keeler, A.W.; Sherwood, C.A.; Perry, J.L.; Luft, J.C.; Darr, D.B.; Deal, A.M.; Napier, M.E.; Zamboni, W.C.; Sharpless, N.E.; Perou, C.M.; DeSimone, J.M. Docetaxel-loaded PLGA nanoparticles improve efficacy in taxane-resistant triple-negative breast cancer. Nano Lett., 2017, 17(1), 242-248.
[http://dx.doi.org/10.1021/acs.nanolett.6b03971] [PMID: 27966988]
[56]
Rezvantalab, S.; Drude, N.I.; Moraveji, M.K.; Güvener, N.; Koons, E.K.; Shi, Y.; Lammers, T.; & Kiessling, F. PLGA-based nanoparticles in cancer treatment. Front. Pharmacol., 2018, 9, 1260.
[57]
Vllasaliu, D.; Fowler, R.; Stolnik, S. PEGylated nanomedicines: Recent progress and remaining concerns. Expert Opin. Drug Deliv., 2014, 11(1), 139-154.
[http://dx.doi.org/10.1517/17425247.2014.866651] [PMID: 24295065]
[58]
Li, H.; Tong, Y.; Bai, L.; Ye, L.; Zhong, L.; Duan, X.; Zhu, Y. Lactoferrin functionalized PEG-PLGA nanoparticles of shikonin for brain targeting therapy of glioma. Int. J. Biol. Macromol., 2018, 107(Pt A), 204-211.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.155] [PMID: 28863897]
[59]
Wang, Y.S.; Youngster, S.; Grace, M.; Bausch, J.; Bordens, R.; Wyss, D.F. Structural and biological characterization of pegylated recombinant interferon alpha-2b and its therapeutic implications. Adv. Drug Deliv. Rev., 2002, 54(4), 547-570.
[http://dx.doi.org/10.1016/S0169-409X(02)00027-3] [PMID: 12052714]
[60]
Hoppenz, P.; Els-Heindl, S.; Beck-Sickinger, A.G. Peptide-drug conjugates and their targets in advanced cancer therapies. Front Chem., 2020, 8, 571.
[http://dx.doi.org/10.3389/fchem.2020.00571] [PMID: 32733853]
[61]
Dong, Y.; Ma, Y.; Li, X.; Wang, F.; Zhang, Y. ERK-peptide-inhibitor-modified ferritin enhanced the therapeutic effects of paclitaxel in cancer cells and spheroids. Mol. Pharm., 2021, 18(9), 3365-3377.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00303] [PMID: 34370483]
[62]
Teijeiro-Valiño, C.; Novoa-Carballal, R.; Borrajo, E.; Vidal, A.; Alonso-Nocelo, M.; de la Fuente Freire, M.; Lopez-Casas, P.P.; Hidalgo, M.; Csaba, N.; Alonso, M.J. A multifunctional drug nanocarrier for efficient anticancer therapy. J. Control. Release, 2019, 294, 154-164.
[http://dx.doi.org/10.1016/j.jconrel.2018.12.002] [PMID: 30529724]
[63]
Yoshizaki, Y.; Yuba, E.; Sakaguchi, N.; Koiwai, K.; Harada, A.; Kono, K. Potentiation of pH-sensitive polymer-modified liposomes with cationic lipid inclusion as antigen delivery carriers for cancer immunotherapy. Biomaterials, 2014, 35(28), 8186-8196.
[http://dx.doi.org/10.1016/j.biomaterials.2014.05.077] [PMID: 24969637]
[64]
Jiang, Y.; Yang, W.; Zhang, J.; Meng, F.; Zhong, Z. Protein toxin chaperoned by LRP-1-targeted virus-mimicking vesicles induces high-efficiency glioblastoma therapy in vivo. Adv. Mater., 2018, 30(30)e1800316
[http://dx.doi.org/10.1002/adma.201800316] [PMID: 29893017]
[65]
Zhu, M.; Ding, X.; Zhao, R.; Liu, X.; Shen, H.; Cai, C.; Ferrari, M.; Wang, H.Y.; Wang, R.F. Co-delivery of tumor antigen and dual toll-like receptor ligands into dendritic cell by silicon microparticle enables efficient immunotherapy against melanoma. J. Control. Release, 2018, 272, 72-82.
[http://dx.doi.org/10.1016/j.jconrel.2018.01.004] [PMID: 29325699]
[66]
Lee, P.W.; Pokorski, J.K. Poly(lactic-co-glycolic acid) devices: Production and applications for sustained protein delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2018, 10(5)e1516
[http://dx.doi.org/10.1002/wnan.1516] [PMID: 29536634]
[67]
Pessi, J.; Santos, H.A.; Miroshnyk, I. JoukoYliruusi; Weitz, D.A.; Mirza, S. Microfluidics-assisted engineering of polymeric microcapsules with high encapsulation efficiency for protein drug delivery. Int. J. Pharm., 2014, 472(1-2), 82-87.
[http://dx.doi.org/10.1016/j.ijpharm.2014.06.012] [PMID: 24928131]
[68]
Jiang, K.; Shen, M.; Xu, W. Arginine, glycine, aspartic acid peptide-modified paclitaxel and curcumin co-loaded liposome for the treatment of lung cancer: In vitro/vivo evaluation. Int. J. Nanomedicine, 2018, 13, 2561-2569.
[http://dx.doi.org/10.2147/IJN.S157746] [PMID: 29731631]
[69]
Zhao, M.; Zhao, M.; Fu, C.; Yu, Y.; Fu, A. Targeted therapy of intracranial glioma model mice with curcumin nanoliposomes. Int. J. Nanomedicine, 2018, 13, 1601-1610.
[http://dx.doi.org/10.2147/IJN.S157019] [PMID: 29588587]
[70]
Cho, E.; Nam, G.H.; Hong, Y.; Kim, Y.K.; Kim, D.H.; Yang, Y.; Kim, I.S. Comparison of exosomes and ferritin protein nanocages for the delivery of membrane protein therapeutics. J. Control. Release, 2018, 279, 326-335.
[http://dx.doi.org/10.1016/j.jconrel.2018.04.037] [PMID: 29679665]
[71]
Qi, N.; Zhang, S.; Zhou, X.; Duan, W.; Gao, D.; Feng, J.; Li, A. Combined integrin αvβ3 and lactoferrin receptor targeted docetaxel liposomes enhance the brain targeting effect and anti-glioma effect. J. Nanobiotechnology, 2021, 19(1), 446.
[http://dx.doi.org/10.1186/s12951-021-01180-0] [PMID: 34949198]
[72]
d’Avanzo, N.; Torrieri, G.; Figueiredo, P.; Celia, C.; Paolino, D.; Correia, A.; Moslova, K.; Teesalu, T.; Fresta, M.; Santos, H.A. LinTT1 peptide-functionalized liposomes for targeted breast cancer therapy. Int. J. Pharm., 2021, 597120346
[http://dx.doi.org/10.1016/j.ijpharm.2021.120346] [PMID: 33545283]
[73]
Mason, T.O.; Shimanovich, U. Fibrous protein self-assembly in biomimetic materials. Adv. Mater., 2018, 30(41)e1706462
[http://dx.doi.org/10.1002/adma.201706462] [PMID: 29883013]
[74]
Yadav, S.; Sharma, A.K.; Kumar, P. Nanoscale self-assembly for therapeutic delivery. Front. Bioeng. Biotechnol., 2020, 8, 127.
[http://dx.doi.org/10.3389/fbioe.2020.00127] [PMID: 32158749]
[75]
Yan, J.; He, W.; Yan, S.; Niu, F.; Liu, T.; Ma, B.; Shao, Y.; Yan, Y.; Yang, G.; Lu, W.; Du, Y.; Lei, B.; Ma, P.X. Self-assembled peptide-lanthanide nanoclusters for safe tumor therapy: Overcoming and utilizing biological barriers to peptide drug delivery. ACS Nano, 2018, 12(2), 2017-2026.
[http://dx.doi.org/10.1021/acsnano.8b00081] [PMID: 29376322]
[76]
Gu, Z.; Yan, M.; Hu, B.; Joo, K.I.; Biswas, A.; Huang, Y.; Lu, Y.; Wang, P.; Tang, Y. Protein nanocapsule weaved with enzymatically degradable polymeric network. Nano Lett., 2009, 9(12), 4533-4538.
[http://dx.doi.org/10.1021/nl902935b] [PMID: 19995089]
[77]
Zhang, K.; Wan, Z.; Jiang, H.; Xiao, X.; Feng, Q.; Meng, Y.; Yu, Y. Dimer targeting peptide mediated precise and controllable drug delivery by upconversion nanocarriers for breast cancer therapy. Mater. Des., 2021, 203109597
[http://dx.doi.org/10.1016/j.matdes.2021.109597]
[78]
Hemati, M.; Haghiralsadat, F.; Jafary, F.; Moosavizadeh, S.; Moradi, A. Targeting cell cycle protein in gastric cancer with CDC20siRNA and anticancer drugs (doxorubicin and quercetin) co-loaded cationic PEGylated nanoniosomes. Int. J. Nanomedicine, 2019, 14, 6575-6585.
[http://dx.doi.org/10.2147/IJN.S211844] [PMID: 31616144]
[79]
Anastasi, A.; Erspamer, V.; Bucci, M. Isolation and amino acid sequences of alytesin and bombesin, two analogous active tetradecapeptides from the skin of European discoglossid frogs. Arch. Biochem. Biophys., 1972, 148(2), 443-446.
[http://dx.doi.org/10.1016/0003-9861(72)90162-2] [PMID: 4537042]
[80]
Liu, S.; Edwards, D.S. 99mTc-labeled small peptides as diagnostic radiopharmaceuticals. Chem. Rev., 1999, 99(9), 2235-2268.
[http://dx.doi.org/10.1021/cr980436l] [PMID: 11749481]
[81]
Van de Wiele, C.; Phonteyne, P.; Pauwels, P.; Goethals, I.; Van den Broecke, R.; Cocquyt, V.; Dierckx, R.A. Gastrin-releasing peptide receptor imaging in human breast carcinoma versus immunohistochemistry. J. Nucl. Med., 2008, 49(2), 260-264.
[http://dx.doi.org/10.2967/jnumed.107.047167] [PMID: 18199617]
[82]
Liolios, C.C.; Fragogeorgi, E.A.; Zikos, C.; Loudos, G.; Xanthopoulos, S.; Bouziotis, P.; Paravatou-Petsotas, M.; Livaniou, E.; Varvarigou, A.D.; Sivolapenko, G.B. Structural modifications of ⁹⁹mTc-labelled bombesin-like peptides for optimizing pharmacokinetics in prostate tumor targeting. Int. J. Pharm., 2012, 430(1-2), 1-17.
[http://dx.doi.org/10.1016/j.ijpharm.2012.02.049] [PMID: 22459664]
[83]
He, X.; Na, M.H.; Kim, J.S.; Lee, G.Y.; Park, J.Y.; Hoffman, A.S.; Nam, J.O.; Han, S.E.; Sim, G.Y.; Oh, Y.K.; Kim, I.S.; Lee, B.H. A novel peptide probe for imaging and targeted delivery of liposomal doxorubicin to lung tumor. Mol. Pharm., 2011, 8(2), 430-438.
[http://dx.doi.org/10.1021/mp100266g] [PMID: 21222482]
[84]
Dijkgraaf, I.; Terry, S.Y.; McBride, W.J.; Goldenberg, D.M.; Laverman, P.; Franssen, G.M.; Oyen, W.J.; Boerman, O.C. Imaging integrin alpha-v-beta-3 expression in tumors with an 18F-labeled dimeric RGD peptide. Contrast Media Mol. Imaging, 2013, 8(3), 238-245.
[http://dx.doi.org/10.1002/cmmi.1523] [PMID: 23606427]
[85]
Wang, K.; Purushotham, S.; Lee, J.Y.; Na, M.H.; Park, H.; Oh, S.J.; Park, R.W.; Park, J.Y.; Lee, E.; Cho, B.C.; Song, M.N.; Baek, M.C.; Kwak, W.; Yoo, J.; Hoffman, A.S.; Oh, Y.K.; Kim, I.S.; Lee, B.H. In vivo imaging of tumor apoptosis using histone H1-targeting peptide. J. Control. Release, 2010, 148(3), 283-291.
[http://dx.doi.org/10.1016/j.jconrel.2010.09.010] [PMID: 20869411]
[86]
Lee, M.J.; Wang, K.; Kim, I.S.; Lee, B.H.; Han, H.S. Molecular imaging of cell death in an experimental model of Parkinson’s disease with a novel apoptosis-targeting peptide. Mol. Imaging Biol., 2012, 14(2), 147-155.
[http://dx.doi.org/10.1007/s11307-011-0497-z] [PMID: 21567253]
[87]
Benincasa, M.; Zahariev, S.; Pelillo, C.; Milan, A.; Gennaro, R.; Scocchi, M. PEGylation of the peptide Bac7(1-35) reduces renal clearance while retaining antibacterial activity and bacterial cell penetration capacity. Eur. J. Med. Chem., 2015, 95, 210-219.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.028] [PMID: 25817771]
[88]
Wang, B.; Nichol, J.L.; Sullivan, J.T. Pharmacodynamics and pharmacokinetics of AMG 531, a novel thrombopoietin receptor ligand. Clin. Pharmacol. Ther., 2004, 76(6), 628-638.
[http://dx.doi.org/10.1016/j.clpt.2004.08.010] [PMID: 15592334]
[89]
Lin, C.; Hu, Z.; Yuan, G.; Su, H.; Zeng, Y.; Guo, Z.; Zhong, F.; Jiang, K.; He, S. HIF1α-siRNA and gemcitabine combination-based GE-11 peptide antibody-targeted nanomedicine for enhanced therapeutic efficacy in pancreatic cancers. J. Drug Target., 2019, 27(7), 797-805.
[http://dx.doi.org/10.1080/1061186X.2018.1552276] [PMID: 30481072]
[90]
Neumann, E.; Frei, E.; Funk, D.; Becker, M.D.; Schrenk, H.H.; Müller-Ladner, U.; Fiehn, C. Native albumin for targeted drug delivery. Expert Opin. Drug Deliv., 2010, 7(8), 915-925.
[http://dx.doi.org/10.1517/17425247.2010.498474] [PMID: 20586704]
[91]
Maeda, H.; Nakamura, H.; Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev., 2013, 65(1), 71-79.
[http://dx.doi.org/10.1016/j.addr.2012.10.002] [PMID: 23088862]
[92]
Hansch, A.; Frey, O.; Hilger, I.; Sauner, D.; Haas, M.; Schmidt, D.; Kurrat, C.; Gajda, M.; Malich, A.; Bräuer, R.; Kaiser, W.A. Diagnosis of arthritis using near-infrared fluorochrome Cy5.5. Invest. Radiol., 2004, 39(10), 626-632.
[http://dx.doi.org/10.1097/01.rli.0000139008.04288.fd] [PMID: 15377942]
[93]
Matthews, J.E.; Stewart, M.W.; De Boever, E.H.; Dobbins, R.L.; Hodge, R.J.; Walker, S.E.; Holland, M.C.; Bush, M.A. Pharmacodynamics, pharmacokinetics, safety, and tolerability of albiglutide, a long-acting glucagon-like peptide-1 mimetic, in patients with type 2 diabetes. J. Clin. Endocrinol. Metab., 2008, 93(12), 4810-4817.
[http://dx.doi.org/10.1210/jc.2008-1518] [PMID: 18812476]
[94]
Kim, J.H.; Kim, Y.S.; Park, K.; Kang, E.; Lee, S.; Nam, H.Y.; Kim, K.; Park, J.H.; Chi, D.Y.; Park, R.W.; Kim, I.S.; Choi, K.; Chan Kwon, I. Self-assembled glycol chitosan nanoparticles for the sustained and prolonged delivery of antiangiogenic small peptide drugs in cancer therapy. Biomaterials, 2008, 29(12), 1920-1930.
[http://dx.doi.org/10.1016/j.biomaterials.2007.12.038] [PMID: 18289669]
[95]
Yang, Y.; Li, J.; Liu, F.; Huang, L. Systemic delivery of siRNA via LCP nanoparticle efficiently inhibits lung metastasis. Mol. Ther., 2012, 20(3), 609-615.
[http://dx.doi.org/10.1038/mt.2011.270] [PMID: 22186791]
[96]
Zheng, Y.; Yu, B.; Weecharangsan, W.; Piao, L.; Darby, M.; Mao, Y.; Koynova, R.; Yang, X.; Li, H.; Xu, S.; Lee, L.J.; Sugimoto, Y.; Brueggemeier, R.W.; Lee, R.J. Transferrin-conjugated lipid-coated PLGA nanoparticles for targeted delivery of aromatase inhibitor 7alpha-APTADD to breast cancer cells. Int. J. Pharm., 2010, 390(2), 234-241.
[http://dx.doi.org/10.1016/j.ijpharm.2010.02.008] [PMID: 20156537]
[97]
Chan, J.M.; Zhang, L.; Tong, R.; Ghosh, D.; Gao, W.; Liao, G.; Yuet, K.P.; Gray, D.; Rhee, J.W.; Cheng, J.; Golomb, G.; Libby, P.; Langer, R.; Farokhzad, O.C. Spatiotemporal controlled delivery of nanoparticles to injured vasculature. Proc. Natl. Acad. Sci. USA, 2010, 107(5), 2213-2218.
[http://dx.doi.org/10.1073/pnas.0914585107] [PMID: 20133865]
[98]
Tekade, R.K. Basic fundamentals of drug delivery; Academic Press, 2018.
[99]
Dragojevic, S.; Ryu, J.S.; Raucher, D. Polymer-based prodrugs: Improving tumor targeting and the solubility of small molecule drugs in cancer therapy. Molecules, 2015, 20(12), 21750-21769.
[http://dx.doi.org/10.3390/molecules201219804] [PMID: 26690101]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy